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ABSTRACT

We present an empirical investigation of the gradual progres-
sion of surface damage in spur gears using two statistically
independent data sources: oil monitoring and vibration mea-
surements. The experimental test stand was equipped with a
commercial magnetic particle filter, and a novel test process
was developed to remove particles from the magnetic filter
and suspend them in oil. In addition, samples were period-
ically drawn from the oil tank for analysis using a LaserNet
Fines particle analyzer. Furthermore, image captures of se-
lected gear surfaces after each test period provided the ground
truth information on the progression of damage. Both data-
driven and classical vibration-based condition indicators were
computed and compared to an image-based feature that quan-
tified the surface condition in the ground truth images with
some of the indicators showing more than 80% correlation.
Oil analyses did not find significant concentrations of parti-
cles in the samples drawn from the oil tank, but found rela-
tively large numbers of particles collected from the magnetic
filter.

1. INTRODUCTION

Gearbox health diagnostics continue to show benefits for op-
erators and maintainers of mechanical assets; therefore, this
field remains an area for further scientific advancement. To
that end, this empirical study was concerned with the pro-
gression of gear teeth damage from initial tolerable defects
to conditions that warrant replacement. The surface damage
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started with general wear and progressed to micropitting and
pitting that are well-documented phenomena in prior works.

The early stages of damage are associated with wear and prior
research suggests that mild wear at the start of gear pair op-
eration adequately wears-in the tooth surfaces, and reduces
subsequent micropitting, followed by zero or negligible wear
for the rest of the gear pair life (Morales-Espejel, Rycerz, &
Kadiric, 2018).

The later stages of damage progression also continue to draw
the interest of both practitioners and researchers. For exam-
ple, a recent empirical study of initiation and micropitting
identified the critical factors in formation of micro-pits: ex-
cessive loading, gear tooth micro-geometry, surface rough-
ness, and lubricant film thickness (Al-Tubi, Long, Zhang,
& Shaw, 2015). Interesting new work on the image-based
analysis of micro-pitting (Key & Kacher, 2021) and thermal
mixed elastohydrodynamic lubrication models (Li & Kahra-
man, 2021) may provide valuable screening criteria for scuff-
ing wear.

Recent studies found that vibration-based machine learning
models outperform their classical engineered counterparts
(Hood et al., 2021), the vibration analyses in this paper em-
ployed both classical and engineered condition indicators
(CIs) for damage detection. Machine learning modeling ap-
proaches based on autoencoders have established themselves
as a compelling methodology for predictive maintenance, es-
pecially for the first level of capability using anomaly detec-
tion. Studies using classical CIs (Lebold, McClintic, Camp-
bell, Byington, & Maynard, 2000; Samuel & Pines, 2005;
Sharma & Parey, 2016) found that the best performing clas-
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sical CI was ALR, which was introduced in (Mark, Lee,
Patrick, & Coker, 2010).

The recent revolution of computer vision propelled by deep
neural networks (LeCun, Bengio, & Hinton, 2015) introduced
new crack detection approaches such as image segmenta-
tion, based on U-Net encoder-decoder scheme (Ronneberger,
Fischer, & Brox, 2015) and its variants (Siddique, Pahed-
ing, Elkin, & Devabhaktuni, 2021; Du, Cao, Liang, Chen,
& Zhan, 2020), which were very effectively applied to crack
detection (Cheng, Xiong, Chen, Gu, & Li, 2018; Liu, Cao,
Wang, & Wang, 2019; Hsieh & Tsai, 2020) at different
scales, including structural engineering (Azimi, Eslamlou,
& Pekcan, 2020; Dong et al., 2021). An example of visi-
ble pitting detection and monitoring using U-net is given in
(Miltenovi¢, Rakonjac, Oarcea, Perié, & Rangelov, 2022).
Image registration was proposed for monitoring surface gear
failures (Onsy, Bicker, Shaw, & Fouad, 2012), and neural net-
works for texture analysis of wear particles (Laghari & Has-
san, 2019).

