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ABSTRACT

Effective data and health management are critical throughout
the lifecycle of engineered systems. When implemented
correctly, product health management tools and processes
can help lower total product ownership costs, improve safety,
maximize availability and utilization rates, thereby delivering
value to system operators and maintainers. Central to
achieving this capability is robust data management that
includes data acquisition, secure transmission, efficient
storage and timely processing. These steps ensure that health
insights can be delivered to stakeholders in support of
diagnostics, prognostics, and informed decision-making.

In sectors such as aerospace, defense and power utilities, the
demand for high availability - targeting 99.9% uptime or
“three nines” — places stringent requirements on Product Data
Monitoring Systems (PDMS). Hardware infrastructure,
software, engineering processes, and procedures are an
integral part of achieving this target. This paper presents a
focused exploration of the software, automation strategies,
and best-in-class engineering processes that support high-
reliability health data monitoring, with an emphasis on
commercial aircraft engine applications. Drawing from
Belcan Engineering’s experience, we highlight key process
improvements and practices that enable scalable and
maintainable solutions. Additionally, we discuss how early
integration of health management capabilities into the
development cycle enhances product value and reduces
lifecycle costs. The insights presented are based on real-
world implementations and are intended to guide
practitioners seeking to design and operate resilient, high-
availability monitoring systems.

1. INTRODUCTION

In today’s world, where data-driven decision-making is
essential to ensuring safety, efficiency, and competitiveness
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of the aerospace and other regulated industries, Product Data
Monitoring Systems (PDMS) have emerged as a critical
capability. These systems are designed to continuously
collect, process, and analyze data from complex engineered
assets—such as aircraft engines, avionics systems, and
mechanical subsystems—to assess health, predict failures,
and enable proactive maintenance.

PDMS play a pivotal role in ensuring operational readiness,
fleet availability, and safety compliance across the aerospace
lifecycle—from development through sustainment. Their
success directly affects mission assurance, maintenance
planning, and ultimately, customer satisfaction. Given this
criticality, the availability and reliability of these systems
themselves become non-negotiable. A monitoring system
that is offline or degraded undermines the very insights it is
built to deliver. It is important to distinguish between high
availability and fault tolerance. High Availability focuses on
minimizing downtime, using strategies like rapid fault
detection, automated restarts, and quick incident resolution.
A key metric here is Mean Time to Recovery (MTTR). Fault
Tolerance, in contrast, aims for zero downtime by enabling
systems to operate through component failures without user-
visible impact. Depending on the criticality of the service tier
(e.g., real-time alerts vs. batch reporting), systems may adopt
high availability or full fault tolerance designs accordingly.

PDMS availability is defined as the proportion of time a
system is in a functioning condition and ready for use,
typically expressed as a percentage of total operational time.
Availability can be expressed as

Availability (%) = ——2% __ 100 (1)

Uptime+Downtime

The term “Three Nines” refers to a system uptime of 99.9%,
a widely recognized benchmark for high availability in
critical infrastructure. While seemingly modest, this level of
reliability translates to no more than 8.76 hours of downtime
per year, or just over 10 minutes per week. In the context of
Product Data Monitoring Systems (PDMS) for aerospace
applications—where  the consequences of  system
unavailability include missed fault detection, disrupted
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maintenance planning, and increased operational risk—
achieving this benchmark is both technically challenging and
mission-critical.

This paper explores the journey toward achieving “Three
Nines” for PDMS in the aerospace industry, grounded in
lessons learned from previous implementation iterations.
Through retrospective analysis, we examine the architectural,
operational, and organizational changes that contributed to
availability improvements across system generations. These
insights are particularly timely as OEMs and operators
increasingly look to scale predictive maintenance, comply
with regulatory demands, and unlock value through fleet-
wide data integration.

Furthermore, we position this work within a broader cross-
industry conversation. Other safety-critical domains—such
as automotive, healthcare devices, and industrial
automation—face similar challenges in achieving resilient,
always-on health monitoring. However, the unique
operational constraints of aerospace systems, including
power loss, intermittent connectivity, extreme environmental
conditions, and rigorous certification requirements, amplify
the complexity.

