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ABSTRACT

A Rotary Vacuum Drum Filter (RVDF) is one of the filtering
equipment used in iron mining for removing excessive
moisture from slurry. One of the critical components of
RVDF is a supporting wire which holds filter cloth. During
filtration, due to variation in pressure the wire undergoes
recursive compression and expansion which may lead to wire
failure. This failure significantly impacts the integrity and
efficiency of filter cloth that affects the filtration
performance. If the wire failure is not detected promptly, it
may lead to prolonged maintenance time, substantial
maintenance cost and unplanned downtime, consequently
affecting system availability. To address the issue, this work
aims to demonstrate health monitoring of filtering systems in
mining.

This paper introduces a vision-based monitoring approach for
detecting surface defects indicative of wire-induced
degradation on RVDF filter cloth. Video streams collected
during operation are processed to extract the relevant surface
regions for targeted analysis. The proposed methodology
integrates structural feature localization and pixel-wise
statistical analysis to detect deviations in surface appearance
associated with wire failure. The approach enables both
global health assessment and localized fault detection, to
provide operators with diagnostics about the emerging
failure, to take appropriate maintenance action and minimize
further damage, and downtime. The focus of this work is on
detection and diagnostics, and in future work a transition
towards prognostics is possible by incorporating multi-modal
sensor data.

1. INTRODUCTION

The processing phase in iron ore mining is generally
performed to enhance the iron content in the final product
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through various stages that include sorting, concentrating and
pelletizing. The dewatering plant in the pelleting stage plays
an important role in controlling the moisture content in iron
cake and to meet the process requirements for the next phase.
The Rotary Vacuum Drum Filter (RVDF) (Sharad et al.,
2019) plays an important role in this process by continuously
separating excess moisture from the iron slurry. As shown in
Figure 1, the RVDF consists of a horizontally mounted
cylindrical metal drum made of a perforated plate, partially
submerged in a slurry trough, with its surface covered by a
filter cloth secured by supporting wire (Cieslakiewicz et al.,
2024) (Sharad et al., 2019). As the drum rotates, vacuum
pressure draws the slurry through the filter cloth, forming a
solid iron cake with required moisture content on its surface,
which is puffed or transferred on a conveyor belt for further
processing.

Common failures in RVDF include rupture of filter media,
degradation of filtration holes and similar challenges
(Cieslakiewicz et al., 2024). Among the various components
of RVDF as shown in Figure 1b, this work focuses on the
filter cloth and supporting wire which are susceptible to
frequent failure. The failure of the wire can be attributed to
the strain caused by the cyclic pressure and vacuum cycle, in
addition to the varying load effect caused by the moisture in
the slurry, which directly impacts the effectiveness of filter
cloth. As the wire degrades, the cloth around the impacted
region might not adhere the slurry adequately, resulting in
patchy regions of non-uniform filter surface. Figure 2a shows
the surface during normal operation and Figure 2b shows a
sample of a synthetically generated failure image. The cloth
failure reduces the availability of the filter, and the resulting
unplanned downtime leads to production losses.
Additionally, if the operation continues after failure, the wire
might get entangled around the edges of filter. This
complicates the maintenance process and can significantly
increase both the maintenance time and cost. A serious
operational concern is the possibility of broken
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Figure 1. Outer surface and sample components of RVDF.

fragments of wire might get trapped in downstream
equipment, such as conveyor belts, potentially causing which
could lead to a complete plant shutdown and result in a
significant financial loss.

Despite the importance of filtration system integrity, current
maintenance practices rely on manual inspection and
preventive maintenance. Operators and maintenance
engineers perform regular checks, including monitoring
pressure values, agitation speed, and moisture content in the
dried iron cake. However, these inspection measures often
fail to detect early signs of degradation, and by the time
failure is detected, significant damage has already occurred.
A significant contributor to such operational and financial
expenditure is the lack of an ineffective maintenance strategy
capable of anticipating failures (Biggio & Kastanis, 2020).
Predictive maintenance (PdM) offers a promising solution by
utilizing historical data and analytics to predict machine
failure. Prognostics and Health Management (PHM) is
fundamental to PdM, which includes monitoring the
evolution of the condition of a system to predict its failure
(Zio, 2022). Beyond failure prediction, PHM also adds
another layer that integrates maintenance strategies to
increase operational efficiency and reduce unplanned
downtime (Fink et al., 2020). With the advancement of sensor
technology and analytics tools, PdM is the way forward (Lee
et al., 2006). The three tasks of PHM defined in (Zio, 2022)
are fault detection, fault diagnosis and fault prognostics. Fault

b) synthetiall generated failure image
Figure 2. Filter image during normal operation and failure.

