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ABSTRACT

Prognostics and health management (PHM) has been widely
employed for condition monitoring, fault diagnosis and
failure prediction in mechanical systems. However, the
presence of uncertainty and transient fluctuations in
condition monitoring data makes the precise detection of
degradation challenging. This paper presents a novel direct
density ratio estimation (DDRE) method that computes the
change score of the health indicator to detect degradation.
The approach continuously computes the change score
between two sliding windows using noise-assisted relative
unconstrained least-squares importance fitting (NA-
RuLSIF). This study does not rely solely on magnitude of
the DDRE-based dissimilarity score; instead, it analyses the
dynamic behaviors of the change score to categorize
degradations into steady and progressive types. Additionally,
this research identifies the onset of runaway failures, referred
to as the initial degradation point (IDP), which is used as the
starting point for remaining useful life (RUL) estimation. To
validate the proposed approach, a publicly available rolling-
element bearing dataset is utilized. Experimental results
demonstrate the effectiveness and robustness of the proposed
DDRE method for both degradation detection and selection
of the IDP.

1. INTRODUCTION

Predictive maintenance of rolling bearings has become
prevalent among researchers because they are extensively
used in many mechanical devices (Wang et al., 2020). The
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degradation of bearing health affects the performance and
reliability of mechanical equipment. In industry, sudden
failure of mechanical equipment causes production
disruption (Bajarunas et al., 2024). Therefore, early detection
of any kind of degradation and fault is necessary to
implement fault-tolerant operation and to optimise
maintenance schedules (Liang et al., 2018). In predictive
maintenance, a condition-based approach is used to monitor
the actual condition and to predict the remaining useful life
(RUL) (Surucu et al., 2023). Using RUL, the maintenance
schedule can be designed to minimize unplanned downtime
of assets. However, many studies have focused on RUL
prediction rather than degradation detection (Wang et al.,
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Figure 1. A typical rolling bearing life cycle with
bearing health indicator (HI) on logarithmic scale.
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2021). Additionally, accurate detection of the IDP is crucial
for improving RUL prediction (Yang et al., 2025).

During continued operation of rotating machinery, rolling
bearings undergo gradual degradation, transitioning from a
normal health condition to a deteriorated state that may
ultimately result in failure. Consequently, many studies
divide the bearing life cycle based on condition-monitoring
data into two distinct phases: (1) a normal phase and (2) an
abnormal phase (Ahmad et al., 2018). The onset of the
abnormal phase is defined as the initial degradation point
(IDP) and is considered the optimal starting point for RUL
estimation. However, in real world, bearings typically
traverse multiple phases of degradation rather than a simple
two-stage framework (Halme & Andersson, 2010). In the full
life cycle of a bearing, three distinct phases are typically
observed: (1) run-in, (2) steady-state operation, and (3)
progressive degradation. The run-in phase is the initial stage
of wear at the onset of service life, during which microscopic
high spots on the rolling elements and raceways generate
elevated vibration levels. After these asperities are polished
off, the bearing enters the steady-state (or “normal”) phase,
characterized by low, stable vibration amplitudes. During
longer operation, minor surface wear and lubricant-film
settling induce a subtle baseline shift from that steady
condition, although overall vibration remains quasi-stable.
Finally, progressive degradation begins with the formation of
microscopic defects, which propagate over time, leading to a
continuous increase in vibration levels until failure occurs
(Patel & Patel, 2024). Additionally, bearing health can be
affected by sudden geometric misalignment, lubricant
contamination with wear particles, micro-pitting, and
inadequate lubrication, all of which introduce local
fluctuations in the condition-monitoring data. Therefore,
bearings condition monitoring data exhibit multiple stages
and variabilities. Figure 1 illustrates different levels of
degradation a bearing undergoes during a run-to-failure
scenario. As shown, in the figure, a single alarm level is not
sufficient for handling both local fluctuations and progressive
degradation.