The aerospace ecosystem is increasingly reliant on real-time
product data monitoring systems to support predictive
maintenance, operational decision-making, and regulatory
compliance. These systems require seamless integration
across stakeholders—flight operators, OEMSs, and suppliers.
However, suppliers, who are responsible for providing
component-level data and/or engineering services, often face
structural and operational limitations that challenge their
ability to meet the stringent availability requirements
demanded by the industry. While flight operators and OEMs
often have the infrastructure and resources to meet the
benchmark of 99.9% availability, suppliers operate under a
distinct set of constraints that challenge their ability to
contribute effectively towards achieving “Three Nines”.

Suppliers are frequently constrained by factors outside their
control, including limited access to advanced infrastructure,
legacy system dependencies and resources with legacy
knowledge. The diversity of platforms and data formats used
by operators and OEMSs create significant barriers to
integration and interoperability. A significant number of
stakeholders continue to rely on legacy systems that lack
modern APIs, telemetry capabilities, and scalability. These
systems are costly to maintain, difficult to integrate, and
prone to failure, making them ill-suited for high-availability
environments.

Operating under some of the above-mentioned constraints,
reviewing previous iteration results and tracing the evolution
of monitoring system performance, this paper aims to provide
both a technical blueprint and a strategic framework for
aerospace organizations pursuing Three Nines availability.
Ultimately, this pursuit is not just about system uptime—it's

about ensuring that critical health insights are always
available when and where they are needed, supporting safe
and sustainable aerospace operations.

2. LITERATURE REVIEW

The pursuit of high availability in monitoring systems has
been extensively studied across domains such as cloud

computing, telecommunications, and mission-critical
embedded systems. However, literature specifically
addressing 99.9% uptime targets for Product Data

Monitoring Systems (PDMS) in the aerospace sector remains
sparse and fragmented. This section reviews key
contributions from adjacent disciplines, industry standards,
and recent aerospace-focused publications to frame the
context for this study.

2.1. High-Availability Systems in Industry Contexts

In the broader reliability engineering literature, availability is
defined as the proportion of time a system is functional and
accessible, typically expressed as a percentage. The concept
of “nines of availability” (e.g., 99.9%, 99.99%) is well
established in cloud and IT infrastructure domains (Weber et
al., 2010; Beyer et al., 2016), where fault-tolerant design
patterns, horizontal scaling, and automated recovery
workflows are extensively applied.

In contrast, cyber-physical systems like aircraft PDMS
operate under unique constraints - including hardware
redundancy limitations, strict certification requirements, and
limited network access - requiring customized high-
availability strategies (Koopman, 2003). These differences
render direct application of cloud-native practices
insufficient without adaptation.

2.2. Aerospace-Specific Monitoring System Challenges

Research from government agencies and aerospace OEMs
underscores the increasing reliance on onboard health
monitoring systems for operational decision-making,
including engine health management (EHM), structural
health monitoring (SHM), and condition-based maintenance
(CBM) (FAA AC 43-216, 2017; Seshadri and
Krishnamurthy, 2017; Roy et al., 2017). Several studies
highlight challenges related to data fidelity, system
integration, and real-time telemetry, which directly affect
monitoring system availability (Li et al., 2020).

Moreover, the reliability of the monitoring system itself has
emerged as a risk factor. Research by Saxena et al., (2008)
emphasizes that unavailability of PHM capabilities can lead
to missed failure precursors, maintenance delays, and
reduced fleet readiness. However, few published works
quantify system-level availability or tie reliability metrics to
architectural evolution.
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Figure 1. Product Data Monitoring Systems Data Flow

2.3. Availability Metrics and Modeling Techniques

Literature from the dependability and safety engineering
community provides a robust foundation for modeling
system availability. Key techniques include Markov models,
fault tree analysis, and reliability block diagrams, which are
commonly used in Failure Modes, Effects and Criticality
Analysis (FMECA) and reliability-centered maintenance
(RCM) frameworks (IEC 61025, MIL-STD-1629A). While
these methods are applied to aerospace subsystems, they are
not always extended to the monitoring systems themselves.