detection and diagnosis are essential for efficient operation of
assets (Ifeanyi & Coble, 2024). PHM involves continuous
asset monitoring to detect any deviations and pinpoint
potential root cause and prediction of the remaining useful
life (Fink et al., 2020)(Zio, 2022). In line with the PHM
objectives, this work proposes an approach to detect early
signs of filter cloth degradation. Figure 3 shows the pipeline
of this work. Video frames are extracted to capture the filter
surface, followed by isolating the region of interest
containing the filter cloth. Surface analysis is then performed
using intensity and texture variations to detect irregularities.
Finally, section-wise localization identifies the origin of wire
failure. Overall, the contributions of this paper are bi-fold:

1. Animage-based approach for early detection of wire
failure in RVDF, aimed at identifying surface
anomalies that compromise the filter cloth integrity
during operation.

2. A localization technique to precisely identify the
region of wire failure, providing insights on the
specific area of the filter cloth affected by
degradation.

The objective of this work is to enable timely detection of
failure and targeted maintenance planning, to support the
development of predictive maintenance strategies.

The rest of the paper is organized as follows. Section 2 gives
the related work and identifies the research gap. Section 3
presents the methodology used for the proposed approaches
with results in section 4. Section 5 provides a detailed



discussion, followed by a conclusion and future work in
section 6.
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Figure 3. Flowchart of image-based failure detection and
localization for RVDF.

2. RELATED WORK

Effective maintenance of industrial assets is critical to reduce
downtime and optimize operational efficiency, especially in
high-stakes industries such as mining. It is therefore
important to prioritize the optimization of maintenance
strategies (Huang et al., 2024). PHM has emerged as a
reliable framework for predictive maintenance by enabling
continuous system monitoring, fault detection, diagnostics,
and estimation of remaining useful life (Zio, 2022) (Fink et
al., 2020). PHM techniques are widely applied across
industries to enhance reliability, reduce maintenance costs,
and improve system availability (Huang et al., 2024) (Shin et
al., 2018).

Within the broader context, vision-based approaches have
increasingly been explored. A conveyor belt deviation
detection approach for coal mines was presented in (Wu et
al., 2023a). To extract the edges of the belt, Canny edge
detection and Hough transform were applied on the processed
low light images. To detect and predict soil erosion and
filtration process, (Huisman et al., 2024) uses Optical
Coherence  Tomography (OCT) and  multi-scale
Convolutional Neural Network (CNN). To identify filtrate
turbidity and flow states in press filter, (Cui et al., 2022) used
YOLO-V5-based object detection with multi-label head. A

vision-based fault diagnosis data driven approach was
proposed in (Liu Binand Peng, 2022) for rolling bearings.
Displacement information was extracted from vibration
images to classify fault types. These studies highlight image-
based analysis to capture signatures that are difficult to
measure with conventional sensors.

Despite the advancement in sensor technology, commonly
used data for PHM predominantly focuses on utilizing time-
series sensor data, including vibration, temperature, force
readings, maintenance logs (Jia et al., 2018). However,
applications of vision-based monitoring in harsh industrial
environments, particularly in mining equipment, remain
limited. This gives a potential opportunity for exploring
image-based detection and diagnostics.

Within PHM, early fault detection and localization are
essential for enabling timely interventions and preventing
failure escalation (Lee et al., 2014) (Jardine et al., 20006).
Particularly in the context of RVDF, failure of supporting
wires is a significant yet underexplored challenge. Many
studies use images or optical diagnostics for system
monitoring but not specifically on mechanical surface
damage. To the best of our knowledge, no prior work has
addressed the problem of wire failure detection and
localization on RVDFs using image-based techniques. While
PHM principles are well established, their application to
RVDF health monitoring, particularly through machine
vision, remains an open research area. This paper addresses
this gap by proposing a vision-based condition monitoring
approach for early detection and localization of wire-induced
degradation on RVDF filter cloth.

