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ABSTRACT 

Prognostics and health management (PHM) has been widely 

employed for condition monitoring, fault diagnosis and 

failure prediction in mechanical systems. However, the 

presence of uncertainty and transient fluctuations in 

condition monitoring data makes the precise detection of 

degradation challenging. This paper presents a novel direct 

density ratio estimation (DDRE) method that computes the 

change score of the health indicator to detect degradation. 

The approach continuously computes the change score 

between two sliding windows using noise-assisted relative 

unconstrained least-squares importance fitting (NA-

RuLSIF).  This study does not rely solely on magnitude of 

the DDRE-based dissimilarity score; instead, it analyses the 

dynamic behaviors of the change score to categorize 

degradations into steady and progressive types. Additionally, 

this research identifies the onset of runaway failures, referred 

to as the initial degradation point (IDP), which is used as the 

starting point for remaining useful life (RUL) estimation. To 

validate the proposed approach, a publicly available rolling-

element bearing dataset is utilized. Experimental results 

demonstrate the effectiveness and robustness of the proposed 

DDRE method for both degradation detection and selection 

of the IDP. 

1. INTRODUCTION 

Predictive maintenance of rolling bearings has become 

prevalent among researchers because they are extensively 

used in many mechanical devices (Wang et al., 2020). The 

degradation of bearing health affects the performance and 

reliability of mechanical equipment. In industry, sudden 

failure of mechanical equipment causes production 

disruption (Bajarunas et al., 2024). Therefore, early detection 

of any kind of degradation and fault is necessary to 

implement fault-tolerant operation and to optimise 

maintenance schedules (Liang et al., 2018). In predictive 

maintenance, a condition-based approach is used to monitor 

the actual condition and to predict the remaining useful life 

(RUL) (Surucu et al., 2023). Using RUL, the maintenance 

schedule can be designed to minimize unplanned downtime 

of assets. However, many studies have focused on RUL 

prediction rather than degradation detection (Wang et al., 

Figure 1. A typical rolling bearing life cycle with 

bearing health indicator (HI) on logarithmic scale.  
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2021). Additionally, accurate detection of the IDP is crucial 

for improving RUL prediction (Yang et al., 2025).  

During continued operation of rotating machinery, rolling 

bearings undergo gradual degradation, transitioning from a 

normal health condition to a deteriorated state that may 

ultimately result in failure. Consequently, many studies 

divide the bearing life cycle based on condition-monitoring 

data into two distinct phases: (1) a normal phase and (2) an 

abnormal phase (Ahmad et al., 2018). The onset of the 

abnormal phase is defined as the initial degradation point 

(IDP) and is considered the optimal starting point for RUL 

estimation. However, in real world, bearings typically 

traverse multiple phases of degradation rather than a simple 

two-stage framework (Halme & Andersson, 2010). In the full 

life cycle of a bearing, three distinct phases are typically 

observed: (1) run-in, (2) steady-state operation, and (3) 

progressive degradation. The run-in phase is the initial stage 

of wear at the onset of service life, during which microscopic 

high spots on the rolling elements and raceways generate 

elevated vibration levels. After these asperities are polished 

off, the bearing enters the steady-state (or “normal”) phase, 
characterized by low, stable vibration amplitudes. During 

longer operation, minor surface wear and lubricant‐film 
settling induce a subtle baseline shift from that steady 

condition, although overall vibration remains quasi-stable. 

Finally, progressive degradation begins with the formation of 

microscopic defects, which propagate over time, leading to a  

continuous increase in vibration levels until failure occurs 

(Patel & Patel, 2024).  Additionally, bearing health can be 

affected by sudden geometric misalignment, lubricant 

contamination with wear particles, micro-pitting, and 

inadequate lubrication, all of which introduce local 

fluctuations in the condition-monitoring data. Therefore, 

bearings condition monitoring data exhibit multiple stages 

and variabilities. Figure 1 illustrates different levels of 

degradation a bearing undergoes during a run-to-failure 

scenario. As shown, in the figure, a single alarm level is not 

sufficient for handling both local fluctuations and progressive 

degradation.  