Recent trends in Prognostics and Health Management (PHM)
research, particularly within the PHM Society, explore
integration of machine learning for anomaly detection and
fault prediction (Vachtsevanos et al., 2006; Saha & Goebel,
2009). However, these works often emphasize prediction
accuracy over infrastructure reliability—highlighting agap in
addressing end-to-end system uptime.

2.4. Standards and Guidelines

Regulatory guidance such as RTCA DO-178C, SAE
ARP4754A, and RTCA DO-326A inform the development
of safety-critical software and cybersecurity for onboard
systems but provide limited specificity regarding real-time
system availability or PDMS-specific uptime metrics.
Emerging standards in PHM—such as FAA AC 43-218,
2022; IEEE 1856; and 1SO 13374—begin to address data
management and diagnostics, yet do not enforce availability
thresholds.

Additionally, SRE (Site Reliability Engineering) practices
from the software industry offer process-centric tools such as
Service Level Indicators (SLIs) and Objectives (SLOSs),
which can be adapted to aerospace telemetry and ground
station reliability (Beyer et al., 2016). Still, there is limited

published work on tailoring these frameworks to regulated
aerospace environments.

3.5 Gaps Identified
The current body of literature reveals the following gaps:

e  Alack of quantitative benchmarks for availability in
deployed aerospace monitoring systems.

e Insufficient cross-domain synthesis of software
reliability, systems engineering, and PDMS
infrastructure.

e Few case studies tracing iteration-to-iteration
improvements in real-world monitoring system
uptime.

e Limited understanding of how availability targets
affect downstream activities such as maintenance
planning, compliance reporting, or operational
decision-making.

This paper seeks to address a subset of the above gaps by
presenting a structured analysis of iteration results from
aerospace PDMS deployments, identifying the operational
and organizational levers that contributed to achieving or
approaching “Three Nines” availability.

3. PDMS SYSTEMS DATA FLOW

Figure 1 illustrates an end-to-end architecture of a Product
Data Monitoring System tailored for aerospace applications.
It captures the flow of data from collection at the source—
whether aircraft, ground systems, or maintenance facilities—
through various stages of storage and processing, culminating
in curated visualization layers accessible to both internal
users and external customers. This structured pipeline
ensures traceability, security, quality, and actionable insight
delivery aligned with operational needs.
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The PDM system is designed to collect, preprocess, store,
process, and visualize data from aircraft systems and other
external sources. The design is mandated through a set of
functional and non-functional requirements. The goal is to
generate Key Performance Indicators (KPIs) that help
stakeholders monitor and predict the health and performance
of the product.

The overall system of interest, for which achieving “Three
Nines” is discussed in this paper, is shown with a boundary
in Figure 1.

Data Collection and Ingestion

PDMS begins at the edge with data collection from various
sources such as onboard data acquisition units, maintenance
logs, and operator reports. This raw data is ingested through
a preprocessing pipeline that includes unpacking, decoding,
decryption, concatenation, and quality assurance. The goal of
this phase is to ensure that the ingested data maintains
structural integrity and is ready for further analysis.
Furthermore, it is important for the reader to recognize that
the above preprocessing steps could be an integral function
or could be modular with a sequential set of operations.
Moreover, to achieve optimal operational efficiencies, one or
more of the modular units could spill over into the
downstream processing section.

Raw Data Storage and Processing

Following ingestion, the data is stored in local or cloud-based
data storage such as Azure, Oracle, or on-premises solutions.
The raw processing stage applies data normalization,
statistical characterization, and analytical pre-processing to
enhance the fidelity of the data and prepare it for deeper
insights. This stage is often executed using scripting
environments (e.g., Python) and ensures the datasets are both
structured and semantically enriched.