3. METHODOLOGY

This section presents the proposed methodology for detecting
wire-induced degradation on the RVDF filter cloth using
image-based analysis. As discussed in section 1, when the
supporting wire degrades, the filter cloth no longer adheres
the filter cake uniformly. This might lead to two distinct types
of visual signatures, surface non-uniformity and surface
irregularity. Two complementary image analysis approaches
— brightness variation and texture variation — are
implemented to enable effective failure detection. The
methodology consists of three main phases: (i) data
acquisition and pre-processing, (ii) full image-based failure
detection, and (iii) section-wise failure localization. Each
phase is described in detail below.

3.1. Data acquisition and pre-processing

Video recordings of the RVDF during normal operation are
collected using high resolution camera (12MP, 4K video with
60 fps). The camera is mounted approximately 3 meters in
front of RVDF to ensure full coverage of the filter surface.
Since installation of fixed cameras on the plant requires
permission, the recordings are collected using a temporary
mounted camera under supervision of maintenance engineer.



Image frames are extracted from these recordings to capture
the condition of the filter surface. To validate failure
detection methods, synthetic failure data is generated from
the normal image frames. Due to preventive maintenance the
actual failure data collection is not feasible, the design of
synthetic failures is obtained through discussions with the
plant maintenance engineers. To be representative of realistic
failures, the wire induced filter cloth generated failures are
later reviewed by the maintenance engineers. Surface
irregularities on the filter cloth may not always produce
significant brightness changes but often alter the texture of
the cloth, both intensity-based and texture-based approaches
are considered. Figure 4 shows an image of the RVDF during
normal operation, while Figure 5 presents an example of the
synthetically generated failure data. To standardize the input
data, all image frames are resized to 512x512 pixels. The
camera position remains fixed during the data collection
process, which allows for consistent isolation of the region of
interest (ROI). The ROI is cropped between 0.35-0.80 of
image height and 0.12-0.85 of image width, corresponding to
the filter cloth region, as shown in Figure 6. The video
recordings are performed under typical mining plant
operating conditions, including dust, vibrations from the
equipment, fluctuations in illumination. This is to ensure that
the acquired data represents the challenges of actual mining
environments.

3.2. Failure detection using full image analysis

In this phase, the filter surface is analyzed using image frames
from both normal operation and synthetically generated
failure image data. A sliding window-based intensity
variation analysis is performed on the extracted region of
interest from the video data. The region is vertically divided
using a sliding window approach with a window width and
step size of 20 pixels. This ensures complete coverage of the
filter cloth surface along the horizontal axis, as illustrated in
Figure 7. For each window, the image is transformed into
HSV color space, and the V-channel, which is sensitive to
surface reflectance (Akbari et al., 2018), is isolated.

Let I(x, y) denote the intensity of the pixel at position (X, y)
in the V-channel of the HSV-transformed image. For each
sliding window Wi, the mean intensity is computed as:

1
U = |W I(x' y)
(x,y)ew;

il

The intensity variation between adjacent windows is then
calculated as: AI; = |p; — iyl

b) texture variation

Figure 5. RVDF during synthetically generated failure.

Figure 6. RVDF region of interest.



Figure 7. Sliding window covering the filter surface.

Regions with significantly higher Al; values indicate potential
surface defects associated with wire failure.

For corner windows, a single-side intensity comparison is
applied. These intensity variation values are plotted to
generate an intensity profile representing the condition of the
filter surface.

To capture texture variations, the Sobel operator (Xu et al.,
2021) with a kernel size of 3 is applied in the horizontal
direction. This computes the first-order image gradient,
which reflects edge and texture information across the filter
surface. The Sobel operator is applied in the horizontal
direction to compute the first-order gradient:

al(x,y)
Ge(x,y) = Tox

The mean absolute gradient magnitude within each sliding

1
Wl Z(x,y)ewi |Gx(xr y)l

window Wi is given by: G; = i

A noticeable increase in G; may indicate texture irregularities,
which can signal early-stage degradation of the filter cloth
surface.