Over the past decades, vibration‐based condition monitoring 

has been the predominant approach for defect tracking.  A 

range of time–frequency metrics, root-mean-square (RMS), 

kurtosis, crest factor, RMS-entropy estimator (RMS-EE), and 

frequency spectrum partition summation (FSPS) derived 

from vibration signals have been used as health indicators 

(HI) to track bearing degradation, as reported in the existing 

research (Lei et al., 2018; Minhas et al., 2021). Additionally, 

to address the non-stationarity of signals, empirical mode 

decomposition (EMD) and its variants, such as ensemble-

EMD, wavelet packet decomposition (WPD) have been 

widely adopted to detect early-stage microcracks (Zhu et al., 

2019). For IDP determination, only a limited number of 

existing studies are available. Recent works continue to 

employ subjective approaches for IDP detection (Gao et al., 

2024). Additionally, a 3σ criterion-based technique, adopted 

from engineering standard ISO 10816, is very popular in this 

domain. Using this approach, an IDP is flagged based on 

exceedance of a predefined standard deviation (N. Li et al., 

2015). Again, some researchers have proposed consecutive 

threshold exceedances for detection of IDP to solve the 

random noise in HI. A gradient-based  linear regression 

model was proposed to select the IDP from RMS values 

(Ahmad et al., 2018). Furthermore, relying on a single 

threshold for diagnostics is inadequate for two primary 

reasons. First, a universal value cannot account for the 

operational variability across all bearings. Second, such a 

threshold is generally set high to prevent false alarms, which 

makes it insensitive to the subtle signs of an IDP and effective 

only in identifying severe degradation.  Furthermore, a one-

class LSSVM-based approach  for IDP detection was used by  

Islam et al, (2021). A risk assessment-based method was 

proposed to determine IDP via Mahalanobis distance fusion 

and CUMSUM techniques (Q. Li et al., 2022). Additionally, 

a two-stage IDP detection scheme was proposed by Cheng et 

al, (2022), which first applied a dynamic 2ߪ  threshold 

principle based on continuous RMS exceedance. 

Subsequently, a nonparametric Mann-Kendall(M-K) test was 

employed to statistically verify the presence of a significant 

upward trend, effectively addressing transient fluctuations. 

Existing research on degradation detection has shortcomings 

in understanding failure mechanisms and overall 

performance, which limits its real-life applicability. 

Moreover, a single alarm level is insufficient to handle both 

local fluctuations and progressive degradation. 

For change detection, the Pearson divergence (PE) of HI, is 

commonly used, where individual densities of reference and 

test windows are calculated to find dissimilarity score using 

kernel density estimation (KDE). Subsequently, the ratio of 

the two computed densities is calculated to find the 

dissimilarities between samples.  However, this approach 

introduces errors during individual KDE-based density 

estimations and is further amplified when the ratio is 

calculated. To overcome this issue, this research employs 

direct density ratio estimation (DDRE) by directly 

calculating the density ratio, thereby minimizing 

computational errors (Huang et al., 2006). Several methods 

exist for DDRE, such as kernel mean matching, 

unconstrained least-squares importance fitting(uLSIF) 

(Sugiyama et al., 2012) and relative uLSIF (RuLSIF) (Liu et 

al., 2013a). Among these, RuLSIF shows better performance 

for change detection. However, DDRE-based algorithms 

have not been utilized for applications in PHM. 

The main purpose of this study is to identify and track the 

degradation using conventional HI. This study adopted the 

root means square (RMS) of vibration signals as HI because 

this metric captures better degradation stages of rolling 

bearings. A major challenge of RuLSIF algorithm is its 

sensitivity to local fluctuations in HI, which may sometimes 

be misinterpreted as changes or drifts. To address this 

problem, this study proposes a noise-assisted RuLSIF (NA-
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RuLSIF) method. In this approach, two moving windows, 

named the reference and test windows, are used along with 

white noise to continuously calculate a change score. 

