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ABSTRACT 

A Rotary Vacuum Drum Filter (RVDF) is one of the filtering 
equipment used in iron mining for removing excessive 
moisture from slurry. One of the critical components of 
RVDF is a supporting wire which holds filter cloth. During 
filtration, due to variation in pressure the wire undergoes 
recursive compression and expansion which may lead to wire 
failure. This failure significantly impacts the integrity and 
efficiency of filter cloth that affects the filtration 
performance. If the wire failure is not detected promptly, it 
may lead to prolonged maintenance time, substantial 
maintenance cost and unplanned downtime, consequently 
affecting system availability. To address the issue, this work 
aims to demonstrate health monitoring of filtering systems in 
mining.  

This paper introduces a vision-based monitoring approach for 
detecting surface defects indicative of wire-induced 
degradation on RVDF filter cloth. Video streams collected 
during operation are processed to extract the relevant surface 
regions for targeted analysis. The proposed methodology 
integrates structural feature localization and pixel-wise 
statistical analysis to detect deviations in surface appearance 
associated with wire failure. The approach enables both 
global health assessment and localized fault detection, to 
provide operators with diagnostics about the emerging 
failure, to take appropriate maintenance action and minimize 
further damage, and downtime. The focus of this work is on 
detection and diagnostics, and in future work a transition 
towards prognostics is possible by incorporating multi-modal 
sensor data.  

1. INTRODUCTION 

The processing phase in iron ore mining is generally 
performed to enhance the iron content in the final product 

through various stages that include sorting, concentrating and 
pelletizing. The dewatering plant in the pelleting stage plays 
an important role in controlling the moisture content in iron 
cake and to meet the process requirements for the next phase. 
The Rotary Vacuum Drum Filter (RVDF) (Sharad et al., 
2019) plays an important role in this process by continuously 
separating excess moisture from the iron slurry. As shown in 
Figure 1, the RVDF consists of a horizontally mounted 
cylindrical metal drum made of a perforated plate, partially 
submerged in a slurry trough, with its surface covered by a 
filter cloth secured by supporting wire (Cieslakiewicz et al., 
2024) (Sharad et al., 2019). As the drum rotates, vacuum 
pressure draws the slurry through the filter cloth, forming a 
solid iron cake with required moisture content on its surface, 
which is puffed or transferred on a conveyor belt for further 
processing.  

Common failures in RVDF include rupture of filter media, 
degradation of filtration holes and similar challenges 
(Cieslakiewicz et al., 2024). Among the various components 
of RVDF as shown in Figure 1b, this work focuses on the 
filter cloth and supporting wire which are susceptible to 
frequent failure. The failure of the wire can be attributed to 
the strain caused by the cyclic pressure and vacuum cycle, in 
addition to the varying load effect caused by the moisture in 
the slurry, which directly impacts the effectiveness of filter 
cloth. As the wire degrades, the cloth around the impacted 
region might not adhere the slurry adequately, resulting in 
patchy regions of non-uniform filter surface. Figure 2a shows 
the surface during normal operation and Figure 2b shows a 
sample of a synthetically generated failure image. The cloth 
failure reduces the availability of the filter, and the resulting 
unplanned downtime leads to production losses. 
Additionally, if the operation continues after failure, the wire 
might get entangled around the edges of filter. This 
complicates the maintenance process and can significantly 
increase both the maintenance time and cost. A serious 
operational concern is the possibility of broken Sameer Prabhu et al. This is an open-access article distributed under the 
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fragments of wire might get trapped in downstream 
equipment, such as conveyor belts, potentially causing which 
could lead to a complete plant shutdown and result in a 
significant financial loss. 

Despite the importance of filtration system integrity, current 
maintenance practices rely on manual inspection and 
preventive maintenance. Operators and maintenance 
engineers perform regular checks, including monitoring 
pressure values, agitation speed, and moisture content in the 
dried iron cake. However, these inspection measures often 
fail to detect early signs of degradation, and by the time 
failure is detected, significant damage has already occurred. 
A significant contributor to such operational and financial 
expenditure is the lack of an ineffective maintenance strategy 
capable of anticipating failures (Biggio & Kastanis, 2020). 
Predictive maintenance (PdM) offers a promising solution by 
utilizing historical data and analytics to predict machine 
failure. Prognostics and Health Management (PHM) is 
fundamental to PdM, which includes monitoring the 
evolution of the condition of a system to predict its failure 
(Zio, 2022). Beyond failure prediction, PHM also adds 
another layer that integrates maintenance strategies to 
increase operational efficiency and reduce unplanned 
downtime (Fink et al., 2020). With the advancement of sensor 
technology and analytics tools, PdM is the way forward (Lee 
et al., 2006). The three tasks of PHM defined in (Zio, 2022) 
are fault detection, fault diagnosis and fault prognostics. Fault 