Over the past decades, vibration-based condition monitoring
has been the predominant approach for defect tracking. A
range of time—frequency metrics, root-mean-square (RMS),
kurtosis, crest factor, RMS-entropy estimator (RMS-EE), and
frequency spectrum partition summation (FSPS) derived
from vibration signals have been used as health indicators
(HI) to track bearing degradation, as reported in the existing
research (Lei et al., 2018; Minhas et al., 2021). Additionally,
to address the non-stationarity of signals, empirical mode
decomposition (EMD) and its variants, such as ensemble-
EMD, wavelet packet decomposition (WPD) have been
widely adopted to detect early-stage microcracks (Zhu et al.,
2019). For IDP determination, only a limited number of
existing studies are available. Recent works continue to
employ subjective approaches for IDP detection (Gao et al.,
2024). Additionally, a 3o criterion-based technique, adopted

from engineering standard ISO 10816, is very popular in this
domain. Using this approach, an IDP is flagged based on
exceedance of a predefined standard deviation (N. Li et al.,
2015). Again, some researchers have proposed consecutive
threshold exceedances for detection of IDP to solve the
random noise in HI. A gradient-based linear regression
model was proposed to select the IDP from RMS values
(Ahmad et al., 2018). Furthermore, relying on a single
threshold for diagnostics is inadequate for two primary
reasons. First, a universal value cannot account for the
operational variability across all bearings. Second, such a
threshold is generally set high to prevent false alarms, which
makes it insensitive to the subtle signs of an IDP and effective
only in identifying severe degradation. Furthermore, a one-
class LSSVM-based approach for IDP detection was used by
Islam et al, (2021). A risk assessment-based method was
proposed to determine IDP via Mahalanobis distance fusion
and CUMSUM techniques (Q. Li et al., 2022). Additionally,
a two-stage IDP detection scheme was proposed by Cheng et
al, (2022), which first applied a dynamic 20 threshold
principle based on continuous RMS exceedance.
Subsequently, a nonparametric Mann-Kendall(M-K) test was
employed to statistically verify the presence of a significant
upward trend, effectively addressing transient fluctuations.
Existing research on degradation detection has shortcomings
in understanding failure mechanisms and overall
performance, which limits its real-life applicability.
Moreover, a single alarm level is insufficient to handle both
local fluctuations and progressive degradation.

For change detection, the Pearson divergence (PE) of HI, is
commonly used, where individual densities of reference and
test windows are calculated to find dissimilarity score using
kernel density estimation (KDE). Subsequently, the ratio of
the two computed densities is calculated to find the
dissimilarities between samples. However, this approach
introduces errors during individual KDE-based density
estimations and is further amplified when the ratio is
calculated. To overcome this issue, this research employs
direct density ratio estimation (DDRE) by directly
calculating the density ratio, thereby minimizing
computational errors (Huang et al., 2006). Several methods
exist for DDRE, such as kernel mean matching,
unconstrained least-squares importance fitting(uLSIF)
(Sugiyama et al., 2012) and relative uLSIF (RuLSIF) (Liu et
al., 2013a). Among these, RuLSIF shows better performance
for change detection. However, DDRE-based algorithms
have not been utilized for applications in PHM.

The main purpose of this study is to identify and track the
degradation using conventional HI. This study adopted the
root means square (RMS) of vibration signals as HI because
this metric captures better degradation stages of rolling
bearings. A major challenge of RuLSIF algorithm is its
sensitivity to local fluctuations in HI, which may sometimes
be misinterpreted as changes or drifts. To address this
problem, this study proposes a noise-assisted RuLSIF (NA-
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RuLSIF) method. In this approach, two moving windows,
named the reference and test windows, are used along with
white noise to continuously calculate a change score.
Afterward, sudden and progressive changes are automatically
identified based on the height and width of the score peaks.
The onset of runaway failure in the HI —referred to as the
IDP—is identified as the starting point for RUL estimation.
Despite abrupt temporary variations in HI, the proposed
method performs precise identification of the IDP.
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Figure 2. Flowchart of the proposed methodology for
drift detection and classification of degradation
patterns.

2. THEORETICAL BASIC: DIRECT DENSITY RATIO
ESTIMATION FOR DRIFT DETECTION

In this section, the proposed framework for condition
monitoring and drift detection of bearing health is discussed.
Figure 2 illustrates the overall workflow of the framework. In
the first stage, all kinds of drifts are detected and removed

based-on change score computed by the NA-RuLSIF
algorithm. In the next stage, each detected drift is categorized
based on behavioral analysis of change score.