Curated Data Storage and Processing

Processed data is curated in a secure, governed storage layer
- typically implemented via cloud-native data warehouses or
federated databases (e.g., Amazon Redshift, Azure Synapse).
In this phase, algorithmic processing plays a central role.
Trend detection, anomaly detection, and predictive
algorithms (including machine learning and statistical
models) are applied to transform data into meaningful
diagnostic and prognostic metrics.

Visualization and Role-Based Access

The final stage involves visualization of Key Performance
Indicators (KPIs), Service Level Agreement (SLA) metrics,
alerts, and predictive insights tailored to user roles. Data is
rendered into dashboards, charts, and reports accessible
through secure, role-based access control (RBAC). Users
(e.g., engineering teams) and customers (e.g., airlines) are
granted access based on authorization policies to ensure data
confidentiality and relevance.

To summarize, in aerospace PDMS, the design of the data
flow architecture is a decisive factor in achieving both high
availability and operational effectiveness. While the stages of
data ingestion, storage, processing, and access control are
common across industries, their implementation in the
aerospace context demands heightened rigor due to strict
performance, safety, and regulatory requirements.

A key architectural shift enabling greater availability and
resilience is the decoupling of the storage and processing
layers. By separating these concerns, PDMS can ensure that
data ingestion, availability, persistence / durability,
replication, disaster recovery and scalability are independent
from downstream  computational ~ workloads.  This
architectural pattern supports data durability, allowing raw
and pre-processed health data to be securely stored and later
reprocessed without loss or degradation - critical in scenarios
involving delayed connectivity or re-analysis for compliance.

The storage layer must prioritize redundancy, replication, and
consistency to preserve data integrity under all operating
conditions. In contrast, the processing layer must deliver
scalable, real-time analytics and anomaly detection while
tolerating component failures. This separation enhances fault
isolation and allows independent scaling, maintenance, or
recovery of each layer without jeopardizing overall system
uptime.

Furthermore, features such as role-based access control,
auditability, and secure transmission protocols are now
standard expectations, aligning aerospace systems with best
practices from adjacent industries like finance and healthcare.
However, aerospace applications must also contend with
intermittent connectivity, certifiability, and embedded
system constraints, which demand customized adaptations of
these practices.

In summary, designing PDMS data flows for aerospace
requires not only adherence to cross-industry architectural
principles but also intentional enhancements that account for
mission-critical reliability and system-level availability
goals. A well-architected, decoupled data flow with durable
storage and resilient processing is essential for supporting the
high bar set by the “Three Nines” availability target.

4. REAL-TIME MONITORING & ALERTING SYSTEMS

Real-time monitoring and alerting systems are foundational
to achieving high availability and reliability targets, such as
the "three nines" (99.9% uptime), in any software
architecture. These auxiliary systems enable continuous
oversight of critical metrics, detect anomalies as they occur,
and trigger immediate responses to potential failures.

By minimizing detection and response latency, real-time
monitoring not only reduces the mean time to recovery
(MTTR) but also ensures that service-level agreements
(SLAs) are met consistently.
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4.1. Logging

The bedrock for effective monitoring and alerting solutions
is system wide logging of key metrics and data flow through
a system. The simplest logs often take the form of
timestamped printouts in a text file. This can serve well for
root cause analysis and post-incident reviews but is not
purpose-built for real time monitoring and alerting.

Purpose-built solutions include:

1. Document-Oriented NoSQL Databases such as
OpenSearch and MongoDB. Documents enable
scalable monitoring and querying on predefined
fields.

2. Timeseries databases, such as Prometheus, enable
tracking trends over time. This is crucial for
detecting and resolving anomalies prior to system
outages.

3. Managed solutions such as AWS CloudWatch,
Azure Monitor, and Google Cloud Logging for
cloud-based infrastructures. These solutions support
real-time log streaming, metric extraction, alerting,
and role-based access control.