 
Figure 2. Filter image during normal operation and failure. 

 
detection and diagnosis are essential for efficient operation of 
assets (Ifeanyi & Coble, 2024). PHM involves continuous 
asset monitoring to detect any deviations and pinpoint 
potential root cause and prediction of the remaining useful 
life (Fink et al., 2020)(Zio, 2022).  In line with the PHM 
objectives, this work proposes an approach to detect early 
signs of filter cloth degradation. Figure 3 shows the pipeline 
of this work. Video frames are extracted to capture the filter 
surface, followed by isolating the region of interest 
containing the filter cloth. Surface analysis is then performed 
using intensity and texture variations to detect irregularities. 
Finally, section-wise localization identifies the origin of wire 
failure. Overall, the contributions of this paper are bi-fold: 

1. An image-based approach for early detection of wire 
failure in RVDF, aimed at identifying surface 
anomalies that compromise the filter cloth integrity 
during operation.  

2. A localization technique to precisely identify the 
region of wire failure, providing insights on the 
specific area of the filter cloth affected by 
degradation. 

The objective of this work is to enable timely detection of 
failure and targeted maintenance planning, to support the 
development of predictive maintenance strategies. 

The rest of the paper is organized as follows. Section 2 gives 
the related work and identifies the research gap. Section 3 
presents the methodology used for the proposed approaches 
with results in section 4. Section 5 provides a detailed 

 
a) rotating vacuum drum filter surface 

 

 
b) components of drum filter 

 Figure 1. Outer surface and sample components of RVDF. 

 
a) normal filter operation image 

 

 
b) synthetically generated failure image 
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discussion, followed by a conclusion and future work in 
section 6. 

 

  

2. RELATED WORK 

Effective maintenance of industrial assets is critical to reduce 
downtime and optimize operational efficiency, especially in 
high-stakes industries such as mining. It is therefore 
important to prioritize the optimization of maintenance 
strategies (Huang et al., 2024). PHM has emerged as a 
reliable framework for predictive maintenance by enabling 
continuous system monitoring, fault detection, diagnostics, 
and estimation of remaining useful life (Zio, 2022) (Fink et 
al., 2020). PHM techniques are widely applied across 
industries to enhance reliability, reduce maintenance costs, 
and improve system availability (Huang et al., 2024) (Shin et 
al., 2018).  

Within the broader context, vision-based approaches have 
increasingly been explored. A conveyor belt deviation 
detection approach for coal mines was presented in (Wu et 
al., 2023a). To extract the edges of the belt, Canny edge 
detection and Hough transform were applied on the processed 
low light images. To detect and predict soil erosion and 
filtration process, (Huisman et al., 2024) uses Optical 
Coherence Tomography (OCT) and multi-scale 
Convolutional Neural Network (CNN). To identify filtrate 
turbidity and flow states in press filter, (Cui et al., 2022) used 
YOLO-V5-based object detection with multi-label head. A 

vision-based fault diagnosis data driven approach was 
proposed in (Liu Binand Peng, 2022) for rolling bearings. 
Displacement information was extracted from vibration 
images to classify fault types. These studies highlight image-
based analysis to capture signatures that are difficult to 
measure with conventional sensors.    

Despite the advancement in sensor technology, commonly 
used data for PHM predominantly focuses on utilizing time-
series sensor data, including vibration, temperature, force 
readings, maintenance logs (Jia et al., 2018). However, 
applications of vision-based monitoring in harsh industrial 
environments, particularly in mining equipment, remain 
limited. This gives a potential opportunity for exploring 
image-based detection and diagnostics.  

Within PHM, early fault detection and localization are 
essential for enabling timely interventions and preventing 
failure escalation (Lee et al., 2014) (Jardine et al., 2006). 
Particularly in the context of RVDF, failure of supporting 
wires is a significant yet underexplored challenge. Many 
studies use images or optical diagnostics for system 
monitoring but not specifically on mechanical surface 
damage. To the best of our knowledge, no prior work has 
addressed the problem of wire failure detection and 
localization on RVDFs using image-based techniques. While 
PHM principles are well established, their application to 
RVDF health monitoring, particularly through machine 
vision, remains an open research area. This paper addresses 
this gap by proposing a vision-based condition monitoring 
approach for early detection and localization of wire-induced 
degradation on RVDF filter cloth.  

