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ABSTRACT 

This study presents a prognostic framework that integrates 

Physics-Informed Neural Network (PINN) with uncertainty 

quantification (UQ) techniques to enable probabilistic 

prediction of the Remaining Useful Life (RUL) of rubber 

components subjected to degradation. The framework 

utilizes data acquired from thermal Highly Accelerated Life 

Testing (HALT), replicating long-term material aging 

behavior under elevated temperature conditions within a 

shortened time frame. To address the high cost and time 

consumption of HALT experiments, the proposed approach 

aims to ensure accurate and reliable predictions even with 

limited data availability. An empirical degradation model is 

embedded within the PINN structure, enabling physically 

consistent and data-efficient estimation of degradation model 

parameters. The framework employs uncertainty 

quantification techniques based on Bayesian inference, in 

which data-driven approaches (e.g., Gaussian Process 

modeling, Bayesian neural networks) and physics-based 

methods (e.g., Markov chain Monte Carlo, particle filtering) 

are separately applied to quantify variations arising from 

material properties, experimental conditions, and 

measurement noise. These methods generate posterior 

distributions from which failure time and probabilistic RUL 

estimates are derived based on a predefined degradation 

threshold. Compared to deterministic optimization methods, 

the proposed approach improves prediction robustness and 

interpretability, offering a cost-effective and scalable 

solution for prognostic modeling in engineering systems. 

 

INTRODUCTION 

Rubber materials gradually degrade over time, affecting 

structural stability and performance (Wang et al., 2025). 

Especially in high-reliability fields such as aerospace, 

automotive, and industrial applications, degradation may lead 

to unexpected failures and seriously affect system safety and 

reliability (Brown, 2001). Therefore, remaining useful life 

(RUL) prediction is essential for implementing maintenance 

and obtaining the reliability of systems utilizing rubber 

materials (Ma et al., 2023). In addition, industry trends are 

increasing the need for shorter product development times, 

and RUL prediction is becoming increasingly important to 

address this issue. 

Rubber degradation data used for RUL prediction is usually 

obtained by highly accelerated life testing (HALT). This 

method exposes materials to high-temperature conditions 

over extended periods to simulate long-term degradation and 

enable early lifetime prediction (Tayefi et al., 2023). Most 

studies have utilized HALT to analyze the effects of various 

environmental factors (e.g., stress, temperature, and 

humidity) on the degradation rate. Based on HALT, several 

approaches have been proposed to calibrate degradation 

models or predict the system's lifetime (Woo et al., 2010). 
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Previous research experimentally measured the degradation 

of rubber specimens under various temperature conditions 

and analyzed models for estimating degradation rates and 

lifetime. Based on these results, an empirical degradation 

model was constructed. And then, key factors parameterized 

such as initial strength, transition point, and degradation rate, 

which were subsequently used for lifetime prediction using 

metaheuristic optimization algorithms (e.g., Genetic 

Algorithms) (Kwon et al., 2007). However, the empirical 

degradation model based on HALT did not consider 

measurement noise, resulting in limitations in prediction 

accuracy and uncertainty quantification. 

 

To enhance the accuracy and reliability of the empirical 

degradation model, it is essential to propose probabilistic 

ranges using uncertainty quantification rather than single 

predictions (Shi et al., 2025). Previous research has attempted 

to address real-world uncertainty (e.g., material 

heterogeneity, measurement error, variation in test 

conditions) by quantifying uncertainty due to various noise 

sources using a Bayesian framework. Bayesian-based 

methods such as Gaussian processes (GP), Bayesian neural 

networks (BNN), Markov chain Monte Carlo (MCMC), and 

particle filters are used to generate posterior distributions and 

support decision-making based on confidence intervals (Kim 

et al., 2017). 

 

This means preventing resource waste caused by overly 

optimistic or conservative designs during the RUL 

predictions and establishing a reliability-based maintenance 

strategy. Accordingly, Bayesian-based methods that consider 

inherent uncertainties are essential in RUL prediction 

frameworks and require research expansion. 