Afterward, sudden and progressive changes are automatically 

identified based on the height and width of the score peaks. 

The onset of runaway failure in the HI —referred to as the 

IDP—is identified as the starting point for RUL estimation. 

Despite abrupt temporary variations in HI, the proposed 

method performs precise identification of the IDP. 

2. THEORETICAL BASIC: DIRECT DENSITY RATIO 

ESTIMATION FOR DRIFT DETECTION 

In this section, the proposed framework for condition 

monitoring and drift detection of bearing health is discussed. 

Figure 2 illustrates the overall workflow of the framework. In 

the first stage, all kinds of drifts are detected and removed 

based-on change score computed by the NA-RuLSIF 

algorithm. In the next stage, each detected drift is categorized 

based on behavioral analysis of change score.  

 

2.1. Problem Statement for Change Detection 

For a given univariate time series, a sequence vector ܼ(ݐ) is 

constructed at each time step ݐ with previous ݇ observations 

formally defined as:  

(ݐ)ܼ       = [ ݐ)ݖ(ݐ)ݖ − ݐ)ݖ⋮(1 − ݇ + 1)]  ߳ ℛ݇
 

          

(1) 

To detect a change-point, the algorithm compares two distinct 

samples of sequences by ࣴ௧௘௦௧(ݐ) and ࣴ௥௘௙(ݐ). Where a test 

sample, ࣴ௧௘௦௧(ݐ) , consists of the ݊  most recent sequences 

while reference sample ࣴ௥௘௙(ݐ)  comprise the preceding ݊ 

sequences. These are defined as:  ࣴ௧௘௦௧(ݐ) = ,(ݐ)ܼ} ݐ)ܼ − 1), … , ݐ)ܼ − ݊ + 1)} ࣴ௥௘௙(ݐ − ݊)= ݐ)ܼ} − ݊), ݐ)ܼ − ݊ − 1), … , ݐ)ܼ − 2݊ + 1)}           

(2) 

The primary objective is to calculate a change score, (ݐ)ܵܥ, 

which quantifies the statistical distance between a test and the 

reference samples at time ݐ − ݊ , identified as the likely 

change-point. Under unchanged conditions both samples 

should be statistically similar. However, when a change 

occurs at ݐ∗, their underlying distributions diverge.  

Consider two underlying distributions ௧ܲ௘௦௧(ࣴ) and ௥ܲ௘௙(ࣴ) 

for two sets of samples ࣴ௧௘௦௧  and ࣴ௥௘௙  respectively. Now, ߙ-

relative Pearson (PE) divergence can be written as: ܲܧఈ ≔ 12 ॱܲߙ(ࣴ)[(इߙ(ࣴ) − 1)2]           

(3) 

Here इఈ(ࣴ) is the ߙ-relative density ratio of ௧ܲ௘௦௧(ࣴ) and ௥ܲ௘௙(ࣴ) defined as: इఈ(ࣴ) ∶= ௧ܲ௘௦௧(ࣴ)ఈܲ(ࣴ)  

इఈ(ࣴ) ≔ ௧ܲ௘௦௧(ࣴ)ߙ ௧ܲ௘௦௧(ࣴ) + (1 − (ߙ ௥ܲ௘௙(ࣴ)            

(4) 

Again in Eq. (3), ॱ௉(ࣴ)[݂(ࣴ)]  denotes the expectation of ݂(ࣴ) under the distribution ܲ(ࣴ):  ॱ௉(ࣴ)[݂(ࣴ)]=∫ ݂(ࣴ) ܲ(ࣴ)݀ࣴ           

Figure 2. Flowchart of the proposed methodology for 

drift detection and classification of degradation 

patterns.  