3. METHODOLOGY 

This section presents the proposed methodology for detecting 
wire-induced degradation on the RVDF filter cloth using 
image-based analysis. As discussed in section 1, when the 
supporting wire degrades, the filter cloth no longer adheres 
the filter cake uniformly. This might lead to two distinct types 
of visual signatures, surface non-uniformity and surface 
irregularity. Two complementary image analysis approaches 
— brightness variation and texture variation — are 
implemented to enable effective failure detection. The 
methodology consists of three main phases: (i) data 
acquisition and pre-processing, (ii) full image-based failure 
detection, and (iii) section-wise failure localization. Each 
phase is described in detail below.  

3.1. Data acquisition and pre-processing 

Video recordings of the RVDF during normal operation are 
collected using high resolution camera (12MP, 4K video with 
60 fps).  The camera is mounted approximately 3 meters in 
front of RVDF to ensure full coverage of the filter surface. 
Since installation of fixed cameras on the plant requires 
permission, the recordings are collected using a temporary 
mounted camera under supervision of maintenance engineer. 

 
Figure 3. Flowchart of image-based failure detection and 

localization for RVDF. 
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Image frames are extracted from these recordings to capture 
the condition of the filter surface. To validate failure 
detection methods, synthetic failure data is generated from 
the normal image frames. Due to preventive maintenance the 
actual failure data collection is not feasible, the design of 
synthetic failures is obtained through discussions with the 
plant maintenance engineers. To be representative of realistic 
failures, the wire induced filter cloth generated failures are 
later reviewed by the maintenance engineers. Surface 
irregularities on the filter cloth may not always produce 
significant brightness changes but often alter the texture of 
the cloth, both intensity-based and texture-based approaches 
are considered. Figure 4 shows an image of the RVDF during 
normal operation, while Figure 5 presents an example of the 
synthetically generated failure data. To standardize the input 
data, all image frames are resized to 512×512 pixels. The 
camera position remains fixed during the data collection 
process, which allows for consistent isolation of the region of 
interest (ROI). The ROI is cropped between 0.35-0.80 of 
image height and 0.12-0.85 of image width, corresponding to 
the filter cloth region, as shown in Figure 6. The video 
recordings are performed under typical mining plant 
operating conditions, including dust, vibrations from the 
equipment, fluctuations in illumination. This is to ensure that 
the acquired data represents the challenges of actual mining 
environments. 

3.2. Failure detection using full image analysis 

In this phase, the filter surface is analyzed using image frames 
from both normal operation and synthetically generated 
failure image data. A sliding window-based intensity 
variation analysis is performed on the extracted region of 
interest from the video data. The region is vertically divided 
using a sliding window approach with a window width and 
step size of 20 pixels. This ensures complete coverage of the 
filter cloth surface along the horizontal axis, as illustrated in 
Figure 7. For each window, the image is transformed into 
HSV color space, and the V-channel, which is sensitive to 
surface reflectance (Akbari et al., 2018), is isolated.  

Let I(x, y) denote the intensity of the pixel at position (x, y) 
in the V-channel of the HSV-transformed image. For each 
sliding window Wᵢ, the mean intensity is computed as:  

𝜇𝜇𝑖𝑖 =  
1

|𝑊𝑊𝑖𝑖|
 � 𝐼𝐼(𝑥𝑥, 𝑦𝑦)
(𝑥𝑥,𝑦𝑦)∈𝑊𝑊𝑖𝑖

 

The intensity variation between adjacent windows is then 
calculated as: Δ𝐼𝐼𝑖𝑖 =  |𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖+1| 

 

 
Figure 5. RVDF during synthetically generated failure. 

   
 

 
Figure 4. RVDF during normal operation. 

 
 
 
 
 

 
a) brightness variation 

 
b) texture variation 

 
 
 

 
Figure 6. RVDF region of interest.  
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Regions with significantly higher ΔIᵢ values indicate potential 
surface defects associated with wire failure. 

For corner windows, a single-side intensity comparison is 
applied. These intensity variation values are plotted to 
generate an intensity profile representing the condition of the 
filter surface. 

To capture texture variations, the Sobel operator (Xu et al., 
2021) with a kernel size of 3 is applied in the horizontal 
direction. This computes the first-order image gradient, 
which reflects edge and texture information across the filter 
surface. The Sobel operator is applied in the horizontal 
direction to compute the first-order gradient:  

𝐺𝐺𝑥𝑥(𝑥𝑥, 𝑦𝑦) =  
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑦𝑦)
𝜕𝜕𝜕𝜕

 

The mean absolute gradient magnitude within each sliding 
window Wᵢ is given by: 𝐺𝐺𝑖𝑖 =  1

|𝑊𝑊𝑖𝑖|
 ∑ |𝐺𝐺𝑥𝑥(𝑥𝑥, 𝑦𝑦)|(𝑥𝑥,𝑦𝑦)∈𝑊𝑊𝑖𝑖  

A noticeable increase in Gᵢ may indicate texture irregularities, 
which can signal early-stage degradation of the filter cloth 
surface.  

