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ABSTRACT

This study presents a prognostic framework that integrates
Physics-Informed Neural Network (PINN) with uncertainty
quantification (UQ) techniques to enable probabilistic
prediction of the Remaining Useful Life (RUL) of rubber
components subjected to degradation. The framework
utilizes data acquired from thermal Highly Accelerated Life
Testing (HALT), replicating long-term material aging
behavior under elevated temperature conditions within a
shortened time frame. To address the high cost and time
consumption of HALT experiments, the proposed approach
aims to ensure accurate and reliable predictions even with
limited data availability. An empirical degradation model is
embedded within the PINN structure, enabling physically
consistent and data-efficient estimation of degradation model
parameters. The framework employs uncertainty
quantification techniques based on Bayesian inference, in
which data-driven approaches (e.g., Gaussian Process
modeling, Bayesian neural networks) and physics-based
methods (e.g., Markov chain Monte Carlo, particle filtering)
are separately applied to quantify variations arising from
material  properties, experimental conditions, and
measurement noise. These methods generate posterior
distributions from which failure time and probabilistic RUL
estimates are derived based on a predefined degradation
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threshold. Compared to deterministic optimization methods,
the proposed approach improves prediction robustness and
interpretability, offering a cost-effective and scalable
solution for prognostic modeling in engineering systems.

INTRODUCTION

Rubber materials gradually degrade over time, affecting
structural stability and performance (Wang et al., 2025).
Especially in high-reliability fields such as aerospace,
automotive, and industrial applications, degradation may lead
to unexpected failures and seriously affect system safety and
reliability (Brown, 2001). Therefore, remaining useful life
(RUL) prediction is essential for implementing maintenance
and obtaining the reliability of systems utilizing rubber
materials (Ma et al., 2023). In addition, industry trends are
increasing the need for shorter product development times,
and RUL prediction is becoming increasingly important to
address this issue.

Rubber degradation data used for RUL prediction is usually
obtained by highly accelerated life testing (HALT). This
method exposes materials to high-temperature conditions
over extended periods to simulate long-term degradation and
enable early lifetime prediction (Tayefi et al., 2023). Most
studies have utilized HALT to analyze the effects of various
environmental factors (e.g., stress, temperature, and
humidity) on the degradation rate. Based on HALT, several
approaches have been proposed to calibrate degradation
models or predict the system's lifetime (Woo et al., 2010).
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Previous research experimentally measured the degradation
of rubber specimens under various temperature conditions
and analyzed models for estimating degradation rates and
lifetime. Based on these results, an empirical degradation
model was constructed. And then, key factors parameterized
such as initial strength, transition point, and degradation rate,
which were subsequently used for lifetime prediction using
metaheuristic optimization algorithms (e.g., Genetic
Algorithms) (Kwon et al., 2007). However, the empirical
degradation model based on HALT did not consider
measurement noise, resulting in limitations in prediction
accuracy and uncertainty quantification.

To enhance the accuracy and reliability of the empirical
degradation model, it is essential to propose probabilistic
ranges using uncertainty quantification rather than single
predictions (Shi et al., 2025). Previous research has attempted
to address real-world uncertainty (e.g., material
heterogeneity, measurement error, variation in test
conditions) by quantifying uncertainty due to various noise
sources using a Bayesian framework. Bayesian-based
methods such as Gaussian processes (GP), Bayesian neural
networks (BNN), Markov chain Monte Carlo (MCMC), and
particle filters are used to generate posterior distributions and
support decision-making based on confidence intervals (Kim
et al., 2017).

This means preventing resource waste caused by overly
optimistic or conservative designs during the RUL
predictions and establishing a reliability-based maintenance
strategy. Accordingly, Bayesian-based methods that consider
inherent uncertainties are essential in RUL prediction
frameworks and require research expansion.

RUL prediction models primarily utilize data-driven
regression methods. However, these methods typically lack
physical consistency and rely on the quantity and quality of
data. For HALT, which requires costly and repetitive
experimental time, it is often difficult to obtain sufficient
data. Recent studies focused on integrating physical
knowledge into predictive models to address these limitations
(Nascimento et al., 2023). For this purpose, some methods
proposed integrating physical equations into the mean
function of Gaussian process regression (GPR) (Cross et al.,
2024), while others embed physical constraints directly into
the training process using physics-informed neural network
(PINN). Moreover, these frameworks have been extended to
Bayesian-PINN (B-PINN) (Linka et al., 2022). Physics-
informed methods can produce physically consistent
predictions despite a lack of data and have demonstrated
superior reliability compared to conventional regression
models.