2.1. Problem Statement for Change Detection

For a given univariate time series, a sequence vector Z(t) is
constructed at each time step t with previous k observations
formally defined as:

z(t)

z(t—1)

Z(t) = e R"

: )
z(t—k+1)

To detect a change-point, the algorithm compares two distinct
samples of sequences by Z;s.(t) and Z,..¢(t). Where a test
sample, Z;..:(t), consists of the n most recent sequences
while reference sample Z,.¢(t) comprise the preceding n
sequences. These are defined as:

Ziest ) = {Z(t),Z(t — 1), ..., Z(t —n + 1)}
Zref(t - Tl)
={Z(t—-n),Z(t—n—-1),..,Z(t —2n+ 1)}

@)

The primary objective is to calculate a change score, CS(t),
which quantifies the statistical distance between a test and the
reference samples at time t —n, identified as the likely
change-point. Under unchanged conditions both samples
should be statistically similar. However, when a change
occurs at t*, their underlying distributions diverge.

Consider two underlying distributions Ptes(2) and Prer(2)
for two sets of samples Zy.5; and Z,..; respectively. Now, a-
relative Pearson (PE) divergence can be written as:

1
PEq =S Ep ([ (wo(2) - 1)°] ©)

Here w, (2) is the a-relative density ratio of Py (Z) and
Pref(Z) defined as:

Ptest(z)

Py (2)
Prest(2) 4
aPres (2) + (1 — a)Pref(Z)

Again in Eq. (3), Epz)[f(Z2)] denotes the expectation of
f(Z) under the distribution P(Z):

wa(z) =

we () =

Ep)[f (2)]=[ f(2) P(2)dZ
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2.2. Direct Density Ratio Estimation

Let i, (Z) be the estimated ratio modelled by a regression
model. This model is fitted by minimizing the expected
squared loss J as follows:

] = 2B [(w, () - 7.D)]

1 Pt D)\*
Pa(2) (m >+wa(Z)2

2 P.(2)
Ptest(z) —~
"R T
1- 5
= %Eptest(z)[@(z)z] +— aIEpref(z)[@(Z)z] ®
— Ep, ., (2) [0 (2)]

where the first term is constant and ignored during the
minimization process. The density ratio is estimated with
following kernel methods:

n
@(2) = Z 0.K(Z,2) ®
=1
where, parameters 6;: = (91, 6,,. ..,Hp) to be learned from
the data samples Zy.5¢ (t) and Z,..(t —n). Again, K(Z, Z;)
is a kernel basis function and in this algorithm Gaussian
kernel is used for change detection as:

z-2))1?
K(Z,2,) = exp (—%); a>0

)

By substituting the approximating expectations from Eq. (5)
with their empirical counterparts, the optimization problem
can be written as follows:

§ := arg min 119Tﬁt9— 7179+/—19T9
oer 12 2 ®)

2 o o
where a penalty term EHTH is included for regularization

purposes and A (>=0) denote the regularization parameter.
Here, we adopt the baseline of RuLSIF parameterization by
selecting kernel width, o =1073,1072,...,10° and
regularization parameter, 1 = 1073,1072,...,10* (Liu et al.,
2013b).

Furthermore, H is the n x n matrix with the ([,1') -th
element.

Ntest

Z K(Ztest,i' Ztest,l) K(Ztest,i' Ztest,l')

i=1

~ a
Hl,l’ =

Ntest
rey ©)

1—«a
n Z K(Zref,j' Zref,l) K(Zref,j’ Zref.l’)
ref =

+

and h is an n-dimensional vector with /-th element define as,

Ntest

~ 1
hy =: Z K(Ztest,i:ztest,l) (10)

‘n
test i1

Now it is easy to confirm that the solution of Eq. (8) can be
analytically obtained as

2.3. Change Score Estimation Based on Noise Assisted-
RuLSIF (NA-RuLSIF)

To evaluate the robustness of the proposed algorithm against
measurement uncertainty and local fluctuation, additive
white gaussian noise (AWGN), WN was introduced to the
original Zs; and Z,.ras follows:

Zie = Ziose + (B X WN) .
ZM = Z,0r + (B X WN) (12)

where WN~N(0,1) and B =0.05. Choosing 8 corresponds
to noise with a standard deviation equal to 5% of a unit-
variance Gaussian random variable. The use of a zero-mean
distribution ensures that the noise does not introduce a
systematic bias into the signal.