3.3. Failure localization using section-based analysis 

Following the full image analysis, this phase focuses on 
localizing the failure initiation point by analysing individual 
sections of the RVDF. The surface of RVDF considered for 
this work is divided into 24 uniformly sized sections. To 
extract these sections, edge detection is first performed on the 
filter cloth image using the Canny algorithm with intensity 
threshold set at 50 and 150 ensuring a good balance between 
noise suppression and edge retention. Next, the Hough Line 
Transform is applied to detect prominent horizontal lines on 
the filter surface (Wu et al., 2023b). Lines that meet the 
length threshold set at 100 pixel and have an orientation close 
to horizontal are retained. The extreme coordinates of these 
lines are identified using their corner points, as shown in 
Figure 8. A rectangular section of the filter surface is then 
defined by connecting these extreme points, illustrated in 
Figure 9. The width of this section is measured, and since all 
24 sections have equal dimensions, additional sections are 
extracted by vertically shifting the first identified section by 
the computed width. To account for the curvature of the 

RVDF surface, pixel adjustments are applied during this 
shifting process. Figure 10 shows the multiple sections 
identified on the RVDF. The two image analysis approaches 
described in Section 3.2, brightness variation and texture 
variation are applied to both single and multiple sections. 
This enables precise localization of the failure initiation point 
by detecting irregularities on the filter cloth surface.  

 

 

 
The choice of using methods like intensity variation and 
gradient analysis provides a direct and interpretable 
connection to the wire induced degradation of filter cloth. 
The advanced data-driven methods which require extensive 
training datasets, the proposed approaches are effective with 
limited data.   

4. RESULTS AND ANALYSIS  

This section presents the results obtained from the vision-
based detection system applied to RVDF images. The 

 
Figure 7. Sliding window covering the filter surface. 

 
 
 

 
Figure 8. Detected horizontal lines (in red) and 

extreme points (in blue). 
 

 
Figure 9. RVDF single section identification. 

 

 
Figure 10. RVDF multiple section identification. 
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analysis is performed incrementally, starting with global 
failure detection across the full filter surface, followed by 
localized detection through section-wise analysis. Texture-
based detection is also evaluated to capture subtle surface 
irregularities. 

4.1. Detection of failure on full image 

In this phase, failure detection is performed on the entire 
RVDF surface, considering it as a single image. A horizontal 
sliding window divides the image vertically into equal-width 
sections as shown in Figure 11.  

 

 

   
For each window, the mean intensity variation relative to 
adjacent windows is computed. This intensity profile 
represents the filter surface condition. 

Normal operation: Under this condition, the intensity 
variation profile remains consistently low across the entire 
surface, except near the drum filter edges as shown in Figure 
12. The intensity variation for central windows remains 
below 5, indicating a uniform and healthy surface. This 
analysis serves as a baseline of a healthy drum filter, giving 
assessment over the entire drum filter image. 

Failure detection: The ability to detect failures is evaluated 
using an artificial defect, which resembles cloth deformation 
due to wire failure. Figure 13 shows sliding window analysis 
on failure image. In the presence of failure, a distinct spike as 
shown in Figure 14 appears in the intensity variation profile, 
indicating the affected window. This confirms the system's 
ability to detect failures across the full image. However, this 
approach does not localize the failure precisely.  

4.2. Detection and localization of failure 

To improve localization, individual sections of the drum filter 
surface are extracted using the Hough Transform as discussed 
in section 3.3. Figure 9 shows the detected section with green 
horizontal lines. Sliding window analysis is performed on 
this extracted section. Variation in pixel intensity is computed 
to detect localized failure.  

Normal operation: Except for the edges of filter, intensity 
variation is consistently low for normal filter surface as 
shown in Figure 15.  

 
Figure 11. Sliding window for normal filter operation. 

 

 
Figure 12. Intensity variation between adjacent 
windows under normal operation for Figure 11. 

 
 

 
Figure 13. Sliding window for failure data. 

 
 

 

 
Figure 14. Intensity variation between adjacent 

windows during failure for Figure 13. 