The article presented here, is organized into three main sec-
tions. Section 2 describes the gears and the experimental
procedure, featuring a magnetic particle filter with a novel
process for removing captured particles from the filter for
measurement. Section 3 describes the oil analysis results:
estimated ground truth of damage from images, comput-
ing vibration-based classical Cls, and autoencoder-based data
driven CIs. Optical images of gear face contact surfaces un-
der test acted as the ground truth for vibration monitoring.
Section 4 summarizes the main results and suggests future
work.

2. EXPERIMENTAL SETUP

The physical experiments were performed on a custom fab-
ricated gear testing system comprised of a 300-horse-power
inline transmission dynamometer, single-stage spur gearbox,
100 kHz data acquisition system, shaft encoder, and oil de-
livery system. The gearbox consisted of two NASA-designed
spur gears having an AGMA Class 13 tolerance, alloy 9310
composition, diametral pitch of 8, 20-degree pressure angle,
and case carburization (Krantz, 2014). Accelerometers were
placed on the gearbox in radial and axial positions relative
to the drive shaft to acquire vibration signals associated with
gear damage (Hood et al., 2021). The gears were lubricated
through a forced oil circulation system with AGMA Grade
3EP synthetic oil selected, based on the pitchline velocity
and operating temperature, to purposely operate in the mixed
boundary lubrication regime, thereby accelerating surface-
damage.

2.1. Test stand description

The test stand was built around a transmission dynamometer
that used an electric motor to apply load to the gearbox and

an eddy current brake to produce the reaction torque. Spray
lubrication of the gears was provided through oil impinge-
ment on the outlet of the gear mesh with a total flow rate
of 0.8 L/min. The lubricant was Super Brand synthetic gear
oil having a viscosity of 108 cSt at 40 °C and was actively
cooled by a heat exchanger that maintained the oil tempera-
ture near 35 °C throughout the test. The oil outlet piping from
the gearbox was plumbed at a constant downward slope to a
reservoir having a conical bottom geometry that terminated at
a drain valve port. This geometry feature was implemented
to reduce locations where particles could settle out of the oil
before reaching either the drain port or the downstream filter
elements where oil samples were collected. The outlet port
from the oil reservoir was connected to a 20-inch-long modi-
fied magnetic filter element from Eclipse Magnetics. Further
downstream of the magnetic filter was a helical gear pump
that led to a 3-um rated hydraulic paper filter and the liquid-
liquid heat exchanger before returning to the gearbox.

A portable USB digital microscope with a 2MP sensor and
40 to 1000x zoom captured ground truth images of the spur
gear’s driving side tooth surfaces as damage progressed. The
microscope magnification was approximately 88x, giving a
resolution of 3.2 um/pixel. A USB-powered LED strip light
provided lighting with a custom diffuser to flatten the light
and a custom-built fixture, shown in Figure 1, enabled consis-
tent positioning of the light and the microscope. The image
capture process included room darkening before imaging to
reduce spurious reflections due to variable outdoor light con-
ditions. The Microsoft Camera application captured images
from the camera and stored them on the laptop computer.

Figure 1. Setup for optical imaging of spur gear faces.
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2.2. Oil sampling and magnetic filter

Oil sampling followed each test run by drawing oil at the
bottom of the oil tank. Because periodic oil sampling can
miss transiently generated wear particles, we installed a mag-
netic filter to capture particles continuously during testing.
We developed a new process for removing particles collected
on a sleeve around the magnet and suspending them in oil
for analysis. Figure 2a shows the magnetic filter that con-
tinually collected particles as the oil circulated. Figure 2b
shows the magnetic core removed from the filter, with parti-
cles forming horizontal lines at the magnetic field maxima.
Figure 2c shows an example particle transferred from the
magnetic core. The magnetic filter acted as a sensor that ef-
fectively integrates the wear particles as the oil circulates.