3.3. Failure localization using section-based analysis

Following the full image analysis, this phase focuses on
localizing the failure initiation point by analysing individual
sections of the RVDF. The surface of RVDF considered for
this work is divided into 24 uniformly sized sections. To
extract these sections, edge detection is first performed on the
filter cloth image using the Canny algorithm with intensity
threshold set at 50 and 150 ensuring a good balance between
noise suppression and edge retention. Next, the Hough Line
Transform is applied to detect prominent horizontal lines on
the filter surface (Wu et al.,, 2023b). Lines that meet the
length threshold set at 100 pixel and have an orientation close
to horizontal are retained. The extreme coordinates of these
lines are identified using their corner points, as shown in
Figure 8. A rectangular section of the filter surface is then
defined by connecting these extreme points, illustrated in
Figure 9. The width of this section is measured, and since all
24 sections have equal dimensions, additional sections are
extracted by vertically shifting the first identified section by
the computed width. To account for the curvature of the

RVDF surface, pixel adjustments are applied during this
shifting process. Figure 10 shows the multiple sections
identified on the RVDF. The two image analysis approaches
described in Section 3.2, brightness variation and texture
variation are applied to both single and multiple sections.
This enables precise localization of the failure initiation point
by detecting irregularities on the filter cloth surface.

Figure 8. Detected horizontal lines (in red) and
extreme points (in blue).

Figure 10. RVDF multiple section identification.

The choice of using methods like intensity variation and
gradient analysis provides a direct and interpretable
connection to the wire induced degradation of filter cloth.
The advanced data-driven methods which require extensive
training datasets, the proposed approaches are effective with
limited data.

4. RESULTS AND ANALYSIS

This section presents the results obtained from the vision-
based detection system applied to RVDF images. The



analysis is performed incrementally, starting with global
failure detection across the full filter surface, followed by
localized detection through section-wise analysis. Texture-
based detection is also evaluated to capture subtle surface
irregularities.

4.1. Detection of failure on full image

In this phase, failure detection is performed on the entire
RVDF surface, considering it as a single image. A horizontal
sliding window divides the image vertically into equal-width
sections as shown in Figure 11.

Figure 11. Sliding window for normal filter operation.
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Figure 12. Intensity variation between adjacent
windows under normal operation for Figure 11.

Figure 13. Sliding window for failure data.
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Figure 14. Intensity variation between adjacent
windows during failure for Figure 13.

For each window, the mean intensity variation relative to
adjacent windows is computed. This intensity profile
represents the filter surface condition.

Normal operation: Under this condition, the intensity
variation profile remains consistently low across the entire
surface, except near the drum filter edges as shown in Figure
12. The intensity variation for central windows remains
below 5, indicating a uniform and healthy surface. This
analysis serves as a baseline of a healthy drum filter, giving
assessment over the entire drum filter image.

Failure detection: The ability to detect failures is evaluated
using an artificial defect, which resembles cloth deformation
due to wire failure. Figure 13 shows sliding window analysis
on failure image. In the presence of failure, a distinct spike as
shown in Figure 14 appears in the intensity variation profile,
indicating the affected window. This confirms the system's
ability to detect failures across the full image. However, this
approach does not localize the failure precisely.

4.2. Detection and localization of failure

To improve localization, individual sections of the drum filter
surface are extracted using the Hough Transform as discussed
in section 3.3. Figure 9 shows the detected section with green
horizontal lines. Sliding window analysis is performed on
this extracted section. Variation in pixel intensity is computed
to detect localized failure.

Normal operation: Except for the edges of filter, intensity
variation is consistently low for normal filter surface as
shown in Figure 15.
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Figure 15. Intensity variation per section between
adjacent windows during normal operation for Figure 9.

Figure 16. Intensity variation per section between
adjacent windows on a failure data corresponding to
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Figure 17. Intensity variation between adjacent windows
for all the three sections during normal filter operation
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Figure 18. Intensity variation between adjacent windows
for all the three sections during failure data
corresponding to Figure 10.