 

Acquire vibration signal

Health  ndicator calculation 
using    

 hange  core computation 
with NA  u    on sliding 
reference and test windows 

 etect drifts based on  a 
threshold

width

 dentify the starting and 
ending point of each change 
pea s and calculate its width

No

 es

 ransient 
fluctuation

width No
 teady 

degradation

    
 etection

ending
 

 es

 ocal 
progressive 
degradation

No

 
  
  
  
  
  
   

 
 
  
  
  

   
 

  
  

  
  

 
 
  

  
   

 es

 tart



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025 

 

4 

2.2. Direct Density Ratio Estimation  

 et इఈ̂(ࣴ) be the estimated ratio modelled by a regression 
model.  his model is fitted by minimizing the expected 
squared loss ܬ as follows: ܬ = 12 ॱܲߙ(ࣴ) [(इߙ(ࣴ) − इ̂2((ࣴ)ߙ] 

= 12 ॱ௉ഀ (ࣴ) [(( ௧ܲ௘௦௧(ࣴ)ఈܲ(ࣴ) )2 + इఈ̂(ࣴ)2
− 2 ௧ܲ௘௦௧(ࣴ)ఈܲ(ࣴ) इఈ̂(ࣴ))] 

= 2ߙ ॱ௉೟೐ೞ೟(ࣴ)[इఈ̂(ࣴ)2] + 1 − 2ߙ ॱ௉ೝ೐೑(ࣴ)[इఈ̂(ࣴ)2]− ॱ௉೟೐ೞ೟(ࣴ)[इఈ̂(ࣴ)] 

 

 

 

 

 

(5)          

where the first term is constant and ignored during the 
minimization process.  he density ratio is estimated with 
following  ernel methods:  

इఈ̂(ࣴ) ≔ ∑ ,ࣴ)௜ॶߠ ௟ࣴ)௡
௟=1  

          

(6) 

where, parameters ߠ௜: = ,1ߠ) ,2ߠ . . . ,  ௣)  to be learned fromߠ

the data samples ࣴ௧௘௦௧(ݐ) and ࣴ௥௘௙(ݐ − ݊). Again,  ॶ(ࣴ, ௜ࣴ) 

is a kernel basis function and in this algorithm Gaussian 

kernel is used for change detection as: 

ॶ(ࣴ, ௟ࣴ) = ݌ݔ݁ (− ‖ࣴ−ࣴ೗‖22ఙ2 ߪ ;( > 0 
          

(7) 

 

By substituting the approximating expectations from Eq. (5) 

with their empirical counterparts, the optimization problem 

can be written as follows: 

where a penalty term 
ఒ2 ߠ்ߠ  is included for regularization 

purposes and ߣ  (>=0) denote the regularization parameter. 

Here, we adopt the baseline of RuLSIF parameterization by 

selecting kernel width, ߪ = 10−3, 10−2, . . . , 103  and 

regularization parameter, ߣ = 10−3, 10−2, . . . , 101 (Liu et al., 

2013b). 

Furthermore, ̂ܪ  is the ݊ × ݊ matrix with the (݈, ݈′) -th 

element.   

 

 

′௟,௟ܪ̂ =: ௧௘௦௧݊ߙ ∑ ॶ(ࣴ௧௘௦௧,௜ , ࣴ௧௘௦௧,௟)௡೟೐ೞ೟
௜=1 ॶ(ࣴ௧௘௦௧,௜ , ࣴ௧௘௦௧,௟′) 

+ 1 − ௥௘௙݊ߙ ∑ ॶ(ࣴ௥௘௙,௝ , ࣴ௥௘௙,௟)௡ೝ೐೑
௝=1 ॶ(ࣴ௥௘௙,௝ , ࣴ௥௘௙,௟′)           

(9) 

and ℎ̂ is an n-dimensional vector with l-th element define as, 

 ℎ̂௟ =: 1݊௧௘௦௧ ∑ ॶ(ࣴ௧௘௦௧,௜ , ࣴ௧௘௦௧,௟)௡೟೐ೞ೟
௜=1  

          

(10) 

Now it is easy to confirm that the solution of Eq. (8) can be 

analytically obtained as ̂ߠ = ܪ̂)  +  .௡)−1ℎ̂ܫߣ
          

(11) 

2.3. Change Score Estimation Based on Noise Assisted- 

RuLSIF (NA-RuLSIF) 