4.2. Alerting Systems

Once key metrics are captured through structured logging,
alerting solutions must be considered to mitigate issues in real
time. Comprehensive logging solutions such as AWS
CloudWatch will often have alerting capabilities built right
in. Other tools such as OpenSearch provide easy-to-use APIs
to support custom solutions.

For data ingestion and processing systems such as PDMS,
there are three key alert types:

1. Threshold exceedance: Triggered when a
predefined metric (i.e., CPU utilization, memory
consumption, error rate, latency, queue size) crosses
a critical limit. These alerts provide a
straightforward way to detect system failure and are
especially useful for catching immediate, high-
impact issues.

2. Ingestion / processing / delivery gaps: These alerts
ensure consistent throughput between each
component of a larger PDM system. For enterprise
scale systems, empty queues often translate to
upstream system failures and should be monitored
to detect component failure.

3. Time-series trend changes: Used to detect anomalies
prior to full scale system outages. These types of
alerts can involve more complex statistical models
or simple heuristics such as a queue which does not
decrease over a given period.

4.3. Visualization

Visualization plays a vital role, transforming raw metrics,
logs, and events into intuitive, real-time insights. These
visualizations help teams to quickly identify patterns,
anomalies, or performance regressions across complex
systems. Time-series graphs, heatmaps, and correlation
views, along with well-established baselines, allow analysts
to contextualize alerts, trace failures, and identify degraded
system states. Common visualization tools include Grafana
for time-series data with built in alerting tools, OpenSearch
for tables, dashboards, and heat-map visualizations on
document records, and AWS QuickSight for easy insights
into cloud hosted data stores.

4.4. Operational Support

Logging, visualization, and alerting strategies quickly fall
apart without equally reliable operational support to action
identified issues. The so called “Three Nines” (99.9%)
system availability necessitates a 24 / 7 on call support team
to ensure a minimized mean time to recovery (MTTR). Given
that alerts can (and will) go off at all hours of the day, it is
critical to have rock solid work instructions for the support
team. Standard operating procedures with a well-reviewed
decision tree and clear escalation points are key to success.

5. OPERATIONAL STRATEGIES TO SUPPORT THREE NINES

In aerospace Prognostics and Health Management (PHM)
systems, ensuring high availability is critical for mission
assurance, safety, and operational efficiency. Achieving
"Three Nines" availability, or 99.9% uptime, requires a
combination of robust architectural design, disciplined
operational practices, and proactive fault mitigation
strategies. This section outlines the core operational
strategies used to support high availability in PHM
environments, emphasizing data delivery assurance,
infrastructure redundancy, automated recovery, software
reliability, and scalable cloud migration approaches. By
integrating these elements, organizations can build resilient
systems capable of maintaining continuous service, even in
the face of component failures or evolving system demands.

5.1. Operational Excellence and Data Delivery
Assurance

A cornerstone of operational excellence is the systematic
tracking of data delivery performance. Monthly reporting of
ingested versus delivered data provides visibility into
pipeline health, allowing stakeholders to monitor
discrepancies between raw binary data inputs and their
transformed outputs (e.g., CSV, JSON, Parquet formats).
Metadata tracking enables accountability at each processing
step and intermediate monitoring for system degradation /
outages.
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To support high availability, automated reprocessing
mechanisms are triggered upon failure, reducing human
intervention and recovery time. System uptime metrics are
correlated with data delivery thresholds to ensure timely and
complete transmission of processed data. Supporting this
process are instance health checks, which can be either
custom-developed or based on native platform tools (e.g.,
AWS EC2 health checks). Faulty virtual machines (VMs) or
containers are automatically terminated and replaced through
orchestration services (i.e., Kubernetes, Podman, Docker
Swarm), further ensuring service continuity. Dedicated
monitoring solutions such as Grafana, AWS CloudWatch, or
internally developed dashboards provide real-time insight
into system health. With well-defined alerting criteria and a
24/7 support rotation, teams are positioned to respond to
critical alerts within 15 minutes or less, meeting stringent
recovery expectations.