 

RUL prediction models primarily utilize data-driven 

regression methods. However, these methods typically lack 

physical consistency and rely on the quantity and quality of 

data. For HALT, which requires costly and repetitive 

experimental time, it is often difficult to obtain sufficient 

data. Recent studies focused on integrating physical 

knowledge into predictive models to address these limitations 

(Nascimento et al., 2023). For this purpose, some methods 

proposed integrating physical equations into the mean 

function of Gaussian process regression (GPR) (Cross et al., 

2024), while others embed physical constraints directly into 

the training process using physics-informed neural network 

(PINN). Moreover, these frameworks have been extended to 

Bayesian-PINN (B-PINN) (Linka et al., 2022). Physics-

informed methods can produce physically consistent 

predictions despite a lack of data and have demonstrated 

superior reliability compared to conventional regression 

models. 

 

In this study, a case study was conducted to predict the RUL 

of the lifespan and dependability of rubber materials 

employed in automotive suspension systems. An empirical 

degradation model was applied to ensure physical feasibility, 

and physics-informed GPR (Phi-GPR), MCMC and B-PINN 

models were constructed and applied, considering 

uncertainty factors that may occur in real-world conditions. 

As a result, the lifetime and reliability of rubber material were 

analyzed for deterministic optimization methods, and each 

Bayesian-based method and the applicability of a real-world 

work site were evaluated by considering uncertainty factors. 

1. DEGRADATION MODEL FOR RUBBER MATERIAL 

Highly Accelerated Life Test for Rubber Material of 

Bushing 

Long-term gradual thermal aging tests at room temperature 

are required to ensure rubber components' reliability in 

automobile systems. Evaluating material degradation and 

predicting product lifetime within short development periods 

is difficult. Therefore, to reduce the time cost, HALT is 

commonly employed. HALT exposes the product to extreme 

conditions, such as high stress and temperature, in a 

controlled laboratory environment to evaluate its durability 

and reliability (Kong et al., 2018). 

 

In this study, the synthetic rubber of the Bushing series from 

automobile suspension components was used, generally 

subjected to continuous exposure to external stress and high 

temperatures. The primary failure mechanism of rubber 

bushings is gradual thermal aging caused by temperatures, 

and their lifetime can be predicted using HALT and the 

Arrhenius equation. For HALT, rubber specimens were 

prepared according to the KS M 6518 and exposed to various 

temperatures (70 °C, 100 °C, 120 °C, and 140 °C) for 

durations ranging from 24 to 408 hours. After each aging 

condition and time interval, rubber specimens were retrieved 

and subjected to tensile testing using a Universal Testing 

Machine (UTM). The tensile strength at failure was measured 

to quantify the degradation, and the resulting data were 

collected for analysis. To consider experimental uncertainty, 

three rubber specimens were utilized at each condition. The 

tensile strength was calculated using a weighted average of 

the measured values, ordered from highest to lowest: 0.7T₁ + 

0.2T₂ + 0.1T₃ (where T₁ ≥ T₂ ≥ T₃). The experimental results 

showed that the mechanical material properties declined as 

degradation progressed, leading to a gradual decrease in 

tensile strength. Moreover, as aging temperatures increased, 

the degradation rate accelerated, resulting in a more rapid 

reduction in tensile strength. 
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Figure 1. The results of HALT 

 

Before performing the lifetime prediction for rubber material, 

it is necessary to select a degradation behavior model to 

confirm the overall time-dependent degradation 

characteristics of the rubber. Based on previous research, an 

empirical piecewise degradation model was proposed to 

quantitatively describe the degradation behavior of rubber 

material under high-temperature conditions, and its validity 

was demonstrated (Kwon et al., 2014). This model was 

constructed using tensile strength data obtained from HALT 

and characterizes the degradation of rubber material in two 

distinct phases, separated by a transition point (t₀), which can 

be expressed by: 

 