The commercial magnetic filter system was modified by in-
stalling a machined plastic spacer at the inner diameter of the
filter housing to decrease the fluid channel thickness and the
average distance between the magnet and particles, thus in-
creasing the magnetic force on the ferrous gear wear debris
relative to the viscous drag forces imparted by the gear oil.
The preferred distance between the magnet and particles was
determined by using simplified magnetic dipole models for
a general understanding of the problem and by conducting
benchtop experiments to study particle movement. These em-
pirical investigations included using high-speed photography
and metal 3D printing powder, having a known size distribu-
tion matching the smallest gear particles of interest, to mea-
sure the time constants associated with particle attraction to
the magnet within the fluid. The associated times were used
to calculate the space velocity of the oil required in the filter
that ultimately defined the dimensions of the plastic spacer.
The final addition to the system was a 127 - um thick oleo-
phobic fluorinated ethylene propylene (FEP) sleeve placed
around the magnetic element that allowed the particles to be
attracted to the magnets, which were then removed for post-
test collection and analysis.

2.3. Particle Removal

During the test, as the oil circulated, magnetic forces col-
lected particles on the FEP sleeve around the magnetic filter
element. The process for removing particles from the magnet
consisted of four steps. First, we folded the bottom 2 cm of
the sleeve toward the top of the filter. The folding ensured
that all particles remained on the sleeve. Second, we slid the
sleeve upward, axially off the magnetic element. During this
step, the magnet held the particles stationary until the sleeve
pulled them from their position and accumulated them in the
fold. The third step was cutting and removing the FEP away
from the fold. In the fourth step, we unfolded the section of
the FEP with particles, dunked it into a sample container with
clean oil to transfer the particles, and agitated the FEP , which
resulted in a visible dispersion of particles. A rare-earth bar

magnet, placed on the outside wall of the container, further
facilitated the transfer of the particles from FEP to the oil.
After the particle extraction process, microscopy of the sleeve
revealed that some particles smaller than 5 pm remained on
the FEP sleeve.

LaserNet Fines wear debris analyzer processed oil samples
and collected particles to determine their concentration and
size distributions. Particles greater than 20 um particles were
classified into wear types. This data was used to document
characteristics associated with gearbox surface-damage.

2.4. Operating conditions

Before the present experiment, we ran a 24-hour prelimi-
nary test at fixed operating conditions, with torque 7 = 230.5
Nm (170 ft-1b) and rotational speed w = 146.6 rad/s (1400
rpm). These operating conditions were used in earlier experi-
ments that included the seeding of cracks (Hood et al., 2021).
The torque level 7 = 230.5 Nm corresponded to 30% bend-
ing overload, which was also intended to accelerate surface-
damage. After 24 h of testing, one of the gear teeth broke off,
ending that prior test prematurely. These operating conditions
served as a reference for the present experiment.

Table 1. Effect of torque on bending and contact stress safety
factors

Torque [Nm] ([ft-lb]) Bending SF [%] Contact SF [%]

230.5 (170) 69.0 75.6
162.7 (120) 91.7 90.0
149.1 (110) 106.6 94.8

Gear design equations (see, e.g., (Shigley & Mischke,
1989)) show that the fatigue stress is proportional to torque
O fatigue < T. In contrast, the contact stress is proportional
to the square root of torque oeontact X /7. Thus, reducing
torque was accompanied by a faster decrease in bending
stress overload than contact stress overload. Table 1 shows
the result of the bending safety factor for three levels of
torque, where overload (OL) is related to the corresponding
safety factor (SF') simply as OL = 100 — SF.

The progression of damage at constant torque was slow,
therefore, we changed the profile of the operating conditions
and introduced agitation by increasing torque from 169.9 Nm
(125 ft-1b) to 203.4 Nm (150 ft-1b) for 20% of time, as illus-
trated in Figure 3. The damage progression remained slow,
which motivated us to further increase the torque during the
agitation period from 203.4 Nm (150 ft-1b) to 230 Nm (170
ft-1b).