5.2. Software Testing and Release Assurance

Availability goals are also supported through rigorous
software testing practices. Standards, such as RTCA DO-
178C, Level 1A provide detailed guidance for achieving
reliable software deployments. This includes unit,
integration, and system testing to validate individual
components and their interactions. Regression testing to
ensure new updates don’t reintroduce old bugs. Functional
and non-functional testing—particularly performance,
reliability, and failover scenarios—are essential to validate
system behavior under real-world conditions. Organizations
must weigh the benefits of solid testing against the risks
related to the loss of service to determine the appropriate
verification approach.

Additionally, User Acceptance Testing (UAT) plays a critical
role by involving actual end users in validating that the
system meets operational requirements before deployment,
catching issues that automated testing may overlook. Testing
can thus be categorized across multiple layers, including
Unit, Integration, System, Regression, Performance,
Security, and UAT, each addressing different risk domains.

By embedding these comprehensive testing methodologies
into  Continuous Integration/Continuous  Deployment
(CI/CD) pipelines, PDMS can confidently deliver new
features and updates without compromising uptime. This
proactive defect detection and resolution process
significantly decreases production issues, minimizing
outages and system downtime. Consequently, rigorous and
layered testing directly supports achieving and sustaining
high availability targets, such as the Three Nines (99.9%)
uptime, critical for mission-critical aerospace operations.

6. CASE STUDIES AND LESSONS

Two case studies illustrate the transformative impact of
advanced PDMS in data acquisition system monitoring.
These case studies highlight how automation, data analytics,
and cloud integration can significantly enhance system
availability, reduce operational costs, and improve decision-
making.

Case Study 1: Modernizing Data Acquisition Monitoring
through Automation and System Integration.

An established manufacturer partnered with Belcan to
modernize its legacy data acquisition and processing
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monitoring systems. The real-time and near real-time data
acquisition system is represented in Figure 2. While the initial
scope centered on verification and validation (V&V) tasks,
the engagement quickly evolved into a comprehensive effort
encompassing software development, data analysis, and
operational support. This transition was driven by growing
challenges associated with cross-domain integration and
increasing demands for system availability and
responsiveness.

Belcan team faced a variety of complex challenges, including
the need to integrate embedded software with hardware
systems, web applications, and cloud-based services.
Frequent system outages and recurring software issues
caused unacceptable levels of downtime, threatening
contractual service-level agreements. Addressing these
challenges required a multi-disciplinary team capable of
bridging gaps across system design, analytics, operations,
and training.

The system integrity check workflow, as illustrated in Figure
3, involves ten sequential steps—from checking operator file
transfer folders to finalizing deliverables and submitting
results. Each step, while essential, was manually executed
and consumes valuable time measured in minutes per task.
This manual approach not only was limited in frequency and
flexibility, but introduced inefficiencies, risks of human
error, and delays in downstream processes.

To resolve these issues, Belcan developed and deployed 24/7
automated system monitoring tools that provided real-time
alerts and operational visibility. In parallel, the team
implemented automated regression testing to catch defects
earlier in the software development lifecycle. These solutions
significantly reduced manual intervention and system
downtime while improving system stability. As a result, the
client was able to significantly reduce response time (and
therefore MTTR) and redirect valuable engineering resources
to higher-impact tasks.

The financial benefits of these improvements were
substantial. Broader system design and validation
improvements delivered millions of dollars in cumulative
cost avoidance and savings, while automation of system
integrity check workflow alone reduced engineering hours by
more than 90%. In total, the program achieved approximately
49% overall savings, highlighting the long-term value of
integrated monitoring and automation in modern product data
monitoring systems.

Case Study 2: Achieving and Sustaining 99.9% System
Auvailability.

Building on the success achieved in case study 1, the team
shifted its focus to a new and ambitious performance target:
achieving 99.9% system availability on a rolling three-month
average. This goal translates to a stringent constraint of no
more than 44 minutes of system downtime per month, a major
leap from the prior benchmark of 99.5% availability
(approximately 219 minutes of downtime).

