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ABSTRACT 

Effective data and health management are critical throughout 

the lifecycle of engineered systems. When implemented 

correctly, product health management tools and processes 

can help lower total product ownership costs, improve safety, 

maximize availability and utilization rates, thereby delivering 

value to system operators and maintainers. Central to 

achieving this capability is robust data management that 

includes data acquisition, secure transmission, efficient 

storage and timely processing. These steps ensure that health 

insights can be delivered to stakeholders in support of 

diagnostics, prognostics, and informed decision-making.  

In sectors such as aerospace, defense and power utilities, the 

demand for high availability - targeting 99.9% uptime or 

“three nines” – places stringent requirements on Product Data 

Monitoring Systems (PDMS). Hardware infrastructure, 

software, engineering processes, and procedures are an 

integral part of achieving this target. This paper presents a 

focused exploration of the software, automation strategies, 

and best-in-class engineering processes that support high-

reliability health data monitoring, with an emphasis on 

commercial aircraft engine applications. Drawing from 

Belcan Engineering’s experience, we highlight key process 

improvements and practices that enable scalable and 

maintainable solutions. Additionally, we discuss how early 

integration of health management capabilities into the 

development cycle enhances product value and reduces 

lifecycle costs. The insights presented are based on real-

world implementations and are intended to guide 

practitioners seeking to design and operate resilient, high-

availability monitoring systems. 

1. INTRODUCTION 

In today’s world, where data-driven decision-making is 

essential to ensuring safety, efficiency, and competitiveness 

of the aerospace and other regulated industries, Product Data 

Monitoring Systems (PDMS) have emerged as a critical 

capability. These systems are designed to continuously 

collect, process, and analyze data from complex engineered 

assets—such as aircraft engines, avionics systems, and 

mechanical subsystems—to assess health, predict failures, 

and enable proactive maintenance. 

PDMS play a pivotal role in ensuring operational readiness, 

fleet availability, and safety compliance across the aerospace 

lifecycle—from development through sustainment. Their 

success directly affects mission assurance, maintenance 

planning, and ultimately, customer satisfaction. Given this 

criticality, the availability and reliability of these systems 

themselves become non-negotiable. A monitoring system 

that is offline or degraded undermines the very insights it is 

built to deliver. It is important to distinguish between high 

availability and fault tolerance. High Availability focuses on 

minimizing downtime, using strategies like rapid fault 

detection, automated restarts, and quick incident resolution. 

A key metric here is Mean Time to Recovery (MTTR). Fault 

Tolerance, in contrast, aims for zero downtime by enabling 

systems to operate through component failures without user-

visible impact. Depending on the criticality of the service tier 

(e.g., real-time alerts vs. batch reporting), systems may adopt 

high availability or full fault tolerance designs accordingly. 

PDMS availability is defined as the proportion of time a 

system is in a functioning condition and ready for use, 

typically expressed as a percentage of total operational time. 

Availability can be expressed as  

 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒+𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
 x 100 (1) 

The term “Three Nines” refers to a system uptime of 99.9%, 

a widely recognized benchmark for high availability in 

critical infrastructure. While seemingly modest, this level of 

reliability translates to no more than 8.76 hours of downtime 

per year, or just over 10 minutes per week. In the context of 

Product Data Monitoring Systems (PDMS) for aerospace 

applications—where the consequences of system 

unavailability include missed fault detection, disrupted 
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maintenance planning, and increased operational risk—

achieving this benchmark is both technically challenging and 

mission-critical. 

This paper explores the journey toward achieving “Three 

Nines” for PDMS in the aerospace industry, grounded in 

lessons learned from previous implementation iterations. 

Through retrospective analysis, we examine the architectural, 

operational, and organizational changes that contributed to 

availability improvements across system generations. These 

insights are particularly timely as OEMs and operators 

increasingly look to scale predictive maintenance, comply 

with regulatory demands, and unlock value through fleet-

wide data integration. 

Furthermore, we position this work within a broader cross-

industry conversation. Other safety-critical domains—such 

as automotive, healthcare devices, and industrial 

automation—face similar challenges in achieving resilient, 

always-on health monitoring. However, the unique 

operational constraints of aerospace systems, including 

power loss, intermittent connectivity, extreme environmental 

conditions, and rigorous certification requirements, amplify 

the complexity. 