Table 2 summarizes the test conditions for the test duration.
The speed was not changed: it was held constant at w = 146.6
rad/s (1400 rpm) for the test duration.
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(b)
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Figure 2. Magnetic particle filter: (a) in-line magnetic filter (b) magnetic element removed with captured particles forming lines
at the maximum gradients of the magnetic field on FEP sleeve. (c) example of particles removed from the magnetic element.
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Figure 3. Operating conditions with 20% agitation

Table 2. Torque settings. The speed was held constant at w =
146.6 rad/s (1400 rpm)

Name Torque [Nm] ([ft-lb]) Period [h] Dur. [h]
Fixed Torque 169.9 (125) 4 92
Agitation 169.9/203.4 (125/150) 6 258
More Agitation  169.9/230.5 (125/170) 6 188
Total 538
Table 3. Test events
Time [h] Event Torque [ft-1b]  Run [h]

0 Initial profile 125 ft-1b 4

92  Agitation 125/150 6

286 Removed mag. filter 125/15 6

352  Increase agitation 125/170 6

492  Re-installed mag. filter  125/170 6

526 Removed mag. filter 125/170 6

544  Test ended

3. RESULTS AND ANALYSES

A long-term surface damage experiment provided the oil and
vibration data for statistical data analyses and the develop-
ment of machine learning models. Figure 4 shows a concep-

Figure 4. Surface-damage area of a single tooth (conceptual
drawing)

tual view of the damaged area of a single tooth, while Figure 5
shows the image data on the damaged surface of one of the
gear teeth as it progressed during the (1st or 2nd) test.

3.1. Ground truth estimation

Image-based ground truth CIs were all computed using the
overall standard deviation of a grayscale image array A af-
ter an image transformation, where the image transformation
consisted of two steps: histogram equalization and applying
Sobel filter in the z-direction (Gonzalez & Wood, 2017). The
Sobel filter was used to enhance surface brightness gradients
that were associated with gear face wear.

Histogram equalization was applied to improve contrast
and transform input image A, with components a; ;, into
histogram-equalized image A, with components ae,
(Kaehler & Bradski, 2016). Mathematically, the pixels
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538 h

Figure 5. Progression of surface damage (a) 14 hours (b) 346
hours (c) 538 hours

intensity of the output image array are

e, { ZpJ e

where L is the number of levels of the gray-scale image in-
tensity (e.g., 256 for 8-bit pixel representation), /N and M are
the number of rows and columns of the image matrix |.] is
the floor operator (rounds the number down to the nearest in-
teger), and p[n] is the estimated probability of the input-image
pixel’s intensity equal to n (the ratio of the number of pixels
equal to n and the number of the elements of the matrix)

1 M N
= 2 2 D Maij =n); ©))

i=1 j=1

where 1(.) is the indicator function defined as

1, a;;=n
1(aij:n):{0 az-]'?én
y Qi

3)
A Sobel filter in the horizontal direction helped sharpen the
image of surface damage. Filtering in the horizontal direction
amplified the surface damage, whereas filtering in the verti-
cal direction amplified the tooling-induced horizontal lines,
attenuating the damage information. The filter operated on
the equalized input image A, via a convolution (denoted by
*). In this implementation, the filter’s kernel was set to 5 and
the filter is represented by a 5 x5 matrix. The resulting image

Ay is thus
-2 -1 0 +1 +2
-2 -1 0 +1 +2
Ap=|-4 -2 0 +2 +4|xA, 4)
-2 -1 0 +1 +2
-2 -1 0 +1 +2

The corresponding OpenCV implementation of this transfor-
mation consists of two lines of code.

A_e = cv.equalizeHist (A)
A_f = cv.Sobel (A_e,cv.CV_64F,1,0,ksize=5)

Figure 6 illustrates transformed N x M = 500 x 1700 sub-
images after t=406 h. A scalar ground truth estimate of sur-
face damage was computed from the transformed image as
a simple standard deviation computed for an image at the
given state of the test, with one image for each of the four
pre-selected teeth:

o= \/<(Af —(Ap))%)? = LM ZZ (ay,, — (Ag))*

5
where (Ay) is the global mean of the filtered image

A9 =5 ZZ a., (©)

=1 j=1
and ay, ; denotes a component of the filtered image.