 

7 

 

  

 

 
Failure detection: In the presence of cloth failure within the 
same section of filter a distinct peak is observed in the 
intensity variation profile as shown in Figure 16. 

The rotation speed of drum filter is constant, and once the 
horizontal section is identified, further sections can be 
captured as they enter the region of interest sequentially. 
Analyzing all the 24 sections individually requires capturing 
data for 24 positions which increases data acquisition time. 
To optimize processing, multiple sections are extracted from 
single image frames. 

Multiple section analysis: Using the same sliding window 
method, intensity variations are computed for each section of 
Figure 10. For normal operation, as shown in Figure 17, the 
intensity variation profile remains low. In the presence of 
failure, spikes in the profile indicate the affected sections, as 
shown in Figure 18. This approach reduces the data 
acquisition requirement to 8 images for complete RVDF 
surface coverage.  

4.3. Detection of texture-based failure 

The HSV V-channel based sliding window approach proved 
to be ineffective when detecting failure with texture 
distortion. Figure 19 shows synthetically generated surface 
texture irregularities that might arise during RVDF operation. 

 
Figure 15. Intensity variation per section between 

adjacent windows during normal operation for Figure 9. 
 
 
 
 

 
Figure 16. Intensity variation per section between 

adjacent windows on a failure data corresponding to 
Figure 9. 

 
 
 

 

 
Figure 17. Intensity variation between adjacent windows 
for all the three sections during normal filter operation 

for Figure 10. 

 

 

 

 
Figure 18. Intensity variation between adjacent windows 

for all the three sections during failure data 
corresponding to Figure 10. 
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To address the limitations of section 4.1 and 4.2 and to detect 
failure reflected by texture distortion, a gradient-based 
approach is implemented as discussed in section 3.2. The 
individual drum filter section is identified using Hough 
transform, and Sobel filter is used to compute horizontal 
gradients. Figure 20 shows the mean gradient magnitude 
profile across the windows. The rise in magnitude is observed 
in the region corresponding to filter cloth failure reflected in 
texture distortion, except the corners. The proposed 
approaches allow early failure detection, which ranges from 
texture change to complete detachment of filter cloth.   

 

 

5. DISCUSSION 

This work demonstrates that image-based monitoring is a 
viable solution for early detecting of wire failure in RVDF. 
The intensity variation analysis in the HSV-V channel color 
space reliably identifies regions where the slurry fails to 
adhere to the filter cloth, indicating major surface defects. 
Under normal operating conditions, the intensity variation 
across the filter surface remained low, while failure patterns 
produced a distinct, localized spike in the variation profile. 
This confirms the method's ability to distinguish between 
healthy and degraded regions. In addition, the gradient-based 
texture analysis captured distortions in the cloth surface, 
which are not always visible through intensity variation 
alone. The section-wise localization method further improves 
the detection process by isolating the specific area of the wire 
failure initiation. Another important outcome is the reduced 
number of images required for complete drum coverage from 

24 to 8 through multiple-section analysis, enhancing 
practicality for real-time use. 

This work relies on synthetically generated failure data which 
allowed validation of the proposed method; however, real-
world data is essential to verify the performance. Also, the 
current method relies only on visual data, which is sensitive 
to illumination, camera placement, dust, factors that are 
common in mining environment. For more comprehensive 
health assessment, additional process parameters such as 
pressure, slurry density and flow rates need to be integrated. 

6. CONCLUSION AND FUTURE WORK 

This work presented a vision-based monitoring framework 
for early detection and localization of wire failure in RVDF. 
The proposed method effectively identifies both significant 
and minor surface irregularities caused by wire degradation. 
The section-wise localization enhances diagnostic accuracy, 
assisting maintenance engineers to identify the failure 
initiation and providing insights to support timely and 
targeted maintenance interventions. The demonstrated 
reduction in data acquisition requirements through multi-
section analysis improves the feasibility of this method for 
real-time implementation. By enabling early detection of 
wire failure, the proposed approach has the potential to 
reduce unplanned downtime, increase system availability, 
and maintain product quality, thereby contributing to overall 
health management. 

This paper primarily focuses on failure detection and 
diagnosis tasks of PHM. The integration of multimodal 
sensor data such as pressure, slurry density, and quality will 
be required for the transition towards prognostic capabilities. 
This might facilitate the development of image-based 
diagnostics with time-series based prognostics model. 
Moreover, exploring the temporal evolution of image 
features can enable tracking the degradation pattern of RVDF 
from healthy to fault state. Such approaches might contribute 
to estimating the remaining useful life of the filter and enable 
a shift from reactive to predictive maintenance strategies.  
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