
Postprocessing of Autoencoder Reconstruction Error for Detection
and Diagnostics of Faults in Infrequently-driven Ground Vehicles

Matthew Moon1, Ethan Kohrt2, Michael Thurston3, and Nenad Nenadic4

1,2,3,4 Rochester Institute of Technology, Rochester, NY, 14623, USA
memgis@rit.edu
eakgis@rit.edu
mgtasp@rit.edu
nxnasp@rit.edu

ABSTRACT

We investigated the detection and classification of engine and
transmission faults in infrequently-driven ground vehicles us-
ing data-driven methods based on neural network autoen-
coders. The data came from seventeen vehicles, each with an
engine-related or a transmission-related maintenance event.
The vehicles had months to years of sensor controller area
network (CAN) bus data sampled at 1Hz. Separate autoen-
coder models were trained for each vehicle to improve de-
tection sensitivity. The paper investigates several condition
indicators (CIs) derived from autoencoder reconstruction er-
ror, each computed from a sequence of the reconstruction’s
mean absolute error (MAE). These CIs were compared us-
ing a performance metric computed as the area under the
Pareto front with respect to normalized detection horizon and
normalized baseline-relative CI margin. A novel detection
procedure, consistent detection, effectively filtered out short-
duration isolated spikes, likely false positives, while also in-
creasing sensitivity to more plausible anomalies. In addition,
the initial development of data-driven diagnostics, based on a
novel approach of classifying full reconstruction error vectors
associated with the fault state, showed promise but failed our
robustness checks.

1. INTRODUCTION

Neural network autoencoders are common models for
anomaly detection. An autoencoder is trained to minimize
the error between the input data and the model output, called
reconstruction error. When the autoencoder is trained only
on data representing the nominal state of some system, the
model is expected to output low reconstruction error for new
data from the nominal state, and high reconstruction error
for data from anomalous states. The reconstruction error can
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be used to calculate an “anomaly score,” which is compared
against some threshold to decide whether a data sample is an
anomaly.

Mean Squared Error (MSE) and Mean Absolute Error (MAE)
are frequently used as anomaly scores (Adkisson, Kimmell,
Gupta, & Abdelsalam, 2021; Peixoto et al., 2023; Lachekhab,
Benzaoui, Tadjer, Bensmaine, & Hamma, 2024; S. Ryu et al.,
2023; Tziolas et al., 2022; Tian, Liboni, & Capretz, 2022;
Lagazo, de Vera, Coronel, Jimenez, & Gatmaitan, 2021). In
(Tziolas et al., 2022) the authors commented that MSE was
prone to outliers in their work, and therefore preferred MAE
instead. In MAE and MSE, the contribution of each channel
in the anomaly score is weighted equally. This is sometimes
not desired; the authors in (S. Ryu et al., 2023) observed that
their reconstruction error was concentrated in a few channels,
but the influence of these channels was diluted due to the high
dimensionality of their data. To address this, they used only
the top-k channels with the highest error when calculating
MSE. Root mean squared error (RMSE) is also sometimes
used as anomaly score (Park, Marco, Shin, & Bang, 2019;
Reddy, Sarkar, Venugopalan, & Giering, 2016).

Mahalanobis distance is another common anomaly score
(Thill, Konen, Wang, & Bäck, 2021; Zhang, Hu, & Yang,
2022; Ahmad, Styp-Rekowski, Nedelkoski, & Kao, 2021).
In this method, a multivariate Gaussian distribution is esti-
mated based on the raw reconstruction error of the healthy
training data. Then, for a given data sample, the anomaly
score is calculated as the Mahalanobis distance between that
sample’s reconstruction error and the distribution of recon-
struction errors seen in the training set. Lagazo et al. (Lagazo
et al., 2021) used a similar approach but instead calculated
the log-likelihood that an error sample came from the train-
ing error distribution. Liang et al. (Liang, Knutsen, Vanem,
Zhang, & Æsøy, 2023) utilized Sequential Probability Ratio
Test (SPRT) to analyze reconstruction error samples and de-
termine whether they more closely aligned with an approx-
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imated nominal or anomalous error distribution. Yan et al.
(Yan, Guo, gong, & Li, 2016) showed that even the magni-
tude of the hidden layer outputs could be successfully applied
as an anomaly score.

Filters are sometimes applied to smooth the anomaly scores
when the data is a time-series. The simplest case of a sliding
mean is used to mitigate false positives from point anomalies
in (Zhang et al., 2022; Tian et al., 2022).