To evaluate the robustness of the proposed algorithm against 

measurement uncertainty and local fluctuation, additive 

white gaussian noise (AWGN), ܹܰ was introduced to the 

original ࣴ௧௘௦௧  and ࣴ௥௘௙as follows:   ࣴܣܰݐݏ݁ݐ = ݐݏ݁ݐࣴ + ߚ) × ܣ݂ܰ݁ݎࣴ (ܹܰ = ݂݁ݎࣴ + ߚ) × ܹܰ) 

          

(12) 

where ܹܰ~ࣨ(0,1) and ߚ  =0.05. Choosing ߚ  corresponds 

to noise with a standard deviation equal to 5% of a unit-

variance Gaussian random variable. The use of a zero-mean 

distribution ensures that the noise does not introduce a 

systematic bias into the signal. 

Using an estimated density ratio, इఈ̂ into Eq. (3), one obtains 

a closed-form estimator for the α-relative PE divergence after 

straightforward algebraic calculation described in (Yamada 

et al., 2013) and this divergence can be equivalently 

expressed as: 

ఈܧܲ  = − 2ߙ ॱܲ(ܣܰࣴ)ݐݏ݁ݐ[इ̂2(ܣܰࣴ)ߙ]  
− (1 − 2(ߙ ॱ௉ೝ೐೑(ࣴಿಲ)[इఈ̂(ࣴே஺)2] 

+ॱ௉೟೐ೞ೟(ࣴಿಲ)[इఈ̂(ࣴே஺)] − 12 

          

(13) 

Based on Eq. (13), each expectation is replaced by the 

corresponding sample average and obtained empirical 

estimator can be written as:  

ߠ̂ ∶= ݃ݎܽ minఏ∈ℛ೙ [12 ߠܪ்̂ߠ −  ℎ்̂ߠ + 2ߣ  [ߠ்ߠ
          

(8) 
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ఈ̂ܧܲ = − ݐݏ݁ݐ2݊ߙ ∑   इ̂ߙ(ࣴ݅ܰ ݐݏ݁ݐ2݊(ܣ
݅=1  

− (1 − ݂݁ݎ2݊(ߙ ∑   इఈ̂(ࣴ௜ே஺)2݂݊݁ݎ
௜=1  

                    + ݐݏ݁ݐ1݊ ∑   इఈ̂( ௜ࣴே஺)݊ݐݏ݁ݐ
௜=1 − 12 

 

          

(14) 

here ܲܧఈ̂  represents the estimated PE divergence from ௧ܲ௘௦௧(ࣴே஺)  to ௥ܲ௘௙(ࣴே஺)  and equivalently, ܲܧఈ̂  can be 

rewritten as ܲܧఈ̂( ௧ܲ௘௦௧(ࣴே஺) ∥ ௥ܲ௘௙(ࣴே஺)) . Because PE 

divergence is not symmetric therefore change score (ݐ)ܦ can 

be defined by summing divergence in both directions as:  (ݐ)ܦ = ఈ̂ܧܲ ( ௧ܲ௘௦௧(ࣴே஺) ∥ ௥ܲ௘௙(ࣴே஺)) 

ఈ̂ܧܲ +             ( ௥ܲ௘௙(ࣴே஺) ∥ ௧ܲ௘௦௧(ࣴே஺)) 

          

(15) 

2.4. Change Score Evaluation 

In continuous change score, larger values of (ݐ)ܦ indicate 

that ݐ − ݊ is likely the true change-point. To evaluate change 

score, each timestamp ݐ is labelled as: ℒ(ݐ) = {1, ∗ݐ   ≤ ݐ ≤ ∗ݐ +             ݁ݏ݅ݓݎℎ݁ݐ݋             ,2݊0

(16) 

where ݐ∗ denotes the time at which real change begins. 