We computed a ground truth estimate of the surface-damage
damage o, for each of the four teeth after each test period.
Finally, the global metric was computed by averaging o,, over
the four imaged teeth

1 4
o) =7 > on @)
n=1

Figure 7 shows how the global metric (o) computed using
Eq. (7) evolves from 0 to 538 h.

3.2. Vibration analysis

Several classical and data-driven CIs were computed for the
long-term 538-hour test, separated into 98 runs, with periodic
inspection for capturing the ground truth using optical imag-
ing (refer to Table 2). Table 4 lists the correlations between
individual vibrations-based CIs and the image-based ground
truth. Of all ClIs, the average likelihood of ratios (ALR) had
the highest correlation coefficient with the image-based esti-
mated ground truth (p(), a1 r= 0.84).

Classical CIs are described in detail in several review papers
(e.g., (Lebold et al., 2000; Samuel & Pines, 2005; Sharma
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Figure 6. Four teeth imaged at ¢ = 406 h: grey-scale sub-images (top row); corresponding sub-images after the transformation

process (bottom row).
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Figure 7. Evolution of the estimated image-based ground
truth on surface damage.

& Parey, 2016)). These reviews do not include ALR. Since
ALR is less commonly used and because it had the strongest
correlation with the estimated ground truth, we describe it
briefly. For more complete descriptions of this CI, refer to
(Wagner, Mark, & Isaacson, 2021).

Table 4. Correlations between vibration-based condition in-
dicators and the image-based estimated ground truth

Condition indicator CI type Cor. coeff. p [%]
ALR deterministic* 84
Crest of energy operator deterministic =717
Energy ration deterministic -73
AE-FC-MAE data-driven 70
Kurtosis of energy operator ~ deterministic -69
Skew of energy operator deterministic -48
NA4 deterministic -44
RMS deterministic 35
FM4 deterministic -27
MSBA deterministic -26
M6A deterministic -25

The ALR CI can be computed in three steps: 1) compute the
Fast Fourier Transform (FFT) of the residual signal denoted
by Ry, from the baseline data; 2) compute the residual of the
arriving data R; and 3) form the average of the logarithm of
ratios

7|
|Tbk |

1 K
ALR = % ; log (8)

where 7, and rp, are components of R and R, respectively.

K is the selected number of harmonics (often the total num-
ber of frequency components in the FFT).

The residual signal was obtained from the FFT of the time
synchronous averaged (TSA) signal x7s4 by removing cer-
tain components: the first shaft and all mesh frequencies. De-
noting the FFT of 754 by X 154, and number of gear teeth
(mesh) by Ng, residual vector R with components 7, is com-
puted as follows

R+ XTSA

R[1]=r =0 ®

(remove shaft)

It is interesting to note that we do not need to store all base-
line residuals because Eq. 8 can be rearranged to group all
reference residuals together as a single scalar (log |1, |) as
follows

1 1 &
ALR = e ;log|rk| - ?;log|rbk|
- - (10)

1 K
= 2= > loglra| — (logrs, )
k=1

The TSA vector g4 is obtained from the vector of raw vi-
bration data @ and an index signal obtained from a tachome-
ter or encoder, which enables identifying complete rotations.
The process averaged acceleration over multiple shaft ro-
tations, effectively mapping time-domain data onto angle-
domain data in the range 0 < 6 < 27.

a‘— TTSA (11)

In the present case, the accelerometer vector a, associated
with one second of operation, had 10° components and was
compressed into the TSA vector z1g4(0) with the length of
K = 2'2 points by averaging over 24 complete rotations.
Refer to (Bechhoefer & Kingsley, 2009) for more details on
TSA. Figure 8 shows ALR vs. time.

Four CIs used a subset of runs as either baseline or training
data. Table 5 lists these data-driven Cls with accompanied
runs used for their computations. It is important to note that
the data used for CI computations were between 18 and 60
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Figure 8. Evolution of ALR over time.
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Figure 9. Correlation of a vibration-based condition indicator
and image-based ground truth.

minutes relative to the beginning of the run because these
time intervals corresponded to the steady-state data, avoiding
the agitation time intervals (with higher torque), as described
in Section 2.4.