A detection threshold is necessary to determine whether an
anomaly score represents a nominal or anomalous data sam-
ple. When labeled data is available, a threshold is often cho-
sen empirically to maximize desired metrics like F1-score,
or to minimize either false positives or false negatives based
on requirements of the domain (Lachekhab et al., 2024;
Shvetsova, Bakker, Fedulova, Schulz, & Dylov, 2021; Mal-
lak & Fathi, 2021; Tziolas et al., 2022). It is also com-
mon to calculate anomaly scores of the nominal data and set
the threshold above those scores to mitigate false positives.
Since autoencoders are trained and validated on nominal data,
(Peixoto et al., 2023) sets the threshold to the maximum
anomaly score in the training set. To prevent single large
anomaly scores from skewing the threshold, (Adkisson et al.,
2021) set the threshold as the average of the top 5 validation
scores. Ryu et al. (S. Ryu et al., 2023) places the threshold at
200% of the mean validation score, and (Connelly, Zaidi, &
McLernon, 2023) sets multiple thresholds at increasing stan-
dard deviations from the mean validation score to indicate
increasing severity levels. Tuli et al. (Tuli, Casale, & Jen-
nings, 2022) compared two other thresholding techniques in
their approach; Peak Over Threshold (POT) (Siffer, Fouque,
Termier, & Largouet, 2017) and Annual Maximum (AM)
(Bezak, Brilly, & Šraj, 2014).

Some PHM diagnostic approaches do not use an intermediate
anomaly detector (Deng, Wang, Tang, Huang, & Zhu, 2021;
Kreuzer & Kellermann, 2023; Shen, Wang, Fu, & Xiong,
2023), instead opting for a classifier that outputs “normal”
or a particular fault type. But an autoencoder can also be
paired with a classifier model to perform fault mode diagnos-
tics (Michau, Hu, Palmé, & Fink, 2019). Some approaches
pass data samples through an autoencoder to first detect an
anomaly, then pass the same anomalous data to a trained clas-
sifier to predict the fault type (Zhang et al., 2022; Mallak &
Fathi, 2021; Park et al., 2019). Latent features of the autoen-
coder may also be used in the classifier. In (G. Ryu & Seong,
2023), though the model was a transformer trained to pre-
dict masked data rather than an autoencoder, latent features
from the model were extracted and a K-Nearest-Neighbors
approach was used to classify fault types. Shao et al. (Shao,
Jiang, Wang, & Zhao, 2017) did not perform anomaly detec-
tion, but demonstrated that the features learned by denoising
and contractive autoencoders resulted in better accuracy than
existing methods for fault mode classification.

Autoencoder reconstruction error may also contain useful in-
formation for diagnostics. Reddy et al. (Reddy et al., 2016)
implemented autoencoder anomaly detection on aircraft flight
data, and demonstrated that different fault modes could be
distinguished from one another based on the distribution of
reconstruction error across signals. Krishnan et al. (Krishnan
et al., 2024), Hsu et al. (Hsu, Frusque, & Fink, 2023) and
Torabi et al.(Torabi, Mirtaheri, & Greco, 2023) set a separate
threshold for each channel of error, corresponding to each in-
put signal, to give information to an operator about which
specific signals are responsible for an anomaly. Vuong et al.
(Vuong, Giduthuri, Lim, Tan, & Ramasamy, 2024) visualized
the error contribution of each signal and found that the contri-
bution from some signals was far greater than other signals,
and the predominant signals varied between fault instances,
but there was no attempt to establish a relationship between
signal contributions and fault mode. In the same vein, de Pa-
ter et al. (de Pater & Mitici, 2023) observed that only a select
few signals contributed error that corresponded with the fault,
and created a stronger detector by ignoring the error contri-
butions of the other signals. Hsu et al. (Hsu et al., 2023) used
Silhouette score to show that samples of reconstruction error
do cluster somewhat according to their fault mode, though
the clusters became less distinct as the faults developed into
a more severe state. However, none of these methods directly
involve classification of autoencoder reconstruction error.

Our prior work (Kohrt et al., 2024) focused on preprocessing
and modeling. It identified information-carrying signals, and
experimented with the length of the observation period. It ex-
plored different AE topologies for detecting engine faults in
ground vehicles, trying to achieve the best anomaly detection
performance. The condition indicator was the mean abso-
lute error (MAE), averaged over several observations. That
approach often suffices when the available signals carry the
information on the failure in progress. When the signals are
noisy, the problem gets worse. One approach is to investigate
additional anomaly detection models, and propose a novel
model. However, at present, high-capacity models are suf-
ficiently expressive (TODO cite). We observed this in our
work, too. The detection capability of different of autoen-
coders with different topologies (fully-connected, 1D CNN,
transformers) was quite similar.