In this study, a case study was conducted to predict the RUL
of the lifespan and dependability of rubber materials

employed in automotive suspension systems. An empirical
degradation model was applied to ensure physical feasibility,
and physics-informed GPR (Phi-GPR), MCMC and B-PINN
models were constructed and applied, considering
uncertainty factors that may occur in real-world conditions.
As aresult, the lifetime and reliability of rubber material were
analyzed for deterministic optimization methods, and each
Bayesian-based method and the applicability of a real-world
work site were evaluated by considering uncertainty factors.

1. DEGRADATION MODEL FOR RUBBER MATERIAL

Highly Accelerated Life Test for Rubber Material of
Bushing

Long-term gradual thermal aging tests at room temperature
are required to ensure rubber components' reliability in
automobile systems. Evaluating material degradation and
predicting product lifetime within short development periods
is difficult. Therefore, to reduce the time cost, HALT is
commonly employed. HALT exposes the product to extreme
conditions, such as high stress and temperature, in a
controlled laboratory environment to evaluate its durability
and reliability (Kong et al., 2018).

In this study, the synthetic rubber of the Bushing series from
automobile suspension components was used, generally
subjected to continuous exposure to external stress and high
temperatures. The primary failure mechanism of rubber
bushings is gradual thermal aging caused by temperatures,
and their lifetime can be predicted using HALT and the
Arrhenius equation. For HALT, rubber specimens were
prepared according to the KS M 6518 and exposed to various
temperatures (70 °C, 100 °C, 120 °C, and 140 °C) for
durations ranging from 24 to 408 hours. After each aging
condition and time interval, rubber specimens were retrieved
and subjected to tensile testing using a Universal Testing
Machine (UTM). The tensile strength at failure was measured
to quantify the degradation, and the resulting data were
collected for analysis. To consider experimental uncertainty,
three rubber specimens were utilized at each condition. The
tensile strength was calculated using a weighted average of
the measured values, ordered from highest to lowest: 0.7T: +
0.2T2 + 0.1Ts (where T: > T2 > Ts). The experimental results
showed that the mechanical material properties declined as
degradation progressed, leading to a gradual decrease in
tensile strength. Moreover, as aging temperatures increased,
the degradation rate accelerated, resulting in a more rapid
reduction in tensile strength.
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Figure 1. The results of HALT

Before performing the lifetime prediction for rubber material,
it is necessary to select a degradation behavior model to
confirm the overall time-dependent degradation
characteristics of the rubber. Based on previous research, an
empirical piecewise degradation model was proposed to
quantitatively describe the degradation behavior of rubber
material under high-temperature conditions, and its validity
was demonstrated (Kwon et al., 2014). This model was
constructed using tensile strength data obtained from HALT
and characterizes the degradation of rubber material in two
distinct phases, separated by a transition point (#,), which can
be expressed by:

100 — (100 — f)) x et tks jf ¢t < t,
fo X e~t"todkz Jift >t

f@® ={ )

Elastic polymers (e.g., EPDM, NBR) exhibit a decline in
mechanical performance when exposed to high-temperature
conditions for extended periods. In this study, tensile strength
was selected as a representative degradation indicator. The
degradation model curve generally follows a nonlinear
piecewise function depending on the transition point, which
allows us to represent the degradation behavior of a rubber
material that degrades rapidly and non-linearly. This
behavior has been experimentally observed using HALT and
is attributed to the combined effects of polymer chain
scission, oxidation, and curing/degradation processes.
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Figure 2. Empirical degradation model for rubber material

2. CONSTRUCTING AN EMPIRICAL DEGRADATION MODEL
FOR PARAMETER PREDICTION

2.1. Deterministic optimization PINN

PINN is a neural network-based model that directly integrates
physical information into the loss function, enabling
physically consistent predictions even with a lack of data
(Raissi et al., 2019). In this study, the degradation behavior
of rubber material was represented using an empirical
nonlinear model, and the parameters (to, fo, k1, k2) were
determined using the PINN model. The training process of
PINN integrates not only a data-driven loss term but also a
physics-based loss term derived from domain knowledge
(Wang et al., 2024). Additionally, in this study, the total loss
function of the PINN was defined by combining the
following three loss functions.

Data loss term: Minimize the difference between the time-
tensile strength data obtained from HALT and the model
output. It consists of the mean squared error.

Physical constraint loss term: This term guides the physical
conditions required by the model, such as the continuity of
the degradation curve and the continuity of the differentiation
at the transition point. (e.g., at the transition time £, the left
and right derivatives of the degradation curve must be equal.)