Figure 3 illustrates the behaviour on a synthetic signal with a 

change started at ݐ∗ = 300. Using ݇ = 10, ݊ = 30 the score (ݐ)ܦ  remains low for all ݐ < ݐ then rises sharply after ,∗ݐ ݐ and forms a pea  at  ∗ݐ= = ∗ݐ + ݊   with the width of 2݊ 

timestamps. The change is considered detected when the 

score reaches a predefined threshold,  (ݐ)ܦ ≥  . ߜ
Additionally, for detection of onset of change, ̃ݐ is the earliest 
time at lift off from zero on its way to crossing the threshold ߜ.  Most importantly, the quality of detection depends on 

relative height of peaks and the variance of the score. When 

variance of the dissimilarity score is large, then the threshold 

should be large to avoid high false alarms, and thus it 

increases the delay in detection. 

3. EXPERIMENTAL EVALUATION  

3.1. Dataset 

In this study, the proposed method is validated on the publicly 

available bearing dataset: XJTU-SY, which includes run-to-

failure tests of LDKUER204 bearings. Detailed description 

about the testbed and experiment setup can be found in  

(Wang et al., 2020). Three accelerated-degradation scenarios 

were defined by varying rotational speed and radial load. For 

each scenario, five bearings were operated until failure. The 

operating conditions include 2100 rpm and 12 kN, 2250 rpm 

and 11 kN, and 2400 rpm and 10 kN. In this experiment, 

vibration data were collected using two accelerometers (PCB 

352C33) mounted in the vertical and horizontal directions on 

the bearing housing. The data were sampled at a rate of 25.6 

kHz at one-minute intervals. In this study, we focus on 

horizontal acceleration signals. Data from the dataset 

bearings 2_1, 2_2, 2_5, 3_1, 3_3 and 3_4 are used in this 

experiment health indicator calculation. 

3.2.   Health Indicator Calculation 

For condition monitoring of bearings, the root-mean-square 

(RMS) of the vibration signal is one of the most widely used 

HI (Yang et al., 2025). The RMS can effectively capture 

overall energy of the vibration signal and is sensitive to 

various types of degradation of bearings. Therefore, RMS is 

adopted for drift detection in this study. Formally, the RMS 

is computed over a window of ݉  sequences of vibration 

samples {ݔ௜} at timestamp ݐ as: 

(ݐ)ࣴ                                       = √∑ (௫೔)2೘೔ ௠                          (17) 

3.3. Experimental Results and Analysis 

This section presents a comprehensive evaluation of the 

proposed NA-RuLSIF algorithm for bearing health 

monitoring. Firstly, change detection performance is assessed 

in the context of condition monitoring and degradation. 

Additionally, the performance of the proposed method is 

evaluated in terms of early IDP detection, effective for further  

Figure 3. An Example of change detection based on direct 

density ratio estimation. (a) Synthetic signal with change 

point ݐ∗ = 300 . (b)  alculated change score and change 
level. 
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 RUL estimation. In practice, the HI during its normal and 

abnormal stages is not always stable. Instead, the HI always 

inherently exhibits a certain degree of uncertainty and non-

stationarity, which can undermine the reliability of condition 

monitoring algorithms. Therefore, it is worth mentioning that 

without any preprocessing of the HIs, a DDRE algorithm is 

applied to validate the robustness of the method.    

To demonstrate the advantages of the proposed NA-RuLSIF 

algorithm over the better RuLSIF, we take account of bearing 

3_1 from the XJTU-SY dataset. Figures 4(a) and 4(b) plot the 

raw RMS-based HI on linear and logarithmic scales, 

respectively. As shown in Figure 4(a), prior to data point 

2342, there is no permanent drift but there are a lot of local 

fluctuations which are more clearly visible on the logarithm 

scale in Figure 4(b). After point 2342, HI shows the onset of 

progressive degradation leading up to failure. This onset of 

runaway degradation is defined as the IDP. However, the 

computed change score using Eq. (15) based on RuLSIF and      

NA-RuLSIF on raw HI is shown in Figure 4(c) and 4(d), 

respectively.   