𝑓(𝑡) = {
100 − (100 − 𝑓0) × 𝑒(𝑡−𝑡0)𝑘1 , 𝑖𝑓 𝑡 < 𝑡0

𝑓0 × 𝑒−(𝑡−𝑡0)𝑘2                           , 𝑖𝑓 𝑡 ≥ 𝑡0

 (1) 

 

Elastic polymers (e.g., EPDM, NBR) exhibit a decline in 

mechanical performance when exposed to high-temperature 

conditions for extended periods. In this study, tensile strength 

was selected as a representative degradation indicator. The 

degradation model curve generally follows a nonlinear 

piecewise function depending on the transition point, which 

allows us to represent the degradation behavior of a rubber 

material that degrades rapidly and non-linearly. This 

behavior has been experimentally observed using HALT and 

is attributed to the combined effects of polymer chain 

scission, oxidation, and curing/degradation processes. 

 

 

Figure 2. Empirical degradation model for rubber material 

2. CONSTRUCTING AN EMPIRICAL DEGRADATION MODEL 

FOR PARAMETER PREDICTION 

2.1. Deterministic optimization PINN 

PINN is a neural network-based model that directly integrates 

physical information into the loss function, enabling 

physically consistent predictions even with a lack of data 

(Raissi et al., 2019). In this study, the degradation behavior 

of rubber material was represented using an empirical 

nonlinear model, and the parameters (t₀, f₀, k₁, k₂) were 

determined using the PINN model. The training process of 

PINN integrates not only a data-driven loss term but also a 

physics-based loss term derived from domain knowledge 

(Wang et al., 2024). Additionally, in this study, the total loss 

function of the PINN was defined by combining the 

following three loss functions.  

Data loss term: Minimize the difference between the time-

tensile strength data obtained from HALT and the model 

output. It consists of the mean squared error. 

 

Physical constraint loss term: This term guides the physical 

conditions required by the model, such as the continuity of 

the degradation curve and the continuity of the differentiation 

at the transition point. (e.g., at the transition time t₀, the left 

and right derivatives of the degradation curve must be equal.) 

 

Boundary conditions loss term: This term guided the model 

to satisfy known tensile strength at a specific time based on 

experimental observations. (e.g., it includes conditions such 

as that the tensile strength at the initial time is satisfied 100%) 

 

ℒ𝑇𝑜𝑡𝑎𝑙 = 𝛼 × ℒ𝐷𝑎𝑡𝑎 + 𝛽 × ℒ𝑃ℎ𝑦𝑠 + 𝛾 × ℒ𝐵𝐶  (2) 

 

Here, α, β, and γ are hyperparameters that control the weights 

of each loss term. These parameters are tuned to balance data 

fidelity and physical consistency in the model. The 

parameters obtained by training have a physical meaning 

related to the degradation mechanism, and including physical 

constraints enables the model to derive a generalized 

degradation curve rather than merely fitting the data. 

However, the PINN provides only a single deterministic 

prediction value. Thus, it does not provide information on the 

confidence interval of the prediction value. Furthermore, the 

approach may exhibit sensitivity to such disturbances 

because experimental noise and environmental variability in 

the observations are not modeled. To address this challenge, 

this study introduced B-PINN, Phi-GPR, and BNN-based 

complementary methods utilizing Bayesian structure to 

perform probabilistic parameter estimation. 
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Figure 3. DO-PINN estimation results of degradation model 

parameters 

2.2. Physics-Informed Gaussian Process Regression  

GPR is a non-parametric Bayesian regression method where 

a function is considered to follow a GP if any finite set of its 

evaluations follows a joint gaussian distribution (Kim et al., 

2025; Qiang et al., 2023; Wang, 2023). A GP is defined as an 

input matrix 𝑋 ∈ ℝ𝑁×𝑑, and the output vector is defined as 

𝑦 ∈ ℝ𝑁×1. In a GPR model, the function f(x) is characterized 

by a mean function and a covariance function (kernel 

function) defined over any two inputs x and x’, which can be 

expressed by: 

 

𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′) )   (3) 

where, 

 

𝑚(𝑥) = 𝐸[𝑓(𝑥)] (4) 

𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))] (5) 

In this study, we choose the radial basis function (RBF) 

kernel, which is widely used in GPR for its smoothness and 

flexibility (Jäkel et al., 2007). The RBF kernel is defined as: 

 

𝑘(𝑥, 𝑥′) = 𝜎𝑓
2 ∗ 𝑒𝑥𝑝 (−

‖𝑥 − 𝑥′‖2

2𝑙2
) (6) 

where 𝜎𝑓
2 and l represent the signal variance and length-scale 

hyperparameter, respectively. Adjusting the hyperparameters 

can be the variability of the resulting function (Schulz et al., 

2018). In the real world, noise is usually observed due to 

various environmental factors. In this case, by considering 

the noise observations 𝜎𝑛
2 in the observation value, it can be 

expressed by 𝑦 = 𝑓(𝑥) + 𝜀 , 𝜀~𝑁(0, 𝜎𝑛
2) , GP can be 

expressed for a finite set of observation values (Sun et al., 

2024). 

 

𝑦~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′) + 𝜎𝑛
2 ) (7) 

According to the definition of GP (Tartakovsky et al., 2023), 

the observation value and predicted value at the new test 

point follow the joint Gaussian prior distribution, can be 

expressed by: 

 

[
𝑦

𝑓′] ~𝑁 (
𝑚(𝑋)

𝑚(𝑥′)
, [

𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼 𝐾(𝑋, 𝑥′)

𝐾(𝑥′, 𝑋) 𝐾(𝑥′, 𝑥′)
] ) (8) 

where 𝐾(𝑋, 𝑋)  and 𝐾(𝑥′, 𝑥′)  represent the covariance 

matrices between merely training inputs and merely test 

inputs, respectively, and 𝐾(𝑥′, 𝑋)  =  𝐾(𝑋, 𝑥′) represents the 

covariance matrices between training and test inputs. 

 

𝑃(𝑓′|𝑋, 𝑓, 𝑥′)~𝑁 (𝑓′|𝑓 ′̅, 𝑐𝑜𝑣(𝑓′)) (9) 

where, 

𝑓 ′̅ = 𝑚(𝑥′) + 𝐾(𝑥′, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1(𝑦 − 𝑚(𝑋)) (10) 

𝑐𝑜𝑣(𝑓 ′̅) = 𝐾(𝑥′, 𝑥′) − 𝐾(𝑥′, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝐾(𝑋, 𝑥′) (11) 

where the 𝑓′̅  is the posterior mean of 𝑓′ , and 𝑐𝑜𝑣(𝑓′) 

represents its posterior variance. Moreover, the 95% 

confidence interval (CI) can be calculated as follows to 

evaluate the uncertainty of the prediction results: 

 

95%CI = 𝑓 ′̅ − 1.96 × √𝑐𝑜𝑣(𝑓 ′̅), 𝑓 ′̅ + 1.96 × √𝑐𝑜𝑣(𝑓 ′̅) (12) 

Therefore, GPR models are used not only as regression 

models, but also to quantify uncertainty by considering 

confidence intervals. Regression methods have limitations 

because they require large amounts of high-quality data. To 

address these issues, a method to incorporate physical 

information into GPR has been proposed. In this study, we 

utilized physical knowledge along with parameter estimates 

obtained from the deterministic PINN performed earlier to 

build a pre-averaging function for GPR. As a result, we were 

able to simultaneously estimate the variance of the estimates 

and derive confidence intervals for each estimated parameter. 
 

 

 Figure 4. Phi-GPR estimation results integrating the 

governing equation into the prior mean function 

 

To quantify the uncertainty in the estimated thresholds, we 

drew 5,000 samples from the posterior predictive distribution 

of the Phi-GPR model. Based on the posterior inference of 
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the degradation model, we estimated the distribution of ln(t), 

defined as the time to reach 60% of the initial tensile strength, 

for each temperature condition. 