Boundary conditions loss term: This term guided the model
to satisfy known tensile strength at a specific time based on
experimental observations. (e.g., it includes conditions such
as that the tensile strength at the initial time is satisfied 100%)

Lrotar = @ X Lpgra + B X Lppys +¥ X Lpc ()

Here, a, 5, and yare hyperparameters that control the weights
of each loss term. These parameters are tuned to balance data
fidelity and physical consistency in the model. The
parameters obtained by training have a physical meaning
related to the degradation mechanism, and including physical
constraints enables the model to derive a generalized
degradation curve rather than merely fitting the data.
However, the PINN provides only a single deterministic
prediction value. Thus, it does not provide information on the
confidence interval of the prediction value. Furthermore, the
approach may exhibit sensitivity to such disturbances
because experimental noise and environmental variability in
the observations are not modeled. To address this challenge,
this study introduced B-PINN, Phi-GPR, and BNN-based
complementary methods utilizing Bayesian structure to
perform probabilistic parameter estimation.
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Figure 3. DO-PINN estimation results of degradation model
parameters

2.2. Physics-Informed Gaussian Process Regression

GPR is a non-parametric Bayesian regression method where
a function is considered to follow a GP if any finite set of its
evaluations follows a joint gaussian distribution (Kim et al.,
2025; Qiang et al., 2023; Wang, 2023). A GP is defined as an
input matrix X € R¥*¢_ and the output vector is defined as
y € RM*1 In a GPR model, the function f{x) is characterized
by a mean function and a covariance function (kernel
function) defined over any two inputs x and x’, which can be
expressed by:

f)~GP(m(x), k(x,x")) 3)
where,
m(x) = E[f(x)] 4)

k(x,x") = E[(f(x) = m)(f(x") = m(x")] )

In this study, we choose the radial basis function (RBF)
kernel, which is widely used in GPR for its smoothness and
flexibility (Jékel et al., 2007). The RBF kernel is defined as:

k(x,x") = o7 x exp (— M) (6)
’ f 212

where crfz and / represent the signal variance and length-scale
hyperparameter, respectively. Adjusting the hyperparameters
can be the variability of the resulting function (Schulz et al.,
2018). In the real world, noise is usually observed due to
various environmental factors. In this case, by considering
the noise observations ¢, in the observation value, it can be
expressed by y=f(x)+¢e, e~N(0,62), GP can be
expressed for a finite set of observation values (Sun et al.,
2024).

y~GP(m(x), k(x,x") + c?) 7

According to the definition of GP (Tartakovsky et al., 2023),
the observation value and predicted value at the new test

point follow the joint Gaussian prior distribution, can be
expressed by:

y X) [KX,X) + 02l K(X,x")
[f’]~N(rrnn(x’)’ K(x’,X)U K(x’,fc’))

where K(X,X) and K(x',x") represent the covariance
matrices between merely training inputs and merely test
inputs, respectively, and K(x',X) = K(X,x") represents the
covariance matrices between training and test inputs.

®)

PUFIX, £, x)~N (|77, cov (1) ©)
where,

fr=m@) + K&, XKE,X) + 02 (y -m©x))  (10)

cov(f) =K', x") — K(x', X)[K(X,X) + o2I] 'K (X, x") 11

where the f' is the posterior mean of f’', and cov(f)
represents its posterior variance. Moreover, the 95%
confidence interval (CI) can be calculated as follows to
evaluate the uncertainty of the prediction results:

95%CI = f' — 1.96 x /cov(f'),f' +1.96 x /cov(f') (12)

Therefore, GPR models are used not only as regression
models, but also to quantify uncertainty by considering
confidence intervals. Regression methods have limitations
because they require large amounts of high-quality data. To
address these issues, a method to incorporate physical
information into GPR has been proposed. In this study, we
utilized physical knowledge along with parameter estimates
obtained from the deterministic PINN performed earlier to
build a pre-averaging function for GPR. As a result, we were
able to simultaneously estimate the variance of the estimates
and derive confidence intervals for each estimated parameter.
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Figure 4. Phi-GPR estimation results integrating the
governing equation into the prior mean function

To quantify the uncertainty in the estimated thresholds, we
drew 5,000 samples from the posterior predictive distribution
of the Phi-GPR model. Based on the posterior inference of
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the degradation model, we estimated the distribution of In(t),
defined as the time to reach 60% of the initial tensile strength,
for each temperature condition.
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2.3. Markov Chain Monte Carlo