This effort centered on enhancing the reliability of data
ingestion, processing, and delivery - particularly the
operational reports generated by sourcing systems. These
data streams, which include both snapshot telemetry and
event data, must be ingested, processed, and distributed
without disruption.

To meet these demands, the team developed a suite of
Python-based monitoring tools that leveraged Selenium
WebDriver for web interface testing and SQL for database
validation. These tools provided deep visibility into system
health and enabled rapid identification of system
degradations and outages. In tandem, the team established a
24/7 operations center, integrating human oversight with
automated monitoring to provide operational redundancy.
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The results were immediate and measurable. Figure 4 shows
the 3-month rolling average of the overall system availability.

The availability of the system shows a clear trend of
improvement over time, reaching levels at or near 100%
towards the end. This was primarily due to the automated
tools as well as optimizing and maturing them over time.
Early in the period, system outages, software releases, etc.,
would cause extended downtime impacting the availability
metrics. In the later period, incorporating the lessons learned,
the team was able to fully customize the tools to adjust
frequency, variables and system components to minimize
MTTR and maintain availability levels at or near 100%
despite sharp declines.

These case studies underscore the critical role of automation,
cloud integration, and cross-functional collaboration in
achieving high system availability in PDMS environments.
The transition from manual to automated monitoring not only
improved reliability but also delivered substantial cost
savings and operational efficiency. These outcomes serve as
a benchmark for future PDMS implementations across the
aerospace industry.

7. CONCLUSION

Achieving 99.9% availability in Product Data Monitoring
Systems (PDMS) represents a significant engineering,
operational, and organizational milestone for the aerospace
industry. As monitoring systems continue to evolve from
passive data loggers to critical infrastructure that reinforces
safety, availability, and predictive maintenance, the demand
for reliable, always-on performance has never been higher.

This paper has explored the “Three Nines” availability goal
through the lens of previous system iterations, tracing how
process refinements, and operational maturity have
incrementally advanced system uptime. These iterations
reveal that availability is not achieved through one-time
design choices, but through a sustained, system-level strategy
that includes redundancy, automation, observability, and
intelligent fault management.

Importantly, this study reinforces that availability must be
defined in functional terms, not just as uptime percentages. A
system can only be considered "available" when it can
reliably capture, transmit, process, and deliver health insights
that inform safety-critical decisions in real time. This layered
understanding of availability is essential as PDMS become
deeply integrated with digital twins, automated maintenance,
and data-driven airworthiness frameworks.

Looking ahead, continued progress toward and beyond Three
Nines will require:

e Rigorous iteration cycles informed by real-world
usage and failure data.

e Cross-disciplinary collaboration across software,
systems, reliability, and safety engineering teams.

e Investments in AI/ML, edge computing, and
autonomous health assessment to further reduce
dependency on centralized systems.

e Standards evolution to reflect functional availability
expectations within safety-critical certification
regimes.
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In closing, the pursuit of Three Nines is not simply about
minimizing downtime—it is about maximizing trust in the
systems that monitor and maintain the health of complex
aerospace assets. By embedding availability as a core design
and operational requirement, aerospace organizations can
ensure that their PDMS are ready to meet the growing
demands of a connected, data-driven aviation future.
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NOMENCLATURE

AI/ML  Atrtificial Intelligence / Machine Learning

CBM  Condition-Based Maintenance

CI/CD Continuous Integration and Continuous Delivery
EHM  Engine Health Management

FMECA Failure Modes, Effects and Criticality Analysis
KPI Key Performance Indicator

MTTR Mean Time to Recovery

OEM  Original Equipment Manufacturer
PDMS Product Data Monitoring Systems
PHM  Prognostics and Health Management
RCM  Reliability-Centered Maintenance
SHM  Structural Health Management

SLA Service Level Agreement
SLI Service Level Indicator
SLO Service Level Objective
SRE Site Reliability Engineering
RBAC Role-Based Access Control
UAT  User Acceptance Testing
V&V  Verification and Validation
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