In this paper we took a different approach. Instead of trying to
improve the models, we attempted to extract better anomaly
detection performance by operating on the autoencoder error
beyond MAE and MSE. Furthermore, we attempted to inves-
tigate a path to diagnostics, by operating on the reconstruc-
tion errors from the autoencoders. Specifically, we offer an
analysis of various condition indicators (CIs), which for our
purposes are anomaly scores on the reconstruction error of
fixed-length windows of multivariate time-series sensor data.
The CIs we investigate are all derived from local MAE like
(Peixoto et al., 2023; Tziolas et al., 2022). This analysis in-
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cludes considerations of the trade-off between detection hori-
zon and detection confidence, the latter measured in terms of
deviation from baseline behavior. We evaluate CI strength by
measuring the area bounded by the Pareto front with respect
to normalization of these two detection metrics.

Additionally, we introduce a new detection routine deemed
“consistent detection”. Consistent detection is a methodol-
ogy intended to reduce the impact of isolated outliers and
increase confidence that detections found are true positives.
This new detector also allows us to reduce the sensitivity of
the detection threshold to baseline outliers.

Finally, we demonstrate the feasibility of using autoencoder
reconstruction error for fault-classification diagnostics, in-
cluding applications to a real-time system. Our classification
systems are based on only the data associated with anomalies,
unlike approaches that further consider nominal data such as
(Reddy et al., 2016).

To the best of our knowledge, this paper is the first to:

• Apply log-likelihood to the reconstruction error, which
improved the anomaly detection over typically used
MAE / MSE.

• Combined margin and detection horizon in the form of
Pareto front, and then used the area to under the curve of
the Pareto front for the metric. Furthermore, we applied a
new nonlinear transformation to better normalize metrics
among assets (Section 2.3.1).

• Formulate criteria for avoiding false alarms by demand-
ing that the anomaly persists or reoccurs (see Figure 2).

• Use reconstruction error as features in a classifier for di-
agnostics.

2. ANOMALY DETECTION

To detect faults from vehicle sensor data, we created a model
of baseline data, and looked for unprecedented model behav-
ior in the time leading up to a known fault. The boundary
between the baseline period and the fault window was de-
termined by inspection of maintenance history by a subject
matter expert (SME). We chose neural-network autoencoders
for our model, which seek to compress and then reconstruct
some window of sensor data. More specifically, we used a
transformer-based architecture we call “TFAE-Sym” as de-
scribed in (Kohrt et al., 2024). Data windows that are similar
to the training data should yield low reconstruction error, and
anomalous windows should yield high error.

In our prior work (Kohrt et al., 2024), we detected anoma-
lies in the multivariate reconstruction error by finding when
the running mean of absolute baseline error exceeded some
threshold. Under this scheme, four vehicles exhibited detec-
tion. Table 1 lists the detection margin and detection horizon
(measured in engine-on hours) for the vehicles under inves-
tigation. In this section, we describe a formalization of this

Table 1. Detection characteristics in the prior postprocessing
procedure with a CI of Mean with K = 20 on idle-only data.

IDs Fault Type Detection Horizon Margin

E01 Cooling Fault 33.6 h 24%
E02 Cooling Fault - 0%
E03 Thermostat Failure 30.2 h 53%
E04 Fuel Injector Defect 21.0 h 225%
E05 Fuel Injector Defect - 0%
E06 Coolant Leak 213.5 h 82%
E07 Coolant Leak - 0%
E08 Coolant Leak - 0%

procedure that allows for alternative error processing and de-
tection procedures.

2.1. Condition Indicators

Starting with a mathematical framing, an autoencoder is a
function ψ on RN×S which should approximate the identity
on baseline data and hopefully yield divergent behavior for
anomalous data. For a given two-dimensional autoencoder
input Xi, we consider its signed reconstruction error

Ei = [en,s]i

Ei = X̂i −Xi = ψ(Xi)−Xi

(1)

where ψ(·) denotes the autoencoder function.

The reconstruction error Ei has the same dimension as the
input Xi, which is a N × S matrix, where N represents the
number of measurements (i.e. the observation period), S is
the number of signals, and the elements of the reconstruction
matrix are denoted by en,s (see Figure 1). For our analysis,
we kept N fixed at 30.

𝑁𝑁
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𝑛𝑛=0
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𝜙𝜙𝑘𝑘

𝜙𝜙𝑛𝑛𝑛𝑛 
CI:

Figure 1. Definition of the reconstruction error and the Mean
CI, evaluated at point i in time. Typical parameter values for
S, N , and K are indicated in the parentheses.

We define a CI as a real-valued function ϕk operating on a
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reconstruction-error sequence of length K:

ϕθ : RK×N×S → R
ϕ(E; θ) := ϕθ(E)

(2)

where K is the sequence length or number of taps and θ rep-
resents parameters derived from the baseline errors {Ei}i∈IB ,
such as an empirical probability distribution. For notational
convenience, we typically omit the θ.