The aerospace ecosystem is increasingly reliant on real-time 

product data monitoring systems to support predictive 

maintenance, operational decision-making, and regulatory 

compliance. These systems require seamless integration 

across stakeholders—flight operators, OEMs, and suppliers. 

However, suppliers, who are responsible for providing 

component-level data and/or engineering services, often face 

structural and operational limitations that challenge their 

ability to meet the stringent availability requirements 

demanded by the industry. While flight operators and OEMs 

often have the infrastructure and resources to meet the 

benchmark of 99.9% availability, suppliers operate under a 

distinct set of constraints that challenge their ability to 

contribute effectively towards achieving “Three Nines”. 

Suppliers are frequently constrained by factors outside their 

control, including limited access to advanced infrastructure, 

legacy system dependencies and resources with legacy 

knowledge. The diversity of platforms and data formats used 

by operators and OEMs create significant barriers to 

integration and interoperability. A significant number of 

stakeholders continue to rely on legacy systems that lack 

modern APIs, telemetry capabilities, and scalability. These 

systems are costly to maintain, difficult to integrate, and 

prone to failure, making them ill-suited for high-availability 

environments. 

Operating under some of the above-mentioned constraints, 

reviewing previous iteration results and tracing the evolution 

of monitoring system performance, this paper aims to provide 

both a technical blueprint and a strategic framework for 

aerospace organizations pursuing Three Nines availability. 

Ultimately, this pursuit is not just about system uptime—it's 

about ensuring that critical health insights are always 

available when and where they are needed, supporting safe 

and sustainable aerospace operations. 

2. LITERATURE REVIEW 

The pursuit of high availability in monitoring systems has 

been extensively studied across domains such as cloud 

computing, telecommunications, and mission-critical 

embedded systems. However, literature specifically 

addressing 99.9% uptime targets for Product Data 

Monitoring Systems (PDMS) in the aerospace sector remains 

sparse and fragmented. This section reviews key 

contributions from adjacent disciplines, industry standards, 

and recent aerospace-focused publications to frame the 

context for this study. 

2.1. High-Availability Systems in Industry Contexts 

In the broader reliability engineering literature, availability is 

defined as the proportion of time a system is functional and 

accessible, typically expressed as a percentage. The concept 

of “nines of availability” (e.g., 99.9%, 99.99%) is well 

established in cloud and IT infrastructure domains (Weber et 

al., 2010; Beyer et al., 2016), where fault-tolerant design 

patterns, horizontal scaling, and automated recovery 

workflows are extensively applied. 

In contrast, cyber-physical systems like aircraft PDMS 

operate under unique constraints - including hardware 

redundancy limitations, strict certification requirements, and 

limited network access - requiring customized high-

availability strategies (Koopman, 2003). These differences 

render direct application of cloud-native practices 

insufficient without adaptation. 

2.2. Aerospace-Specific Monitoring System Challenges 

Research from government agencies and aerospace OEMs 

underscores the increasing reliance on onboard health 

monitoring systems for operational decision-making, 

including engine health management (EHM), structural 

health monitoring (SHM), and condition-based maintenance 

(CBM) (FAA AC 43-216, 2017; Seshadri and 

Krishnamurthy, 2017; Roy et al., 2017). Several studies 

highlight challenges related to data fidelity, system 

integration, and real-time telemetry, which directly affect 

monitoring system availability (Li et al., 2020). 

Moreover, the reliability of the monitoring system itself has 

emerged as a risk factor. Research by Saxena et al., (2008) 

emphasizes that unavailability of PHM capabilities can lead 

to missed failure precursors, maintenance delays, and 

reduced fleet readiness. However, few published works 

quantify system-level availability or tie reliability metrics to 

architectural evolution. 
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2.3. Availability Metrics and Modeling Techniques 

Literature from the dependability and safety engineering 

community provides a robust foundation for modeling 

system availability. Key techniques include Markov models, 

fault tree analysis, and reliability block diagrams, which are 

commonly used in Failure Modes, Effects and Criticality 

Analysis (FMECA) and reliability-centered maintenance 

(RCM) frameworks (IEC 61025, MIL-STD-1629A). While 

these methods are applied to aerospace subsystems, they are 

not always extended to the monitoring systems themselves. 