 

 
a) 70 °C 

 
b) 100 °C 

 
c) 120 °C 

 
d) 140 °C 

Figure 5. Posterior Distribution of ln(t) Estimated by Phi-

GPR at the Failure Threshold 

2.3. Markov Chain Monte Carlo 

In this study, a Bayesian inference-based MCMC method 

was applied to estimate the parameters of a degradation 

model that characterizes the thermal aging behavior of rubber 

materials (Andrieu et al., 2003). While traditional 

deterministic optimization methods yield only single-point 

estimates, Bayesian frameworks can combine observational 

data and prior knowledge to derive posterior distributions for 

model parameters, allowing you to quantify uncertainty. 

1. Generate initial sample  θ0 

2. For i = 1 to ns 

- Generate sample form proposal distribution 

θ∗~𝑔 ( θ∗| θ𝑖−1) 

- General acceptance sample u ~ U (0,1) 

- if  u < 𝒬(θ𝑖−1, θ∗) =  𝑚𝑖𝑛 {1,
𝑓( θ∗|y)𝑔( θ𝑖−1| θ∗)

𝑓( θ𝑖−1|y)𝑔( θ∗| θ𝑖−1)
} 

  θ = θ∗ 

 else 

  θ𝑖 = θ𝑖−1 

𝑄(θ𝑖−1, θ∗) = min {1,
𝑓(θ∗|𝑦)

𝑓(θ𝑖−1|𝑦)
} 

MCMC sampling was performed using the Metropolis-

Hastings (M-H) algorithm, a basic MCMC technique. This 

algorithm allows asymptotic sampling from a complex 

probability distribution by constructing a Markov chain with 

a normal distribution corresponding to the target posterior 

distribution. By repeating this procedure in several steps, a 

representative sample set that approximates the posterior 

distribution can be obtained. Rejected samples are replaced 

with samples that replicate previously accepted states, 

thereby maintaining the continuity of the Markov chain. The 

prior distribution was set to a Gaussian distribution based on 

the deterministic parameter estimation derived from the DO-

PINN framework. Based on this prior distribution, MCMC 

sampling was performed to obtain the posterior distribution, 

which enabled confidence intervals and quantitative 

evaluation of the predicted behavior of the degradation 

model. 
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 Figure 6. MCMC sampling-based estimation results of 

degradation model parameters 

 

 
a) 70 °C 

 
b) 100 °C 

 

c) 120 °C 

 
d) 140 °C 

Figure 7. Posterior Distribution of ln(t) Estimated by 

MCMC at the Failure Threshold 

 

The MCMC framework visualized the thresholds 

corresponding to 60% performance degradation as a 

histogram to show the probabilistic distribution of predicted 

failure times. 

2.4. Bayesian Neural Network PINN 

Unlike conventional deterministic neural networks, the BNN 

assumes probabilistic prior distributions over weights and 

biases, and infers posterior distributions based on training 

data (Rivas et al., 2022). This structure has the advantage of 

being able to quantify the uncertainty of the model in essence 

and providing the mean value and confidence interval of the 

prediction at the same time. BNN enables quantification of 

uncertainty in prediction by modeling the weights of the 

neural network as a probability distribution. Unlike 

deterministic neural networks that rely on fixed parameter 

values, BNN defines a prior distribution for each weight w 

and bias 𝑏, and infers their posterior distribution through 

learning. In this study, BNN was employed to approximate 

the thermal degradation behavior of rubber materials using 

neural networks, generating not only predictive outputs but 

also associated confidence intervals (Yang et al., 2021). Each 

linear layer of the model is implemented as a Bayesian linear 

layer, where the weights and biases are parameterized by the 

mean (μ) and log standard deviation (logσ), and forward 

propagation is performed by sampling. For example, the 

weights are sampled as follows: 
 

𝜔 = 𝜇ω + 𝜎ω × 𝜖, 𝜖~𝑁(0, 𝐼) (13) 

B-PINN builds on top of the probabilistic structure of BNN 

by incorporating physical constraints to enable 

probabilistically consistent modeling that is consistent with 

physical knowledge. In this study, we applied a hybrid 

framework by incorporating the structural constraints of a 

degradation model into the loss function of a BNN 

architecture. This contributed not only to accurate fitting but 

also to increased confidence in predicting degradation trends. 
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B-PINN is a probabilistic extension of PINN that 

incorporates loss terms based on physical information into 

the basic structure of BNN. This makes B-PINN particularly 

effective for reliability prediction of degrading systems such 

as rubber-based components, as it ensures both predictive 

uncertainty and physical realizability. 