All CIs of interest in this paper are more structured than this
most abstract definition. Specifically, all of our CI functions
ϕ(E; θ) can be decomposed into a real-valued function ϕns
on a single Ei and a real-valued function ϕk applied elemen-
twise to a K-sequence of ϕns outputs. Symbolically,

ϕ({Ek}ik=i−K+1) =

ϕk(ϕns(Ei−K+1), ϕns(Ei−K+2), ..., ϕns(Ei))
(3)

Figure 1 illustrates the two-step process applied to computa-
tion of the Mean CI, the simplest CI and one we can use as
a baseline for comparison. First, ϕns compressed a sample
reconstruction error matrix Ei to a single point denoted by a
black dot - the Mean Absolute Error (MAE). Second, ϕk used
K dots to compute the Mean CI as a moving average.

εi = ϕns
(
[en,s]i

)
= MAE

(
[en,s]i

)
=

1

NS

∑
0≤s<S
0≤n<N

|en,s|i

ci = ϕk({εk}i−K+1:i) = ⟨εk⟩i−K+1:i =
1

K

∑
i−K<k≤i

εk

(4)

To simplify the notation, in the remainder of the text, we use
⟨·⟩K instead of ⟨·⟩i−K+1:i. These decompositions reveal av-
enues for experimentation, not all of which are exhausted in
this paper. We may consider alternatives to MAE such as
Mean Squared Error (MSE). We may consider larger changes
to ϕns to alter how the per-signal errors interact. And we may
consider alternatives to ϕk to change how we consider the se-
quence of errors. In this paper we focus on CIs with ϕns =
MAE, and ϕk as some statistical measurement. See Table 2
for a list and definitions of CIs we investigated.

The normed negative log-likelihood (NNLL) CI employed
the estimated probability density function (PDF) p̂t obtained
from the reconstruction error of the training data in the base-
line period. The Gaussian kernel density estimator imple-
mented in Scipy (Virtanen et al., 2020), used the samples
from the baseline training data to produce this PDF. The moti-
vation for normalizing the negative likelihood instead of tak-
ing the traditional sum is to keep the scale of the CI inde-
pendent of K. This normalization (or any positively oriented
affine transformation of a CI) does not affect our subsequent

Table 2. CI Definitions Given by Functional Decompositions.

CI Name ϕns (Ei) ϕk

(
{εk}ik=i−K+1

)
Mean MAE ⟨εk⟩K
Median (K even) MAE ⟨sort({εk})[K/2−1,K/2]⟩
STD MAE

√
⟨(εk − ⟨εj⟩K)2⟩K

Mean + STD MAE ⟨εk⟩K +
√

⟨(εk − ⟨εj⟩K)2⟩K

Mean - STD MAE ⟨εk⟩K −
√

⟨(εk − ⟨εj⟩K)2⟩K
NNLL MAE ⟨− log p̂t (εk)⟩K
Kurtosis MAE

⟨(εk−⟨εj⟩K)4⟩K
⟨(εk−⟨εj⟩K)2⟩2K

detection procedures or performance evaluations since our
detectors merely operate on margins.

2.2. Detection

2.2.1. Margins

Detection operates on CIs, but for the purpose of anomaly de-
tection the actual CI values are somewhat irrelevant. What
matters most is how they compare to the CI values in the
baseline period. Let IB be the index set of the baseline data,
and IF the index set of the fault window. Fix the number of
taps K and causally define our CI values ci, zero-based index
i ≥ K − 1 as

ci = ϕ
(
{Ek}ik=i−K+1

)
(5)

We then construct an affine mapping µ to convert the ci to
margins:

cm = min
i∈IB

ci

cM = max
i∈IB

ci

mi := µ(ci) =
ci − cM
cM − cm

(6)

This maps the maximum baseline ci to 0, the minimum base-
line ci to -1, and in general the margin tells you how far out-
side of the baseline range you are. We choose CI functions
so that we expect anomalies to exceed 0% margin, rather than
being under the minimum. Using margins instead of partic-
ular CI values lets us describe the detection procedures in a
manner agnostic to our choice of ϕ.