Recent trends in Prognostics and Health Management (PHM) 

research, particularly within the PHM Society, explore 

integration of machine learning for anomaly detection and 

fault prediction (Vachtsevanos et al., 2006; Saha & Goebel, 

2009). However, these works often emphasize prediction 

accuracy over infrastructure reliability—highlighting a gap in 

addressing end-to-end system uptime. 

2.4. Standards and Guidelines 

Regulatory guidance such as RTCA DO-178C, SAE 

ARP4754A, and RTCA DO-326A inform the development 

of safety-critical software and cybersecurity for onboard 

systems but provide limited specificity regarding real-time 

system availability or PDMS-specific uptime metrics. 

Emerging standards in PHM—such as FAA AC 43-218, 

2022; IEEE 1856; and ISO 13374—begin to address data 

management and diagnostics, yet do not enforce availability 

thresholds. 

Additionally, SRE (Site Reliability Engineering) practices 

from the software industry offer process-centric tools such as 

Service Level Indicators (SLIs) and Objectives (SLOs), 

which can be adapted to aerospace telemetry and ground 

station reliability (Beyer et al., 2016). Still, there is limited 

published work on tailoring these frameworks to regulated 

aerospace environments. 

3.5 Gaps Identified 

The current body of literature reveals the following gaps: 

• A lack of quantitative benchmarks for availability in 

deployed aerospace monitoring systems. 

• Insufficient cross-domain synthesis of software 

reliability, systems engineering, and PDMS 

infrastructure. 

• Few case studies tracing iteration-to-iteration 

improvements in real-world monitoring system 

uptime. 

• Limited understanding of how availability targets 

affect downstream activities such as maintenance 

planning, compliance reporting, or operational 

decision-making. 

This paper seeks to address a subset of the above gaps by 

presenting a structured analysis of iteration results from 

aerospace PDMS deployments, identifying the operational 

and organizational levers that contributed to achieving or 

approaching “Three Nines” availability. 

3. PDMS SYSTEMS DATA FLOW 

Figure 1 illustrates an end-to-end architecture of a Product 

Data Monitoring System tailored for aerospace applications. 

It captures the flow of data from collection at the source—

whether aircraft, ground systems, or maintenance facilities—

through various stages of storage and processing, culminating 

in curated visualization layers accessible to both internal 

users and external customers. This structured pipeline 

ensures traceability, security, quality, and actionable insight 

delivery aligned with operational needs. 

Figure 1. Product Data Monitoring Systems Data Flow 
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The PDM system is designed to collect, preprocess, store, 

process, and visualize data from aircraft systems and other 

external sources. The design is mandated through a set of 

functional and non-functional requirements. The goal is to 

generate Key Performance Indicators (KPIs) that help 

stakeholders monitor and predict the health and performance 

of the product. 

The overall system of interest, for which achieving “Three 

Nines” is discussed in this paper, is shown with a boundary 

in Figure 1. 

Data Collection and Ingestion 

PDMS begins at the edge with data collection from various 

sources such as onboard data acquisition units, maintenance 

logs, and operator reports. This raw data is ingested through 

a preprocessing pipeline that includes unpacking, decoding, 

decryption, concatenation, and quality assurance. The goal of 

this phase is to ensure that the ingested data maintains 

structural integrity and is ready for further analysis. 

Furthermore, it is important for the reader to recognize that 

the above preprocessing steps could be an integral function 

or could be modular with a sequential set of operations. 

Moreover, to achieve optimal operational efficiencies, one or 

more of the modular units could spill over into the 

downstream processing section. 

Raw Data Storage and Processing 

Following ingestion, the data is stored in local or cloud-based 

data storage such as Azure, Oracle, or on-premises solutions. 

The raw processing stage applies data normalization, 

statistical characterization, and analytical pre-processing to 

enhance the fidelity of the data and prepare it for deeper 

insights. This stage is often executed using scripting 

environments (e.g., Python) and ensures the datasets are both 

structured and semantically enriched. 

Curated Data Storage and Processing 

Processed data is curated in a secure, governed storage layer 

- typically implemented via cloud-native data warehouses or 

federated databases (e.g., Amazon Redshift, Azure Synapse). 