 

B-PINN consists of the following three core components: 

Probabilistic Parameterization: Key material parameters 

(t0, f0, k1, k2) are defined not as fixed scalar values but as 

random variables assumed to follow normal distributions 

with mean μ and variance σ2. Sampled values from these 

distributions are used to construct physics-informed 

degradation curves and generate predictions. 

Variational Inference-based Learning: To address the 

intractability of computing the exact posterior, this study 

employs Variational Inference (VI) to learn an approximate 

posterior distribution q(θ). A Kullback-Leibler (KL) 

divergence term, measuring the difference between the 

approximate posterior and the prior distribution p(θ), is 

integrated into the loss function for regularization. 

Integration of Physics-based Loss: The core of the PINN 

framework is that physics-based terms such as PDE, , ODE, 

continuity, gradient smoothness, and boundary condition 

satisfaction are directly incorporated into the model. This 

ensures that what is learned is not simply a control effect on 

the data but exists in a special valid solution space. All 

parameters are assumed to follow a standard normal prior N 

(0,1), and the KL divergence is appropriately computed to 

prevent excessive dispersion while promoting convergence 

based on prior knowledge. 
 

ℒ𝐾𝐿 = ∑ 𝐷𝐾𝐿[𝑞(𝜃𝑖|𝜇𝑖 , 𝜎𝑖)‖𝑁(0,1)]

𝑖

 (14) 

 

𝐷𝐾𝐿 = −
1

2
∑(1 + log 𝜎𝑗

2 − 𝜇𝑗
2 − 𝜎𝑗

2)

𝑖

 (15) 

Combining physical consistency and prediction confidence, 

the B-PINN framework serves as an effective modeling 

approach for model parameter estimation under uncertainty. 

In particular, the inference phase allows for the construction 

of estimated confidence intervals through iterative sampling 

to support RUL prediction. 

 

 Figure 8. B-PINN estimation results of degradation model 

parameters 

 

After training, 1,000 prediction curves were extracted from 

the learned variation distribution of the model parameters and 

sampled from the posterior of the B-PINN. The resulting 

posterior samples of thresholds were visualized as a 

histogram to represent the uncertainty of the predicted failure 

time at each temperature condition. 

 
a) 70 °C 

 
b) 100 °C 
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c) 120 °C 

 
d) 140 °C 

Figure 9. Posterior Distribution of ln(t) Estimated by B-

PINN at the Failure Threshold 

3. ARRHENIUS REGRESSION FOR LIFETIME PREDICTION OF 

RUBBER MATERIAL 

To predict failure life under thermal degradation of rubber, 

this study adopted the Arrhenius model—a widely used 

framework in temperature stress life testing that characterizes 

the relationship between reaction and temperature. The 

model was constructed by defining the lifetime based on a 

specified reduction in the initial tensile strength of rubber 

specimens at each temperature, thereby establishing a time–

temperature relationship. This approach can be used to 

convert HALT data to expected life at room temperature due 

to natural aging. 
 

 

Figure 10. Arrhenius model-based lifetime prediction 

 

Here, K is the rate constant, A is a pre-exponential factor, Ea 

is the activation energy (KJ/mol), R is the gas constant 

(8.314J/mol*K), T is the absolute temperature (K), and t is 

the lifespan (hour). 