For example, ALR computations used runs 1, 3, and 4 to com-
pute the baseline residual needed for computing the actual CI,
the average logarithm of ratios of residuals.

3.3. Data Driven ClIs - AE-FC-MAE

Data-driven ClIs, are based on the output of a trained fully-
connected autoecoder. The values of these CIs were the mean
absolute error (MAE) of autoencoder reconstruction error of
the TSA features of each run, hence the name AE-FC-MAE.
The MAE averages the absolute difference between the input
TSA sequence, with component xrs4, and the correspond-
ing autoencoder output £rg4, .

1 K=4096
Clap =3 D, |rrsa, —drsa,] (12)
k=1

yielding one value per second.

Each of the underlying autoencoder models was symmetri-
cal with fully-connected layers and the number of neurons
from layer to layer given by 4096-64-32-16-32-64-4096, as
depicted in Figure 10. The model was implemented in Ten-
sorFlow with Keras (Abadi et al., 2016) application program-

ming interface (Chollet, 2021; Geron, 2019). However, each
model used a different selection of runs for training.

Each model used different subset of runs for training data,
as shown in Table 5. The performance of the models was
relatively insensitive to the subset of runs used for training,
as can be observed in Table 4.

Table 5. Data-dependence of models which rely on such for
either baseline or training data

Condition indicator Dependence type Runs
ALR Baseline 1,34
AE-FC-MAE1 Training 3,4,6,9
AE-FC-MAE2 Training 4,59
AE-FC-MAE3 Training 5,8,9,10
4096
Y 4096
/
Xrsa ; g g : 'QTSA
Encodings /
Encoder Decoder

Figure 10. Autoencoder for TSA based on fully-connected
layers

3.4. Oil analysis

Periodic oil samples drawn from the reservoir drain and re-
suspended particles removed from the magnetic filter were
analyzed using a LaserNet Fines (LNF) wear debris analyzer.
The LNF analyzer examines 1-milliliter fluid volumes, and
determines size and concentrations of particles in the sam-
ple that are larger than 5 pm, and classifies particles larger
than 20 um into several wear types, specifically fatigue, slid-
ing, and cutting wear. The 3-um system filter effectively re-
moved particles from the fluid stream, leaving only particles
that were created during the last few fluid cycles through the
system. For this reason, the particle concentration in a fluid
sample was related to the particle creation rate at the time the
sample was drawn (Anderson & Driver, 1979).

Figure 11a shows the particle size distribution of a sample
drawn at ¢t = 268 h, while Figure 11b shows the total par-
ticle concentrations of the samples drawn from ¢ =4 hto ¢
= 388 h. Total particle concentrations were mostly at levels
below 250 per ml, and by looking at the difference between
the >5 pm and >10 pm concentrations, it is seen that it was
dominated by particles smaller than 10 um in size. The fact
that there were few particles greater than 10 um was con-
sistent with normal and pitting fatigue wear which generally
creates only small particles. Particles greater than 20 ym were
mostly classified as fatigue and sliding wear, with concentra-

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited 7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

7 200{ 189
E
< 150 A
©
@ 100
=
§ 50 A
14

8 ol w0 0

5-15 15-25 25-50 50-100 >100

(a) Particle size range [um]
— 2000 A
T —— >5pum
E 1500 >10 um
C
°
‘é 1000 A
€
2" \_/\,\/\/h\/\"!\,v-/
C
o
o 0
0 100 200 300 400
(b) Time t [h]

Figure 11. a) Particle size distribution for oil sample drawn at
t =268 h. b) Total particle concentrations during the test for
sizes greater than 5 and 10 pm.

tions generally less than 3 ml~! (Figure 12). There were sev-
eral spikes in particle concentrations during the 388-hour test
interval shown in Figures 11 and 12, which may indicate peri-
ods of increased particle generation at the time the oil sample
was drawn.
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Figure 12. LNF results: sliding and fatigue particle concen-
trations during the test

Figure 13 shows the size distribution of particles, plotted on
a logarithmic scale that were captured by the magnetic filter
while it was in the oil flow from ¢ = 0 to ¢ = 286 h and re-
suspended into an oil sample. Unlike the oil samples drawn
from the reservoir drain, particles were captured throughout
the time the filter was in the system and acted as an integrator
of the particle production rate.