2.2.2. Detectors

A detection algorithm is a causal system with respect to the
sequence of input margins mi, and returns the position at
which time detection occurred. If no detection occurs by the
end of the sequence, the detector returns null. We also de-
fine the detection horizon h as the (positive) amount of time
between detection and the fault event, or 0 if no detection oc-
curred.
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Figure 2. Naı̈ve and Consistent Detection on E04.
α = 1 hr, β = 50 hr

We considered two detection procedures: “naı̈ve” and “con-
sistent”, each parameterized by a sensitivity margin M ≥ 0.
Naı̈ve detection simply identifies the first position in the fault
window when the margin M is exceeded:

detectnaı̈ve([mi];M, IF ) = min
i∈IF

{i | mi > M} (7)

Consistent detection aims to reduce the effect of isolated out-
liers and increase our confidence of a true positive. We do
this by restricting detection to when the mi stay above M for
a sustained period α, or when we see multiple spikes in mi

above M within some period β. For the α, β conditions to be
coherent with each other, β must exceed α and we must also
impose the condition that the time difference between the first
and last qualifying mi spike must be at least α. This ensures
monotonicity of detection horizon with respect to sensitivity
margin; a property that any detection routine should possess.
An example is shown in Figure 2 where the naı̈ve detector
activates almost immediately, while the consistent detector
doesn’t activate until the CI spikes become more frequent.

Note that for both naı̈ve and consistent detection, even
the margin values don’t matter beyond their relationship to
M . The only characteristic that influences the detector is
sign(mi − M). The values of mi still influence our eval-
uations in the sense that higher margins mean we’re more
confident in the detection, but they don’t influence when the
detector activates. This may motivate more sophisticated de-
tection methods that are sensitive to the magnitude of excess
margin, but they are beyond the scope of this paper.

2.2.3. Detector-Sensitive Margins

Now that we have defined an alternative procedure to naı̈ve
detection, it is fruitful to revisit the margin definitions (Equa-
tion 6). We can motivate our original definition for the margin
function µ by the property that

detectnaı̈ve([µ(ci)]; 0, IB) = null (8)

i.e. we assigned margins so that naı̈ve detection (Equation 7)
doesn’t detect anything in the baseline if we set the sensitivity
to the minimum M = 0.

With this perspective it becomes apparent that for more strin-
gent detection algorithms, we can decrease the value where
we assigned a margin of 0, thereby increasing sensitivity for
free in the fault window. This gives us a recursive definition
for a detector-sensitive margin function µD, where cM can be
found to arbitrary precision with a binary search:

cm = min
i∈IB

ci

µD(ci; cM ) =
ci − cM
cM − cm

cM = inf
x∈R

{x | detectD([µD(ci;x)]; 0, IB) = null}

(9)

In words, the only change from the detector-insensitive case
is to move the zero-margin point (cM ) down to the minimum
value such that the baseline remains undetected. Figure 3
shows an example where E02 did not initially detect with a
K = 20 NNLL due to a high spike in the baseline, but when
using a consistent detector with detector-sensitive margins, a
detection does occur.

2.3. CI Performance Evaluations

We sought to determine which condition indicators produce
the most convincing detections. We measure performance by
considering the trade-off between sensitivity margin M and
detection horizon h. If we set a high margin, we may not
detect as far in advance (or at all), and if we decrease the
margin we may discover an anomaly sooner. Considering h
as a function of M , h(M) must be nonincreasing. We refer
to h(M) as the detection curve.
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Figure 3. Consistent Detector-Sensitive Margins yielding detection on E02.

Consider the plot of h vs M for E04 with a K = 20 Mean
CI visualized in Figure 4. The outer corner points of this
curve are Pareto optimal with respect to these two metrics.
To compress this curve to a single representative metric, we
compute the area bounded by the curve and the axes. This can
be adjusted to account for a minimum considered margin by
only integrating to the right ofMmin. Given multiple CIs and
a fixed detector running on a fixed dataset, we can compare
the areas under the detection curves to determine relative CI
performance (Figure 5).

Figure 4. Detection Horizon vs Sensitivity Margin for Mean
(K=20) on E04 with Naı̈ve detection.

Figure 5. Comparison of 3 CIs on E04 with Naı̈ve detection.

2.3.1. Performance Normalization

The area under the detection curve is not an easily interpreted
figure. It has unusual units (% margin × engine-on-hours),
and the expected scale of the number changes from vehicle
to vehicle due to variations in the size of the fault window,
and the unknown inherent detectability of the vehicles’ data.
Furthermore, margin has no upper bound and this area gives
undesirably high weight to extreme margins. To give a more
interpretable measurement, normalize h and m. h normal-
ization is straightforward; since it already falls in a bounded
range we can affinely map it to [0, 1]. This h mapping is pa-
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rameterized by the minimum and maximum horizons hmin,
hmax we seek to assign positive performances to. To nor-
malize the unbounded m, we apply an arctan mapping into
[0, 1]. This m mapping is parameterized by the minimum
margin we seek to assign positive performance to Mmin,
and the real-valued ρ representing the saturation point of the
arctan. We kept ρ fixed at ρ = 500%. This normalization
makes it easier to compare CIs on a particular vehicle, but
should not be used to make comparisons across vehicles.