In this phase, algorithmic processing plays a central role. 

Trend detection, anomaly detection, and predictive 

algorithms (including machine learning and statistical 

models) are applied to transform data into meaningful 

diagnostic and prognostic metrics. 

Visualization and Role-Based Access 

The final stage involves visualization of Key Performance 

Indicators (KPIs), Service Level Agreement (SLA) metrics, 

alerts, and predictive insights tailored to user roles. Data is 

rendered into dashboards, charts, and reports accessible 

through secure, role-based access control (RBAC). Users 

(e.g., engineering teams) and customers (e.g., airlines) are 

granted access based on authorization policies to ensure data 

confidentiality and relevance. 

To summarize, in aerospace PDMS, the design of the data 

flow architecture is a decisive factor in achieving both high 

availability and operational effectiveness. While the stages of 

data ingestion, storage, processing, and access control are 

common across industries, their implementation in the 

aerospace context demands heightened rigor due to strict 

performance, safety, and regulatory requirements. 

A key architectural shift enabling greater availability and 

resilience is the decoupling of the storage and processing 

layers. By separating these concerns, PDMS can ensure that 

data ingestion, availability, persistence / durability, 

replication, disaster recovery and scalability are independent 

from downstream computational workloads. This 

architectural pattern supports data durability, allowing raw 

and pre-processed health data to be securely stored and later 

reprocessed without loss or degradation - critical in scenarios 

involving delayed connectivity or re-analysis for compliance. 

The storage layer must prioritize redundancy, replication, and 

consistency to preserve data integrity under all operating 

conditions. In contrast, the processing layer must deliver 

scalable, real-time analytics and anomaly detection while 

tolerating component failures. This separation enhances fault 

isolation and allows independent scaling, maintenance, or 

recovery of each layer without jeopardizing overall system 

uptime. 

Furthermore, features such as role-based access control, 

auditability, and secure transmission protocols are now 

standard expectations, aligning aerospace systems with best 

practices from adjacent industries like finance and healthcare. 

However, aerospace applications must also contend with 

intermittent connectivity, certifiability, and embedded 

system constraints, which demand customized adaptations of 

these practices. 

In summary, designing PDMS data flows for aerospace 

requires not only adherence to cross-industry architectural 

principles but also intentional enhancements that account for 

mission-critical reliability and system-level availability 

goals. A well-architected, decoupled data flow with durable 

storage and resilient processing is essential for supporting the 

high bar set by the “Three Nines” availability target.  

4. REAL-TIME MONITORING & ALERTING SYSTEMS 

Real-time monitoring and alerting systems are foundational 

to achieving high availability and reliability targets, such as 

the "three nines" (99.9% uptime), in any software 

architecture. These auxiliary systems enable continuous 

oversight of critical metrics, detect anomalies as they occur, 

and trigger immediate responses to potential failures.  

By minimizing detection and response latency, real-time 

monitoring not only reduces the mean time to recovery 

(MTTR) but also ensures that service-level agreements 

(SLAs) are met consistently. 
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4.1. Logging 

The bedrock for effective monitoring and alerting solutions 

is system wide logging of key metrics and data flow through 

a system. The simplest logs often take the form of 

timestamped printouts in a text file. This can serve well for 

root cause analysis and post-incident reviews but is not 

purpose-built for real time monitoring and alerting. 

Purpose-built solutions include: 

1. Document-Oriented NoSQL Databases such as 

OpenSearch and MongoDB. Documents enable 

scalable monitoring and querying on predefined 

fields. 

2. Timeseries databases, such as Prometheus, enable 

tracking trends over time. This is crucial for 

detecting and resolving anomalies prior to system 

outages. 

3. Managed solutions such as AWS CloudWatch, 

Azure Monitor, and Google Cloud Logging for 

cloud-based infrastructures. These solutions support 

real-time log streaming, metric extraction, alerting, 

and role-based access control. 

4.2. Alerting Systems 

Once key metrics are captured through structured logging, 

alerting solutions must be considered to mitigate issues in real 

time. Comprehensive logging solutions such as AWS 

CloudWatch will often have alerting capabilities built right 

in. Other tools such as OpenSearch provide easy-to-use APIs 

to support custom solutions. 