Although RuLSIF correctly identifies IDP, it is also sensitive 

to local fluctuations. Due to high variance of its change score, 

a higher threshold value of δ= .9 is selected to prevent false 

alarms.  By contrast, NA-RuLSIF computes a change IDP. 

 his allows us to lower the threshold to δ= .5.  herefore, 
NA-RuLSIF reduces detection latency and improves the 

reliability of degradation detection than RuLSIF. 

Additionally, to further demonstrate efficiency, kurtosis is 

used as the HI and the change score computed by RuLSIF 

and NA-RuLSIF are presented in Figure 5. As shown, NA-

RuLSIF exhibits better performance in handling random 

fluctuations compared to RuLSIF for kurtosis values. 

Therefore, the detection threshold for NA-RuLSIF remains 

lower (0.4) than RuLSIF (0.7). Nevertheless, the progressive 

degradation trend is more distinctly captured by the RMS-

based HI. Therefore, RMS-based HI is adopted throughout 

this study for IDP detection. 

A further challenge in change detection is balancing the 

trade-off between detection of real degradation and falsely 

detecting degradation due to abrupt, local fluctuation. To 

determine the effectiveness of NA-RuLSIF, this study also 

evaluates scenarios on bearing 3_4 in Figure 6. As shown in 

Figure 6(b), among various degradation modes of bearings, 

degradation begins with run-in state, indicated by elevated 

RMS. After that, bearing goes through normal state until data 

point 1000. Then, a larger fluctuation in bearing vibration 

indicates a real change. Although there is no subsequent 

progress of the damage and bearing operates as normal, a 

progressive defect starts after data point 1418. In Figure 6(c)-

(d), the RuLSIF exhibits significant variation while the 

change score of NA-RuLSIF exhibits less variation and is 

sensitive only when a degradation occurs. Therefore, for 

Figure 5. Run-to-failure life cycle and corresponding 

change score for bearing 3_1(a) HI (kurtosis) (b) Change 

score obtained with RuLSIF, and (c) Change score 

computed with NA-RuLSIF. 

 

Figure 4. Run-to-failure life cycle and corresponding 

change score for bearing 3_1(a) HI (RMS) (b) HI (RMS) 

on a logarithmic scale (c) Change score obtained with 

RuLSIF, and (d) Change score computed with NA-RuLSIF 
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health monitoring NA-RuLSIF performs better and more 

robustly in the presence of uncertainty or random noise. 

However, while the magnitude of the change score can be 

used to identify degradation, it does not distinguish between 

different types of degradation behavior, such as steady and 

progressive degradation. To address this, the research analyse 

the degradation trend to classify degradation behavior. To 

degradation trends, peaks values are first identified based on 

a predefined threshold (ߜ), which serves as an indicator of 
potential degradation.  hen, the starting and ending points of 
these pea s are determined.  ea s with a width of less than  2݊ are discarded, as they are li ely transient false positives. 
Again, pea s widths around 2݊  and 2݊ +  indicate steady  ݍ
degradation and local progressive degradation persistently on 
additional ݍ   samples respectively.   urthermore, when the 
right trail of pea s does not come to baseline, it indicates a 

progressive degradation leading to permanent failure. This 

scenario is illustrated in Figure 7.  

Nevertheless, the selection of IDP for runaway failure is 

always affected by scenarios where abrupt fluctuations are 
followed by a return to a normal, healthy state.  his abrupt 

fluctuation can arise from various factors such as entrance of 
wear particles into the bearings.  herefore, performing  U  
estimation from this point would disrupt the maintenance 
schedule and increase overall costs.  Additionally, early 
detection of the     can be used as a starting point for  U  
estimation.  n this study, for all experiments, the parameters 
were set as ݊ = 30, ݇ = 10, and ߙ = 0.01 for both  u     
and NA  u    . Additionally, for NA  u    , the noise 
was generated by Eq. (12) with 0.05= ߚ.                        