Using an estimated density ratio, 4, into Eq. (3), one obtains
a closed-form estimator for the a-relative PE divergence after
straightforward algebraic calculation described in (Yamada
et al., 2013) and this divergence can be equivalently
expressed as:

a
PEy = = 2By vl (Z")]
1 —
— ( . Cl) IEPref(zNA) [u/?a(zNA)Z] (13)

+E [, (ZVN)] —l
Ptest(zN ) a 2

Based on Eq. (13), each expectation is replaced by the

corresponding sample average and obtained empirical

estimator can be written as:
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Ntest

— a
PE, = ——— ) (2"
Mgy —
Nyef B
_(1—a) = (z.NA)Z
anef =1 “ ' (14)

here PE, represents the estimated PE divergence from
Prosc(ZV*) to Ppor(ZM*) and equivalently, PE, can be
rewritten as PEy(Presc(Z*) Il Prer(ZV4)) . Because PE
divergence is not symmetric therefore change score D(t) can
be defined by summing divergence in both directions as:

D(6) = PEy (Prest(Z¥4) Il Prop (2V4))

# PE (Prog (ZM) I Proge(2)) (1)

2.4. Change Score Evaluation

In continuous change score, larger values of D(t) indicate
that t — n is likely the true change-point. To evaluate change
score, each timestamp t is labelled as:

(L, t"<t<t"+2n
L(r) = {0, otherwise (16)

where t* denotes the time at which real change begins.

Figure 3 illustrates the behaviour on a synthetic signal with a
change started at t* = 300. Using k = 10,n = 30 the score
D(t) remains low for all t < t*, then rises sharply aftert =
t* and forms a peak at t = t* +n with the width of 2n
timestamps. The change is considered detected when the
score reaches a predefined threshold, D(t)=6 .
Additionally, for detection of onset of change, £ is the earliest
time at lift-off from zero on its way to crossing the threshold
6. Most importantly, the quality of detection depends on
relative height of peaks and the variance of the score. When
variance of the dissimilarity score is large, then the threshold
should be large to avoid high false alarms, and thus it
increases the delay in detection.

3. EXPERIMENTAL EVALUATION

3.1. Dataset

In this study, the proposed method is validated on the publicly
available bearing dataset: XJTU-SY, which includes run-to-
failure tests of LDKUER204 bearings. Detailed description
about the testbed and experiment setup can be found in
(Wang et al., 2020). Three accelerated-degradation scenarios
were defined by varying rotational speed and radial load. For

each scenario, five bearings were operated until failure. The
operating conditions include 2100 rpm and 12 kN, 2250 rpm
and 11 kN, and 2400 rpm and 10 kN. In this experiment,
vibration data were collected using two accelerometers (PCB
352C33) mounted in the vertical and horizontal directions on
the bearing housing. The data were sampled at a rate of 25.6
kHz at one-minute intervals. In this study, we focus on
horizontal acceleration signals. Data from the dataset
bearings 2 1,2 2,2 5,3 1,3 3 and 3 4 are used in this
experiment health indicator calculation.

——— Synthetic Signal
15F "~ Change point

0.5
100 200 300 400 500 600
Time(s)
(a)
1T i'" "'i — Change Score
05k i i ----- Change Label
' ] 1
0 . 1
100 200 300 400 500 600
Time(s)
(b)

Figure 3. An Example of change detection based on direct
density ratio estimation. (a) Synthetic signal with change
point t* = 300. (b) Calculated change score and change
level.

3.2. Health Indicator Calculation

For condition monitoring of bearings, the root-mean-square
(RMS) of the vibration signal is one of the most widely used
HI (Yang et al., 2025). The RMS can effectively capture
overall energy of the vibration signal and is sensitive to
various types of degradation of bearings. Therefore, RMS is
adopted for drift detection in this study. Formally, the RMS
is computed over a window of m sequences of vibration
samples {x;} at timestamp t as:

ST x)?

Z(t) = Ao (17)

3.3. Experimental Results and Analysis

This section presents a comprehensive evaluation of the
proposed NA-RuLSIF algorithm for bearing health
monitoring. Firstly, change detection performance is assessed
in the context of condition monitoring and degradation.
Additionally, the performance of the proposed method is
evaluated in terms of early IDP detection, effective for further
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Figure 4. Run-to-failure life cycle and corresponding
change score for bearing 3 1(a) HI (RMS) (b) HI (RMS)
on a logarithmic scale (c) Change score obtained with
RuLSIF, and (d) Change score computed with NA-RuLSIF

RUL estimation. In practice, the HI during its normal and
abnormal stages is not always stable. Instead, the HI always
inherently exhibits a certain degree of uncertainty and non-
stationarity, which can undermine the reliability of condition
monitoring algorithms. Therefore, it is worth mentioning that
without any preprocessing of the HIs, a DDRE algorithm is
applied to validate the robustness of the method.