Failure detection: In the presence of cloth failure within the
same section of filter a distinct peak is observed in the
intensity variation profile as shown in Figure 16.

The rotation speed of drum filter is constant, and once the
horizontal section is identified, further sections can be
captured as they enter the region of interest sequentially.
Analyzing all the 24 sections individually requires capturing
data for 24 positions which increases data acquisition time.
To optimize processing, multiple sections are extracted from
single image frames.

Multiple section analysis: Using the same sliding window
method, intensity variations are computed for each section of
Figure 10. For normal operation, as shown in Figure 17, the
intensity variation profile remains low. In the presence of
failure, spikes in the profile indicate the affected sections, as
shown in Figure 18. This approach reduces the data
acquisition requirement to 8 images for complete RVDF
surface coverage.

4.3. Detection of texture-based failure

The HSV V-channel based sliding window approach proved
to be ineffective when detecting failure with texture
distortion. Figure 19 shows synthetically generated surface
texture irregularities that might arise during RVDF operation.



To address the limitations of section 4.1 and 4.2 and to detect
failure reflected by texture distortion, a gradient-based
approach is implemented as discussed in section 3.2. The
individual drum filter section is identified using Hough
transform, and Sobel filter is used to compute horizontal
gradients. Figure 20 shows the mean gradient magnitude
profile across the windows. The rise in magnitude is observed
in the region corresponding to filter cloth failure reflected in
texture distortion, except the corners. The proposed
approaches allow early failure detection, which ranges from
texture change to complete detachment of filter cloth.

Figure 19. Synthetically generated cloth failure
resembling texture irregularities.
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Figure 20. Gradient magnitude profile across windows
for a section of filter for Figure 19.

5. DISCUSSION

This work demonstrates that image-based monitoring is a
viable solution for early detecting of wire failure in RVDF.
The intensity variation analysis in the HSV-V channel color
space reliably identifies regions where the slurry fails to
adhere to the filter cloth, indicating major surface defects.
Under normal operating conditions, the intensity variation
across the filter surface remained low, while failure patterns
produced a distinct, localized spike in the variation profile.
This confirms the method's ability to distinguish between
healthy and degraded regions. In addition, the gradient-based
texture analysis captured distortions in the cloth surface,
which are not always visible through intensity variation
alone. The section-wise localization method further improves
the detection process by isolating the specific area of the wire
failure initiation. Another important outcome is the reduced
number of images required for complete drum coverage from

24 to 8 through multiple-section analysis, enhancing
practicality for real-time use.

This work relies on synthetically generated failure data which
allowed validation of the proposed method; however, real-
world data is essential to verify the performance. Also, the
current method relies only on visual data, which is sensitive
to illumination, camera placement, dust, factors that are
common in mining environment. For more comprehensive
health assessment, additional process parameters such as
pressure, slurry density and flow rates need to be integrated.

6. CONCLUSION AND FUTURE WORK

This work presented a vision-based monitoring framework
for early detection and localization of wire failure in RVDF.
The proposed method effectively identifies both significant
and minor surface irregularities caused by wire degradation.
The section-wise localization enhances diagnostic accuracy,
assisting maintenance engineers to identify the failure
initiation and providing insights to support timely and
targeted maintenance interventions. The demonstrated
reduction in data acquisition requirements through multi-
section analysis improves the feasibility of this method for
real-time implementation. By enabling early detection of
wire failure, the proposed approach has the potential to
reduce unplanned downtime, increase system availability,
and maintain product quality, thereby contributing to overall
health management.

This paper primarily focuses on failure detection and
diagnosis tasks of PHM. The integration of multimodal
sensor data such as pressure, slurry density, and quality will
be required for the transition towards prognostic capabilities.
This might facilitate the development of image-based
diagnostics with time-series based prognostics model.
Moreover, exploring the temporal evolution of image
features can enable tracking the degradation pattern of RVDF
from healthy to fault state. Such approaches might contribute
to estimating the remaining useful life of the filter and enable
a shift from reactive to predictive maintenance strategies.
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