ĥ =
h− hmin

hmax − hmin

m̂ρ =
2

π
arctan

(
m−Mmin

ρ−Mmin

) (10)

After transforming to normalized space [0, 1]×[0, 1], we mea-
sure the area under the normalized curve Anorm to give a per-
formance metric. This normalized area Anorm can be con-
sidered as a percentage of optimal performance, where the
(unattainable) optimum would be an infinite margin as far in
advance as possible (Figure 6). Table 3 shows the normal-

Table 3. CI Performances on E04 with K=20.

CI Name Anorm Horizon (h) Margin (%)

Mean 0.076 29.6 32
Median 0.081 32.7 28
STD 0.095 31.7 43
Mean + STD 0.086 30.7 55
Mean - STD 0.052 21.3 27
NNLL 0.098 29.6 67
Kurtosis 0.002 32.1 4

ized performance for each CI withK fixed at 20 on E04’s idle
data. The Mean CI was the only CI under consideration in our
prior work (Kohrt et al., 2024) and serves as the benchmark
for the performance of other CIs. By this area metric, NNLL
performed the best, narrowly edging out STD. However, this
ranking of CIs is not consistent across all vehicles and all K.
Table 4 shows the top 3 CIs per vehicle with K options of
{20, 50, 100, 200, 500}, all evaluated on idle data. This ta-
ble shows that there is no globally optimal CI, though NNLL
tends to be a high performer at various K. In addition to the
CI rankings, the presence of any positive performance on E02
and E05 is an improvement, as no convincing detection was
found on either vehicle in our original postprocessing routine.

While some credit for new detections goes to the new CIs, it
was the introduction of detector-sensitive (D-S) margins cou-
pled with the consistent detector that was the most impact-
ful. It is easy to see mathematically that with a fixed detec-
tor, detector-sensitive margins cannot reduce performance as
we measure it; though it is not a given that they can yield
new detections. But in our case, by using consistent detection
and D-S margins, the brief and unconvincing anomalies in the

(a)

(b)

(c)

Figure 6. Detection Curves on E04 in Normalized Space. (a)
Naı̈ve, (b) Consistent (without D-S margins), (c) Consistent
(with D-S margins).

baseline are filtered out, and the more frequent and convinc-
ing CI spikes in the fault window are emphasized.
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Table 4. Top 3 CIs per vehicle operating on idle-only data,
ranked by normalized area of the Consistent detection curve.
Vehicles marked with an asterisk (*) are those which did
not have detection under Mean in our original postprocess-
ing procedure which used K ≤ 100. Daggers (†) indicate
cases where a detection technically occurred but we deemed
it to be unconvincing.

ID CI Name K Anorm Horizon (h) Margin (%)

E01
NNLL 20 0.052 29.7 24
NNLL 500 0.043 19.8 53
NNLL 50 0.030 19.6 36

E02*
NNLL 20 0.017 125.7 20
NNLL† 50 0.006 168.0 5
- - - - -

E03
STD 500 0.038 25.9 53
STD 200 0.027 27.1 37
Mean-STD 20 0.027 26.9 41

E04
Kurtosis 500 0.651 121.7 861
STD 100 0.348 19.6 422
STD 200 0.302 19.3 487

E05*
Mean 500 0.005 44.8 11
NNLL 500 0.004 44.8 10
NNLL 200 0.004 71.8 5

E06
NNLL 500 0.306 207.6 236
Median 20 0.256 211.2 162
Median 50 0.248 209.7 173

E07*
- - - - -
- - - - -
- - - - -

E08*
STD† 500 0.005 12.4 6
STD† 100 0.001 16.6 1
STD† 200 0.001 16.2 1

3. FAULT CLASSIFICATION

In addition to detecting anomalies, we wanted to diagnose
some aspects of the fault. This data-driven diagnostics trained
and evaluated classifiers on the autoencoder reconstruction
error associated with anomalies. Sections 3.1-3.2 overview a
classification approach with initial promise, and Section 3.3
describes some robustness checks with concerning results.

3.1. Dataset

Table 5 lists the seven failure modes and their descriptions
used in the study, as well as the distribution of twenty-two
vehicles over the seven failure modes.

Vehicle IDs starting with a “T” had a transmission-related
fault, and vehicles starting with “E” had an engine-related
fault. These broad fault categories have slightly different sig-
nal sets associated with them, so for this combined experi-
ment the union of these signal sets was used for autoencoder
training and subsequent error classification. Additionally, for
engine-only models we choose between idle and driving data
and some signals are only considered for a particular opera-
tion mode. Since all transmission faults are expected to be

Table 5. Failure mode definitions.