 herefore, using an experimental dataset, this study 
computes the     for runaway failure using  u     and NA 
 u     methods with the results shown in  ables 1 and 2. 
Additionally, the table provides a comparison of the     
positions detected by  u     and NA  u     methods 
using performance metrics of correlation and monotonicity 
(Yang et al., 2025) as follows: (ࣴ, =(ݐ |݊ ∑ ௜ࣴݐ௜ −  ∑ ௜ࣴ௡௜=ூ஽௉ ∑ ݊]√௜|௡௜=ூ஽௉௜݊=ூ஽௉ݐ ∑ ௜ࣴ௡௜=ூ஽௉ 2 − (∑ ௜ࣴ௡௜=ூ஽௉ )2][݊ ∑ ௜௡௜=ூ஽௉ݐ 2 − (∑ ௜௡௜=ூ஽௉ݐ )2] 
(ࣴ)ܯ    = 1݊ − 1 | ∑ Ι(( ௜ࣴ+1) −௡

௜=ூ஽௉ Ι( ௜ࣴ)) − ∑ Ι(( ௜ࣴ) −௡
௜=ூ஽௉ Ι( ௜ࣴ+1))| 

 

 n this formula, Ι(∎) is a unit step and expressed as: 

 Ι(߮) = {1, ߮ ≥ 00, ߮ < 0 

After identification of    , performance is calculated from 
H  of bearings from     to end of life.

Figure 6. Run to failure life cycle and obtained change score 

of bearing 3_4 (a) HI (RMS) (b) HI (RMS) on a logarithmic 

scale (c) Change score obtained with RuLSIF and (d) 

Change score using NA-RuLSIF. 

                        
                      
   

 

 

  
 

                             
                      
   

     
 

            
                      
   

 

   

 

            
                      
   

 

   

             
         

Figure 7. Change label and degradation intervals for 

bearing 3_4 (a) using RuLSIF (b) using NA-RuLSIF.  

 

                        
                      
                  

 

   

 

                        
                      
                   

 

   

             
            
                    
                 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025 

 

8 

Table 1: IDP, Correlation and Monotonicity values obtained 

with RuLSIF 

 

Table 2: IDP, Correlation and Monotonicity values obtained 

with NA-RuLSIF 

 

 

Tables 1 and 2, list the IDP for each bearing, as determined 

by RuLSIF and NA-RuLSIF methods, respectively. A higher 

correlation and monotonicity of HI indicate better RUL 

estimation accuracy when RUL estimation begins from the 

calculated IDP. In terms of performance, NA-RuLSIF yields 

higher results across all six bearings than RuLSIF. This 

indicates that NA-RuLSIF detects IDP more precisely, from 

where HI shows a consistent trend until end of life.  

4. CONCLUSION 

This study introduces a novel DDE-based method for 

calculating change score from HI to detect degradation of 

bearings. Additionally, by exploiting both amplitude and 

width of the change score, this work categorizes degradation 

into distinct modes. Through an analysis of the behavior of 

change score, the optimal starting point of RUL estimation is 

also identified. To show the effectiveness of the proposed 

method, the XJTU-SY bearing dataset is used. RMS as HI is 

often corrupted by random noise, measurement error and the 

life cycle of a bearing continuously undergoing multistage 

degradation. The proposed NA-RuLSIF method effectively 

suppresses random fluctuations and reacts to real degradation 

more accurately than the RuLSIF method. Again, the binary 

partitioning of the life cycle data into two segments — 

normal and abnormal, is not always obvious.  Consequently, 

existing studies have limitations, which misidentify the true 

onset of degradation in scenarios where bearing vibration 

temporarily increases and then decreases. In the real world, 

an actual defect initiated by microcracks is always 

progressive. This research systematically categorizes these 

complex scenarios and reliably identifies IDP for RUL 

estimation. Quantitatively, the trend from IDP determined by 

NA-RuLSIF exhibits better consistency over various 

bearings in both correlation and monotonicity.  

In future work, we will extend this framework to additional 

publicly available datasets and develop a hybrid HI based on 

both spatial and frequency domain for better degradation 

visualization. Additionally, the parameters selection and 

computational time complexity of NA-RuLSIF will be 

further investigated. Finally, by leveraging the identified 

IDP, we will implement and evaluate RUL estimation 

method through further investigations. 
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