In this study, a Bayesian inference-based MCMC method
was applied to estimate the parameters of a degradation
model that characterizes the thermal aging behavior of rubber
materials (Andrieu et al., 2003). While traditional
deterministic optimization methods yield only single-point
estimates, Bayesian frameworks can combine observational
data and prior knowledge to derive posterior distributions for
model parameters, allowing you to quantify uncertainty.
1. Generate initial sample 8°
2.Fori=1tons
- Generate
e*~g (9* ei—l)
- General acceptance sample u ~ U (0,1)

. -1 g%y — i £(8*ly)g(8:1 8%
-if u<Q(8+,0") = min {1, TG

sample form proposal distribution

0 =0"
else
ei — ei—l
21 ey f(0y) }
Q(61,0") = min {1'f7(9"‘1|y)

MCMC sampling was performed using the Metropolis-
Hastings (M-H) algorithm, a basic MCMC technique. This
algorithm allows asymptotic sampling from a complex
probability distribution by constructing a Markov chain with
a normal distribution corresponding to the target posterior
distribution. By repeating this procedure in several steps, a
representative sample set that approximates the posterior
distribution can be obtained. Rejected samples are replaced
with samples that replicate previously accepted states,
thereby maintaining the continuity of the Markov chain. The
prior distribution was set to a Gaussian distribution based on
the deterministic parameter estimation derived from the DO-
PINN framework. Based on this prior distribution, MCMC
sampling was performed to obtain the posterior distribution,
which enabled confidence intervals and quantitative
evaluation of the predicted behavior of the degradation
model.
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B-PINN is a probabilistic extension of PINN that
incorporates loss terms based on physical information into
the basic structure of BNN. This makes B-PINN particularly
effective for reliability prediction of degrading systems such
as rubber-based components, as it ensures both predictive
uncertainty and physical realizability.

B-PINN consists of the following three core components:
Probabilistic Parameterization: Key material parameters
(%, fo, ki1, k») are defined not as fixed scalar values but as
random variables assumed to follow normal distributions
with mean p and variance ¢®>. Sampled values from these
distributions are wused to construct physics-informed
degradation curves and generate predictions.

Variational Inference-based Learning: To address the
intractability of computing the exact posterior, this study
employs Variational Inference (VI) to learn an approximate
posterior distribution ¢(0). A Kullback-Leibler (KL)
divergence term, measuring the difference between the
approximate posterior and the prior distribution p(0), is
integrated into the loss function for regularization.
Integration of Physics-based Loss: The core of the PINN
framework is that physics-based terms such as PDE, , ODE,
continuity, gradient smoothness, and boundary condition
satisfaction are directly incorporated into the model. This
ensures that what is learned is not simply a control effect on
the data but exists in a special valid solution space. All
parameters are assumed to follow a standard normal prior N
(0,1), and the KL divergence is appropriately computed to
prevent excessive dispersion while promoting convergence
based on prior knowledge.

LKL

> Dislat@ulus a)INO,D] (14

1
Dy, = —52(1 +loga} — uj — o) (15)

4

Combining physical consistency and prediction confidence,
the B-PINN framework serves as an effective modeling
approach for model parameter estimation under uncertainty.
In particular, the inference phase allows for the construction
of estimated confidence intervals through iterative sampling
to support RUL prediction.
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Figure 8. B-PINN estimation results of degradation model
parameters

After training, 1,000 prediction curves were extracted from
the learned variation distribution of the model parameters and
sampled from the posterior of the B-PINN. The resulting
posterior samples of thresholds were visualized as a
histogram to represent the uncertainty of the predicted failure
time at each temperature condition.
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3. ARRHENIUS REGRESSION FOR LIFETIME PREDICTION OF
RUBBER MATERIAL

To predict failure life under thermal degradation of rubber,
this study adopted the Arrhenius model—a widely used
framework in temperature stress life testing that characterizes
the relationship between reaction and temperature. The
model was constructed by defining the lifetime based on a
specified reduction in the initial tensile strength of rubber
specimens at each temperature, thereby establishing a time—
temperature relationship. This approach can be used to
convert HALT data to expected life at room temperature due
to natural aging.

Fail @

In(t)

Safed

1/T

Figure 10. Arrhenius model-based lifetime prediction

Here, K is the rate constant, 4 is a pre-exponential factor, £,
is the activation energy (KJ/mol), R is the gas constant
(8.314J/mol*K), T is the absolute temperature (K), and ¢ is
the lifespan (hour).