This sample collected from the magnetic filter contained sev-
eral hundred times more particles than ones from the reservoir
and had particles larger than 100 um in size. This sample also
had similar increases in the classed particle concentrations
greater than 20 um with high concentrations of sliding and
fatigue wear (Figure 14). The sliding and fatigue wear size

o 108
|
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z 104 .
o
g 1,671 821
@ 210
2 ]
210 25
O
5
O 10° T T T T T
5-15 15-25 25-50 50-100 >100

Particle size range [um]

Figure 13. Logarithmic size distribution of particles removed
from the magnetic filter that collected particles from t=0 to
t=286 h of the test

distributions show the higher concentration of particles to be
in the 25-50 pm size range, which has been seen in LNF anal-
yses of systems experiencing machinery faults. The higher
concentration in the 25-50 um size range is due to the non-
uniform size ranges in the plot and the production of larger
particles due to increased surface damage.
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Figure 14. Wear size distributions for the magnetic filter sam-
ple (a) sliding (b) fatigue)

Figure 15 shows example shapes of particles captured using
the magnetic filter. The ruler at the bottom provides the scale.
Several particles larger than 100 um can be found in this im-
age.

The much higher particle concentrations in the magnetic fil-
ter sample show the effectiveness of this device for capturing
particles in the oil stream. The primary downside of the de-
vice is that there is a substantial manual effort to remove the
captured particles and suspend them into a fluid sample for
analysis that is not easily modified to field implementation.
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Figure 15. Oil analysis of particles captured by magnetic filter and suspended in oil

4. CONCLUSIONS AND FUTURE WORK

The study empirically examined the progression of surface
damage in spur gears and included three modes of monitor-
ing: 1) optical imaging of damaged gear surfaces; 2) char-
acterization of particles suspended in oil and particle cap-
tured by the magnetic filter; and 3) vibration monitoring of
the gearbox.

A simple, deterministic image-based feature was highly cor-
related with test time and vibration-based features. Ten en-
gineered vibration CIs and three data-driven vibrations Cls
were computed with four showing about 70% or better abso-
lute correlation with the image-based condition indicator.

Particles captured by periodic oil samples after each test in-
terval did not contain a meaningful representation of damage.
However, particles captured by the magnetic filter included
large particles that served as evidence of significant surface
damage.

Gear failures in helicopters can be severe and lead to catas-
trophic outcomes, though fortunately, such failures are rare.
There is a notable scarcity of publicly available datasets re-
lated to gear failures, particularly those that capture the pro-
gression of wear. It is essential to differentiate between
surface damage progression and its more critical counter-
part—fatigue damage. This paper, along with the accompa-
nying dataset, aims to address this research gap by facilitat-

ing evaluation of the effectiveness of vibration-based CIs and
complementary oil analysis techniques in detecting failures
and accurately diagnosing their failure modes. Future work
will expand both the dataset and the scope of analysis.

Specifically, future work will include inline optical and inline
magnetic oil monitoring to improve data collection. Addi-
tionally, refining the image-based ground truth indicator can
be improved further. For example, using the object detection
and classification methods. You-Only-Look-Once (YOLO)
algorithm (Redmon, Divvala, Girshick, & Farhadi, 2016),
could be used to detect and classify progression of damage
(micropits, pits, cracks, and spalls). The bounding boxes of
detected objects will be used for development of ground-truth
indicators, which can be related to vibration-based and oil
CIs. Finally, feature fusion (e.g., Bayesian feature fusion)
could integrate vibration and oil condition indicators, produc-
ing a more robust and reliable degradation metric.
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