FM FM Description Count Vehicle IDs

TL transmiss. leak 7 T04, T08, T09, T10,
T11, T12, T13

FID fuel injector damage 5 E04, E05, E13,
E20, E21

CL coolant low 3 E06, E07, E08
TI transmiss. inoperable 2 T06, T18
TC transmiss. cooler 2 T05, T07
CF cooling fault 2 E01, E02
TF thermostat failure 1 E03

found during driving conditions, driving data is used for this
combined experiment. Table 6 indicates which signals are
present and which fault categories they are associated with.

Table 6. Signals included in autoencoder models. Asterisks
indicate virtual (computed) signals.

Signal Name Engine Transmission

Vehicle Speed Driving Only No
Engine Speed Yes Yes
Torque Yes Yes
Shaft Speed No Yes
Engine Coolant Temp. Yes Yes
Engine Coolant Temp. Gradient* Yes No
Engine Power* No Yes
Transmission Temp. No Yes
Transmission Temp. Gradient* No Yes

To maintain the integrity of our model evaluation, we ensured
that data from any individual vehicle was used either exclu-
sively for training or exclusively for validation, never both.
This separation required a minimum of two vehicles to de-
velop reliable models. However, as shown in Table 5, the
thermostat failure (TF) category only had a single vehicle of
that type, making it unsuitable for our modeling approach.

Because some failure modes required certain operating con-
ditions to be observed, only the data corresponding to the
anomalies were qualified for model training and validation.
However, to maximize the size of the dataset, we reduced the
detection threshold margin to zero, as illustrated in Figure 7.

For reliable anomaly detection, our classification models re-
quired multiple consecutive data points from a single vehi-
cle to establish confidence in its predictions. We set this
threshold at m = 200 samples, a choice we justify in our
later discussion of model performance. Among all failure
modes, only three had sufficient data from multiple vehi-
cles to support model development: coolant low (CL), fuel-
injector damage (FID), and transmission leak (TL). The re-
maining failure modes – TF, cooling fault (CF), transmission
inoperable (TI), and transmission cooler (TC) – lacked ade-
quate vehicle representation for meaningful model develop-
ment.
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Figure 7. Example of a valid data range used for classification
(Veh. ID = E04).

Table 7. Vehicles with m ≥ 200 samples above the margin.

FM Vehicle ID data

CL E06 2,998
CL E08 740
FID E04 2,311
FID E21 435
TC T07 775
TF E03 1,026
TI T18 1,861
TL T04 754
TL T09 13,190
TL T10 773
TL T11 1,247
TL T12 1,375
TL T13 3,454

3.2. Classifier Construction and Results

Table 8 shows the vehicle FM representation for model de-
velopment based on using a similar number of data points
for training and a similar number for validation without class
balancing.

Table 8. Vehicle selection for classification.

Training Validation
FM Vehicle ID Samples Vehicle ID Samples

CL E06 2,998 E08 740
FID E04 2,311 E21 435
TL T13 3,454 T04 754

The classification model was the random forest classifier im-
plemented in Scikit-learn (Pedregosa et al., 2011), with num-
ber of estimators set to 30 and maximum depth set to 10. The
model operated on randomly permuted samples. A single-
point classification results are shown in Figure 8. The model’s
effectiveness was assessed by examining the confusion ma-
trix: when the diagonal element is the highest value in its
column, classification was reinforced by combining classifier
outputs for multiple sample inputs.

For example, Figure 9 shows the confusion matrix when 200
consecutive points merged using a mode (majority-based) fil-

2,998 2,311 3,454
740 435 754
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(122)
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Figure 8. Single-point classification.

ter. Note that the validation confusion matrix, in this FM or-
dering, has a block-diagonal structure, where engine-related
FMs, CL and FID, are mutually less distinguishable com-
pared to TL, i.e., FID and CL form a diagnostic ambiguity
group relative to TL. The top plot in Figure 10 shows how
the mode filter operates on consecutive samples. There is a

740 435 754

CL FID TL
Ground truth
(validation)

CL

FID

TL
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tim
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e

77.0%
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23.0%
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0.0%
(0)

0.0%
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(31)

95.9%
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Figure 9. Multi-point classification.

physics-based explanation: this ambiguity is due to the effect
that fuel-injector faults can have on the actual thermal load
of the engine relative to the anticipated thermal load based
on the engine’s operation with healthy fuel injectors. This
effect was seen in the temperature of the exhaust gas in a
diesel engine as increasingly severe injector faults were tested
(Thurston, Sullivan, & McConky, 2023).