K = AeRT (16)
In(K) = In(4) — % (%) (17)
In(6) =In (%) v (0) (18)

In this study, the lifetime was defined as the time required
for tensile strength to degrade to 60% of its initial value, and
the lifetime at each temperature was predicted using four
distinct methods: DO-PINN, Phi-GPR, MCMC, and B-
PINN. Subsequently, Arrhenius regression analysis was
conducted to derive linear regression coefficients
corresponding to each method.

To quantify the uncertainty associated with the estimated
lifetime at room temperature (25°C), a confidence interval
was calculated based on the standard error of the predicted
In(t) obtained through linear regression of the Arrhenius
model. For each method (DO-PINN, Phi-GPR, MCMC, and
B-PINN), a regression line was fitted to the In(t) values
derived from the predicted 60% failure times at elevated
temperatures (70°C—140°C), and extrapolated to 25°C.

To construct the confidence interval, the standard formula for
the prediction of a mean response in simple linear regression
was employed:

)7(x) + ta/2,n—2 ro (19)
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Table 1. The comparison of Arrhenius regression-based
lifetime prediction

oted | Woreton | gt [

P?SI'\] 8.3 84? 1*6.(51g;1000) 12.22 202,804
Phi-GPR 9'022%;(91;21000) 1229 | 217509
memc | 8793 71*7%?; 1000) 1 1540 | 242,801
BpINN | 8778 QU000 1536 | 233081

At 25°C, the In(t) estimates values were relatively consistent
across all four methods, ranging from about 12.22 to 12.40.
While DO-PINN provided deterministic point estimate
values based on physics-based modeling, Phi-GPR, MCMC,
and B-PINN incorporated a probabilistic inference
framework to quantify the uncertainty.

Each probability model reflected the difference in posterior
variance and model assumptions through confidence
intervals for the estimated In(t) values. This framework not
only provides accurate extrapolation based on the Arrhenius
relationship, but also significantly improves life prediction by
allowing interpretation of uncertainty, confidence intervals,
and distributional characteristics of model results, which are
essential for robust and risk-aware decision making in
reliability engineering.

4. CONCLUSION

In this study, an empirical degradation behavior model is
used to predict the thermal response of rubber materials, and
both deterministic and probabilistic approaches are utilized
to evaluate the reliability and interpretability of the model.
Most of the existing metaheuristic-based degradation curve
fitting methods are deterministic methods that focus on
single-point prediction, and have inherent limitations in
confidence intervals and uncertainty quantification. To
overcome these limitations, this study preferentially applied
the PINN structure that directly integrates physical
constraints into the loss function. This enabled deterministic
degradation modeling and optimal parameter estimation
(DO-PINN), and successfully predicted the degradation
behavior of rubber with only a small amount of data.

We also quantify the prediction uncertainty and confidence
intervals of the fitted degradation curves using various
model-based techniques, including Phi-GPR, MCMC, and B-
PINN. A comparative analysis of RUL predictions shows that
all four approaches consistently predict lifetime at room
temperature conditions. These results demonstrate not only
similar predictive capabilities to existing models, but also the
ability to infer uncertainties, confidence intervals, and
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distributional properties of model parameters, increasing the
interpretability and reliability of RUL predictions.

The key conclusions of this study are as follows:

1) DO-PINN inserted physical constraints into the loss
function to effectively identify performance degrad
ation and accurately estimate optimal model param
eters.

2) Phi-GPR, MCMC, and B-
PINN produced RUL predictions that were compar
able to deterministic models, while further quantify
ing the predictive uncertainty in the lifespan estima
tes.

3) Comparative Arrhenius regression analysis showed
that all four methods produced consistent lifetime
predictions at room temperature, with Phi-
GPR, MCMC, and B-
PINN providing additional insight into confidence i
ntervals and distributional reliability.

In summary, this study utilized a framework that combines
PINN and Bayesian Berlin quantification to support
deterioration modeling and explanation. This methodology is
easily conditionally extensible to other material properties or
conditions and promises to provide interesting predictions
and state predictions (PHM) depending on the data context.
In future work, we will extend the hybrid framework
proposed in this study to incorporate probabilistic uncertainty
quantification even at the Arrhenius regression stage to
enable full probabilistic lifetime prediction at all modeling
stages. We also plan to extend the B-PINN-based framework
to different degradation prediction mechanisms such as
mechanical fatigue and chemical corrosion, and to further
enhance its practicality as a PHM system through
demonstrations using real sensor-based monitoring data.
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