For data ingestion and processing systems such as PDMS, 

there are three key alert types: 

1. Threshold exceedance: Triggered when a 

predefined metric (i.e., CPU utilization, memory 

consumption, error rate, latency, queue size) crosses 

a critical limit. These alerts provide a 

straightforward way to detect system failure and are 

especially useful for catching immediate, high-

impact issues. 

2. Ingestion / processing / delivery gaps: These alerts 

ensure consistent throughput between each 

component of a larger PDM system. For enterprise 

scale systems, empty queues often translate to 

upstream system failures and should be monitored 

to detect component failure. 

3. Time-series trend changes: Used to detect anomalies 

prior to full scale system outages. These types of 

alerts can involve more complex statistical models 

or simple heuristics such as a queue which does not 

decrease over a given period. 

4.3. Visualization 

Visualization plays a vital role, transforming raw metrics, 

logs, and events into intuitive, real-time insights. These 

visualizations help teams to quickly identify patterns, 

anomalies, or performance regressions across complex 

systems. Time-series graphs, heatmaps, and correlation 

views, along with well-established baselines, allow analysts 

to contextualize alerts, trace failures, and identify degraded 

system states. Common visualization tools include Grafana 

for time-series data with built in alerting tools, OpenSearch 

for tables, dashboards, and heat-map visualizations on 

document records, and AWS QuickSight for easy insights 

into cloud hosted data stores. 

4.4. Operational Support 

Logging, visualization, and alerting strategies quickly fall 

apart without equally reliable operational support to action 

identified issues. The so called “Three Nines” (99.9%) 

system availability necessitates a 24 / 7 on call support team 

to ensure a minimized mean time to recovery (MTTR). Given 

that alerts can (and will) go off at all hours of the day, it is 

critical to have rock solid work instructions for the support 

team. Standard operating procedures with a well-reviewed 

decision tree and clear escalation points are key to success.  

5. OPERATIONAL STRATEGIES TO SUPPORT THREE NINES 

In aerospace Prognostics and Health Management (PHM) 

systems, ensuring high availability is critical for mission 

assurance, safety, and operational efficiency. Achieving 

"Three Nines" availability, or 99.9% uptime, requires a 

combination of robust architectural design, disciplined 

operational practices, and proactive fault mitigation 

strategies. This section outlines the core operational 

strategies used to support high availability in PHM 

environments, emphasizing data delivery assurance, 

infrastructure redundancy, automated recovery, software 

reliability, and scalable cloud migration approaches. By 

integrating these elements, organizations can build resilient 

systems capable of maintaining continuous service, even in 

the face of component failures or evolving system demands. 

5.1. Operational Excellence and Data Delivery 

Assurance 

A cornerstone of operational excellence is the systematic 

tracking of data delivery performance. Monthly reporting of 

ingested versus delivered data provides visibility into 

pipeline health, allowing stakeholders to monitor 

discrepancies between raw binary data inputs and their 

transformed outputs (e.g., CSV, JSON, Parquet formats). 

Metadata tracking enables accountability at each processing 

step and intermediate monitoring for system degradation / 

outages. 
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To support high availability, automated reprocessing 

mechanisms are triggered upon failure, reducing human 

intervention and recovery time. System uptime metrics are 

correlated with data delivery thresholds to ensure timely and 

complete transmission of processed data. Supporting this 

process are instance health checks, which can be either 

custom-developed or based on native platform tools (e.g., 

AWS EC2 health checks). Faulty virtual machines (VMs) or 

containers are automatically terminated and replaced through 

orchestration services (i.e., Kubernetes, Podman, Docker 

Swarm), further ensuring service continuity. Dedicated 

monitoring solutions such as Grafana, AWS CloudWatch, or 

internally developed dashboards provide real-time insight 

into system health. With well-defined alerting criteria and a 

24/7 support rotation, teams are positioned to respond to 

critical alerts within 15 minutes or less, meeting stringent 

recovery expectations. 