To demonstrate the advantages of the proposed NA-RuLSIF
algorithm over the better RuLSIF, we take account of bearing
3_1 from the XJTU-SY dataset. Figures 4(a) and 4(b) plot the
raw RMS-based HI on linear and logarithmic scales,
respectively. As shown in Figure 4(a), prior to data point
2342, there is no permanent drift but there are a lot of local
fluctuations which are more clearly visible on the logarithm
scale in Figure 4(b). After point 2342, HI shows the onset of
progressive degradation leading up to failure. This onset of
runaway degradation is defined as the IDP. However, the
computed change score using Eq. (15) based on RuLSIF and
NA-RuLSIF on raw HI is shown in Figure 4(c) and 4(d),
respectively.

.g 5F
S5l —_—
23 : : : . .
500 1000 1500 2000 2500
(a)
1
0
0 500 1000 1500 2000 2500
(b)
1 Change Score
Threshold
0
0 500 1000 1500 2000 2500

Data points (1 minute)
(c)
Figure 5. Run-to-failure life cycle and corresponding
change score for bearing 3 _1(a) HI (kurtosis) (b) Change
score obtained with RuLSIF, and (c) Change score
computed with NA-RuLSIF.

Although RuLSIF correctly identifies IDP, it is also sensitive
to local fluctuations. Due to high variance of its change score,
a higher threshold value of 6=0.9 is selected to prevent false
alarms. By contrast, NA-RuLSIF computes a change IDP.
This allows us to lower the threshold to 6=0.5. Therefore,
NA-RuLSIF reduces detection latency and improves the
reliability of degradation detection than RuLSIF.
Additionally, to further demonstrate efficiency, kurtosis is
used as the HI and the change score computed by RuLSIF
and NA-RuLSIF are presented in Figure 5. As shown, NA-
RuLSIF exhibits better performance in handling random
fluctuations compared to RuLSIF for kurtosis values.
Therefore, the detection threshold for NA-RuLSIF remains
lower (0.4) than RuLSIF (0.7). Nevertheless, the progressive
degradation trend is more distinctly captured by the RMS-
based HI. Therefore, RMS-based HI is adopted throughout
this study for IDP detection.

A further challenge in change detection is balancing the
trade-off between detection of real degradation and falsely
detecting degradation due to abrupt, local fluctuation. To
determine the effectiveness of NA-RuLSIF, this study also
evaluates scenarios on bearing 3 4 in Figure 6. As shown in
Figure 6(b), among various degradation modes of bearings,
degradation begins with run-in state, indicated by elevated
RMS. After that, bearing goes through normal state until data
point 1000. Then, a larger fluctuation in bearing vibration
indicates a real change. Although there is no subsequent
progress of the damage and bearing operates as normal, a
progressive defect starts after data point 1418. In Figure 6(c)-
(d), the RuLSIF exhibits significant variation while the
change score of NA-RuLSIF exhibits less variation and is
sensitive only when a degradation occurs. Therefore, for
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Figure 6. Run to failure life cycle and obtained change score
of bearing 3 4 (a) HI (RMS) (b) HI (RMS) on a logarithmic
scale (c¢) Change score obtained with RuLSIF and (d)
Change score using NA-RuLSIF.

health monitoring NA-RuLSIF performs better and more
robustly in the presence of uncertainty or random noise.

However, while the magnitude of the change score can be
used to identify degradation, it does not distinguish between
different types of degradation behavior, such as steady and
progressive degradation. To address this, the research analyse
the degradation trend to classify degradation behavior. To
degradation trends, peaks values are first identified based on
a predefined threshold (§), which serves as an indicator of
potential degradation. Then, the starting and ending points of
these peaks are determined. Peaks with a width of less than
2n are discarded, as they are likely transient false positives.
Again, peaks widths around 2n and 2n + g indicate steady
degradation and local progressive degradation persistently on
additional g samples respectively. Furthermore, when the
right trail of peaks does not come to baseline, it indicates a
progressive degradation leading to permanent failure. This
scenario is illustrated in Figure 7.