Similarly, a coolant leak that has resulted in a low coolant
level would have an effect on the ability of the engine to trans-
fer heat to its radiator, affecting the engine’s coolant temper-
ature relative to the behavior of a healthy vehicle. Whereas a
transmission oil leak resulting in low transmission oil levels
would have an effect on transmission oil temperature. While
the transmission oil is cooled by the engines coolant, a trans-
mission related fault would still have a far lesser effect on
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engine coolant temperature then a direct engine related fault,
hence why the transmission related fault is more distinguish-
able.

In addition to mode filtering, we used Bayesian fusion and
the Dirichlet distribution as the conjugate prior to the multi-
nomial, as illustrated in the bottom Figure 10 as a function of
samples and in the bottom Figure 11 as it evolves in time, rel-
ative to the CI and anomaly detection. After observing only
a few samples, the model assigned about 60% probability to
the correct failure mode but did not improve further with more
data.

3.3. Classifier Robustness

Only three of the failure modes discussed above had repre-
sentation in more than two vehicles, and we tested diagnos-
tics for only one partition of vehicles. Given that, the results
required additional scrutiny. Specifically, although it was rea-
sonable to expect a classifier to perform best when the classes
were naturally balanced, it was also necessary to investigate
the classifier’s performance on different vehicles to test the
robustness of the approach. The robustness investigation fo-
cused on binary classification between the TL and CL failure
modes because only two vehicles had FID faults. Our choices
of CL vehicles were still limited, but we could at least vali-
date our TL/CL classifier with data from other TL vehicles.
Unfortunately, only half of these alternate TL vehicles came
away with positive classification performance.

To make the situation worse, we found that the classification
was sensitive to small perturbations in autoencoder recon-
struction error. The autoencoder perturbations were induced
by extending the training by a few epochs (resuming exactly
from the optimizer state at which they were left in the original
training). Specifically, we took each autoencoder and inde-
pendently trained for 5, 10, and 20 more epochs to produce
a set of four autoencoders for each vehicle. If our classifiers
were learning features intrinsic to the fault types, they should
still validate well on reconstruction error from slightly differ-
ent autoencoder models of the same vehicles. However, we
found that this was not the case. Multiple repeated machine
learning experiments resulted in at least one of the four per-
turbed autoencoders generating reconstruction error that was
not validated successfully. The model was not so fragile that
any perturbation would cause it to fail, but some seemingly
innocuous perturbations did.

We attempted to remove the sensitivity to the autoencoder
state using two approaches. The first, based on augmented
datasets that contain multiple autoencoder states, was not suc-
cessful. The second approach started by normalizing recon-
struction error vector to unit length. The motivation was
to reinforce the idea that different FMs have unique signa-
tures along the reconstruction error vector (which is formed
by concatenating error vectors of individual signals). Thus,

the classifiers were forced to focus on the information as-
sociated with directions of these unit vectors while ignoring
their original magnitude. The normalization, combined with
a dataset augmentation that exploited the observation that au-
toencoder perturbations tend to move the error vectors by
relatively small angles, made some classifiers robust to the
autoencoder perturbations. Unfortunately, the classifiers still
failed to consistently generalize to other validation vehicles.

These robustness tests strongly suggests that, at least for our
data and autoencoder models, classifiers based on reconstruc-
tion error are fragile.

4. CONCLUSION

We investigated selected paths to enrich the postprocessing
of autoencoder error to improve threshold-based anomaly de-
tection by increasing the related detection horizon and sen-
sitivity margin. Because of the trade-off between these two
metrics, the evaluation metric was the area under the curve of
the Pareto front with horizon-margin coordinates. Normaliz-
ing the coordinates of the horizon and the margin improves
the metric interpretation. Using the normalized area under
the Pareto curve, the best performing CI was NNLL (though
it was not entirely dominant, see Table 3).

In addition to the strict threshold-based anomaly detector
(that is, the naı̈ve detector), we investigated a consistent de-
tector that considered the persistence of the threshold ex-
ceedance using the duration and recurrence of threshold
crossings. The consistent detector was not only less sensitive
to outliers, but also enabled detection in some models where
the naı̈ve method failed (see Figure 3).

The full reconstruction error showed promise as a set of fea-
ture vectors to classify anomalies. To maximize the size of
the dataset, the classifier used the reconstruction error asso-
ciated with crossing the zero-margin threshold. Consecutive
classifications were combined using two methods: a simple
mode filter and Bayesian fusion. However, the anomaly clas-
sifiers tended to be fragile in their generalization ability, a
cause for concern and further investigation. We plan to assess
this further by examining the performance of our techniques
on higher-resolution data with crisper anomalies, such as dis-
tinguishing surface damage from fatigue cracking in gearbox
vibration data.
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