5.2. Software Testing and Release Assurance 

Availability goals are also supported through rigorous 

software testing practices. Standards, such as RTCA DO-

178C, Level 1A provide detailed guidance for achieving 

reliable software deployments. This includes unit, 

integration, and system testing to validate individual 

components and their interactions. Regression testing to 

ensure new updates don’t reintroduce old bugs. Functional 

and non-functional testing—particularly performance, 

reliability, and failover scenarios—are essential to validate 

system behavior under real-world conditions. Organizations 

must weigh the benefits of solid testing against the risks 

related to the loss of service to determine the appropriate 

verification approach.  

 

Additionally, User Acceptance Testing (UAT) plays a critical 

role by involving actual end users in validating that the 

system meets operational requirements before deployment, 

catching issues that automated testing may overlook. Testing 

can thus be categorized across multiple layers, including 

Unit, Integration, System, Regression, Performance, 

Security, and UAT, each addressing different risk domains. 

 

By embedding these comprehensive testing methodologies 

into Continuous Integration/Continuous Deployment 

(CI/CD) pipelines, PDMS can confidently deliver new 

features and updates without compromising uptime. This 

proactive defect detection and resolution process 

significantly decreases production issues, minimizing 

outages and system downtime. Consequently, rigorous and 

layered testing directly supports achieving and sustaining 

high availability targets, such as the Three Nines (99.9%) 

uptime, critical for mission-critical aerospace operations. 

6. CASE STUDIES AND LESSONS 

Two case studies illustrate the transformative impact of 

advanced PDMS in data acquisition system monitoring. 

These case studies highlight how automation, data analytics, 

and cloud integration can significantly enhance system 

availability, reduce operational costs, and improve decision-

making. 

Case Study 1: Modernizing Data Acquisition Monitoring 

through Automation and System Integration. 

An established manufacturer partnered with Belcan to 

modernize its legacy data acquisition and processing 

 

Figure 2. Real-Time & Near Real-Time Data Acquisition 
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monitoring systems. The real-time and near real-time data 

acquisition system is represented in Figure 2. While the initial 

scope centered on verification and validation (V&V) tasks, 

the engagement quickly evolved into a comprehensive effort 

encompassing software development, data analysis, and 

operational support. This transition was driven by growing 

challenges associated with cross-domain integration and 

increasing demands for system availability and 

responsiveness. 

Belcan team faced a variety of complex challenges, including 

the need to integrate embedded software with hardware 

systems, web applications, and cloud-based services. 

Frequent system outages and recurring software issues 

caused unacceptable levels of downtime, threatening 

contractual service-level agreements. Addressing these 

challenges required a multi-disciplinary team capable of 

bridging gaps across system design, analytics, operations, 

and training. 

The system integrity check workflow, as illustrated in Figure 

3, involves ten sequential steps—from checking operator file 

transfer folders to finalizing deliverables and submitting 

results. Each step, while essential, was manually executed 

and consumes valuable time measured in minutes per task. 

This manual approach not only was limited in frequency and 

flexibility, but introduced inefficiencies, risks of human 

error, and delays in downstream processes.  

To resolve these issues, Belcan developed and deployed 24/7 

automated system monitoring tools that provided real-time 

alerts and operational visibility. In parallel, the team 

implemented automated regression testing to catch defects 

earlier in the software development lifecycle. These solutions 

significantly reduced manual intervention and system 

downtime while improving system stability. As a result, the 

client was able to significantly reduce response time (and 

therefore MTTR) and redirect valuable engineering resources 

to higher-impact tasks. 

The financial benefits of these improvements were 

substantial. Broader system design and validation 

improvements delivered millions of dollars in cumulative 

cost avoidance and savings, while automation of system 

integrity check workflow alone reduced engineering hours by 

more than 90%. In total, the program achieved approximately 

49% overall savings, highlighting the long-term value of 

integrated monitoring and automation in modern product data 

monitoring systems. 

Case Study 2: Achieving and Sustaining 99.9% System 

Availability. 

Building on the success achieved in case study 1, the team 

shifted its focus to a new and ambitious performance target: 

achieving 99.9% system availability on a rolling three-month 

average. This goal translates to a stringent constraint of no 

more than 44 minutes of system downtime per month, a major 

leap from the prior benchmark of 99.5% availability 

(approximately 219 minutes of downtime). 