Nevertheless, the selection of IDP for runaway failure is
always affected by scenarios where abrupt fluctuations are
followed by a return to a normal, healthy state. This abrupt

200 400 600 800 1000 1200 1400
Data points (1 minute)
(a)

Change Score

== ===:Change label
X Onset of degradation

End-point of peak

- — —

0
200 400 600 800 1000 1200 1400
Data points (1 minute)
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Figure 7. Change label and degradation intervals for
bearing 3 4 (a) using RuLSIF (b) using NA-RuLSIF.

fluctuation can arise from various factors such as entrance of
wear particles into the bearings. Therefore, performing RUL
estimation from this point would disrupt the maintenance
schedule and increase overall costs. Additionally, early
detection of the IDP can be used as a starting point for RUL
estimation. In this study, for all experiments, the parameters
were set asn = 30, k = 10, and a = 0.01 for both RuLSIF
and NA-RuLSIF. Additionally, for NA-RuLSIF, the noise
was generated by Eq. (12) with g =0.05.

Therefore, using an experimental dataset, this study
computes the IDP for runaway failure using RuLSIF and NA-
RuLSIF methods with the results shown in Tables 1 and 2.
Additionally, the table provides a comparison of the IDP
positions detected by RuLSIF and NA-RuLSIF methods
using performance metrics of correlation and monotonicity
(Yang et al., 2025) as follows:

(Z,0)
[n Yizipp Ziti — Xizipp Zi Xi=ipp til
\/[nzl “op i — QL IDPZi)Z][nZl etis — Qispp t)? ]
M(2)

D @) - 1ED - ) @) = 1)

i=IDP i=IDP

In this formula, I(m) is a unit step and expressed as:

1, ¢>0

w={y o2,

After identification of IDP, performance is calculated from
HI of bearings from IDP to end of life.
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Table 1: IDP, Correlation and Monotonicity values obtained

with RuLSIF
Bls:::;g IDP | Correlation | Monotonicity

Bearing 2 1 319 0.672 0.512
Bearing 2 2 49 0.849 0.554
Bearing 2 5 49 0.938 0.634
Bearing3 1 | 1585 0.537 0.48
Bearing 3 3 48 0.45 0.18
Bearing 3 4 | 1409 0.966 0.736

Average 0.735 0.516

Table 2: IDP, Correlation and Monotonicity values obtained
with NA-RuLSIF

B;z::;g IDP | Correlation | Monotonicity
Bearing 2 1 458 0.99 1.0
Bearing 2 2 49 0.849 0.554
Bearing 2 5 88 0.956 0.697
Bearing3 1 | 2298 0.864 0.8
Bearing 3 3 148 0.554 0.202
Bearing3 4 | 1410 0.966 0.733

Average 0.863 0.664

Tables 1 and 2, list the IDP for each bearing, as determined
by RuLSIF and NA-RuLSIF methods, respectively. A higher
correlation and monotonicity of HI indicate better RUL
estimation accuracy when RUL estimation begins from the
calculated IDP. In terms of performance, NA-RuLSIF yields
higher results across all six bearings than RuLSIF. This
indicates that NA-RuLSIF detects IDP more precisely, from
where HI shows a consistent trend until end of life.

4. CONCLUSION

This study introduces a novel DDE-based method for
calculating change score from HI to detect degradation of
bearings. Additionally, by exploiting both amplitude and
width of the change score, this work categorizes degradation
into distinct modes. Through an analysis of the behavior of
change score, the optimal starting point of RUL estimation is
also identified. To show the effectiveness of the proposed
method, the XJTU-SY bearing dataset is used. RMS as HI is
often corrupted by random noise, measurement error and the
life cycle of a bearing continuously undergoing multistage
degradation. The proposed NA-RuLSIF method effectively
suppresses random fluctuations and reacts to real degradation
more accurately than the RuLSIF method. Again, the binary
partitioning of the life cycle data into two segments —
normal and abnormal, is not always obvious. Consequently,

existing studies have limitations, which misidentify the true
onset of degradation in scenarios where bearing vibration
temporarily increases and then decreases. In the real world,
an actual defect initiated by microcracks is always
progressive. This research systematically categorizes these
complex scenarios and reliably identifies IDP for RUL
estimation. Quantitatively, the trend from IDP determined by
NA-RuLSIF exhibits better consistency over various
bearings in both correlation and monotonicity.

In future work, we will extend this framework to additional
publicly available datasets and develop a hybrid HI based on
both spatial and frequency domain for better degradation
visualization. Additionally, the parameters selection and
computational time complexity of NA-RuLSIF will be
further investigated. Finally, by leveraging the identified
IDP, we will implement and evaluate RUL estimation
method through further investigations.
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