This effort centered on enhancing the reliability of data 

ingestion, processing, and delivery - particularly the 

operational reports generated by sourcing systems. These 

data streams, which include both snapshot telemetry and 

event data, must be ingested, processed, and distributed 

without disruption. 

To meet these demands, the team developed a suite of 

Python-based monitoring tools that leveraged Selenium 

WebDriver for web interface testing and SQL for database 

validation. These tools provided deep visibility into system 

health and enabled rapid identification of system 

degradations and outages. In tandem, the team established a 

24/7 operations center, integrating human oversight with 

automated monitoring to provide operational redundancy. 

Figure 3. System Integrity Check Workflow 
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The results were immediate and measurable. Figure 4 shows 

the 3-month rolling average of the overall system availability.  

The availability of the system shows a clear trend of 

improvement over time, reaching levels at or near 100% 

towards the end. This was primarily due to the automated 

tools as well as optimizing and maturing them over time. 

Early in the period, system outages, software releases, etc., 

would cause extended downtime impacting the availability 

metrics. In the later period, incorporating the lessons learned, 

the team was able to fully customize the tools to adjust 

frequency, variables and system components to minimize 

MTTR and maintain availability levels at or near 100% 

despite sharp declines. 

These case studies underscore the critical role of automation, 

cloud integration, and cross-functional collaboration in 

achieving high system availability in PDMS environments. 

The transition from manual to automated monitoring not only 

improved reliability but also delivered substantial cost 

savings and operational efficiency. These outcomes serve as 

a benchmark for future PDMS implementations across the 

aerospace industry.  

7. CONCLUSION 

Achieving 99.9% availability in Product Data Monitoring 

Systems (PDMS) represents a significant engineering, 

operational, and organizational milestone for the aerospace 

industry. As monitoring systems continue to evolve from 

passive data loggers to critical infrastructure that reinforces 

safety, availability, and predictive maintenance, the demand 

for reliable, always-on performance has never been higher. 

This paper has explored the “Three Nines” availability goal 

through the lens of previous system iterations, tracing how 

process refinements, and operational maturity have 

incrementally advanced system uptime. These iterations 

reveal that availability is not achieved through one-time 

design choices, but through a sustained, system-level strategy 

that includes redundancy, automation, observability, and 

intelligent fault management. 

Importantly, this study reinforces that availability must be 

defined in functional terms, not just as uptime percentages. A 

system can only be considered "available" when it can 

reliably capture, transmit, process, and deliver health insights 

that inform safety-critical decisions in real time. This layered 

understanding of availability is essential as PDMS become 

deeply integrated with digital twins, automated maintenance, 

and data-driven airworthiness frameworks. 

Looking ahead, continued progress toward and beyond Three 

Nines will require: 

• Rigorous iteration cycles informed by real-world 

usage and failure data. 

• Cross-disciplinary collaboration across software, 

systems, reliability, and safety engineering teams. 

• Investments in AI/ML, edge computing, and 

autonomous health assessment to further reduce 

dependency on centralized systems. 

• Standards evolution to reflect functional availability 

expectations within safety-critical certification 

regimes. 

 

Figure 4. Overall System Availability Performance 
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In closing, the pursuit of Three Nines is not simply about 

minimizing downtime—it is about maximizing trust in the 

systems that monitor and maintain the health of complex 

aerospace assets. By embedding availability as a core design 

and operational requirement, aerospace organizations can 

ensure that their PDMS are ready to meet the growing 

demands of a connected, data-driven aviation future. 
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NOMENCLATURE 

AI/ML Artificial Intelligence / Machine Learning 

CBM Condition-Based Maintenance 

CI/CD Continuous Integration and Continuous Delivery 

EHM Engine Health Management 

FMECA Failure Modes, Effects and Criticality Analysis 

KPI Key Performance Indicator 

MTTR Mean Time to Recovery 

OEM Original Equipment Manufacturer 

PDMS Product Data Monitoring Systems 

PHM Prognostics and Health Management 

RCM Reliability-Centered Maintenance 

SHM Structural Health Management 

SLA Service Level Agreement 

SLI Service Level Indicator 

SLO Service Level Objective 

SRE Site Reliability Engineering 

RBAC Role-Based Access Control 

UAT User Acceptance Testing 

V&V Verification and Validation 
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