 

𝐾 = 𝐴𝑒
−𝐸𝑎
𝑅𝑇  (16) 

ln(𝐾) = ln(𝐴) −
𝐸𝑎

𝑅
(

1

𝑇
) (17) 

ln(𝑡) = ln (
1

𝐴
) +

𝐸𝑎

𝑅
(

1

𝑇
) (18) 

 

 In this study, the lifetime was defined as the time required 

for tensile strength to degrade to 60% of its initial value, and 

the lifetime at each temperature was predicted using four 

distinct methods: DO-PINN, Phi-GPR, MCMC, and B-

PINN. Subsequently, Arrhenius regression analysis was 

conducted to derive linear regression coefficients 

corresponding to each method. 

To quantify the uncertainty associated with the estimated 

lifetime at room temperature (25°C), a confidence interval 

was calculated based on the standard error of the predicted 

ln(t) obtained through linear regression of the Arrhenius 

model. For each method (DO-PINN, Phi-GPR, MCMC, and 

B-PINN), a regression line was fitted to the ln(t) values 

derived from the predicted 60% failure times at elevated 

temperatures (70°C–140°C), and extrapolated to 25°C. 

 

To construct the confidence interval, the standard formula for 

the prediction of a mean response in simple linear regression 

was employed: 

𝑦̂(𝑥) ± 𝑡𝑎/2,𝑛−2 ∙ 𝜎 ∙ √
1

𝑛
+

(𝑥𝑖 − 𝑥̅)2

∑(𝑥𝑖 − 𝑥̅)2
 (19) 

 

 

a) DO-PINN 
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b) Phi-GPR 

 

c) MCMC 

 

d) B-PINN 

Figure 11. The results of lifetime prediction using Arrhenius 

regression 

 

 

 

 

 

 

Table 1. The comparison of Arrhenius regression-based 

lifetime prediction 

Method 
Regression 

equation 

ln(t) at 

25°C 

t at 25°C 

(hour) 

DO-

PINN 

8.5845 * (1/T*1000) 

-16.5739 
12.22 202,804 

Phi-GPR 
9.0223 * (1/T*1000) 

-17.9734 
12.29 217,509 

MCMC 
8.7937 * (1/T*1000) 

-17.0987 
12.40 242,801 

B-PINN 
8.7785 * (1/T*1000) 

-17.0794 
12.36 233,281 

 

At 25°C, the ln(t) estimates values were relatively consistent 

across all four methods, ranging from about 12.22 to 12.40. 

While DO-PINN provided deterministic point estimate 

values based on physics-based modeling, Phi-GPR, MCMC, 

and B-PINN incorporated a probabilistic inference 

framework to quantify the uncertainty. 

Each probability model reflected the difference in posterior 

variance and model assumptions through confidence 

intervals for the estimated ln(t) values. This framework not 

only provides accurate extrapolation based on the Arrhenius 

relationship, but also significantly improves life prediction by 

allowing interpretation of uncertainty, confidence intervals, 

and distributional characteristics of model results, which are 

essential for robust and risk-aware decision making in 

reliability engineering. 

4. CONCLUSION 

In this study, an empirical degradation behavior model is 

used to predict the thermal response of rubber materials, and 

both deterministic and probabilistic approaches are utilized 

to evaluate the reliability and interpretability of the model. 

Most of the existing metaheuristic-based degradation curve 

fitting methods are deterministic methods that focus on 

single-point prediction, and have inherent limitations in 

confidence intervals and uncertainty quantification. To 

overcome these limitations, this study preferentially applied 

the PINN structure that directly integrates physical 

constraints into the loss function. This enabled deterministic 

degradation modeling and optimal parameter estimation 

(DO-PINN), and successfully predicted the degradation 

behavior of rubber with only a small amount of data. 

We also quantify the prediction uncertainty and confidence 

intervals of the fitted degradation curves using various 

model-based techniques, including Phi-GPR, MCMC, and B-

PINN. A comparative analysis of RUL predictions shows that 

all four approaches consistently predict lifetime at room 

temperature conditions. These results demonstrate not only 

similar predictive capabilities to existing models, but also the 

ability to infer uncertainties, confidence intervals, and 
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distributional properties of model parameters, increasing the 

interpretability and reliability of RUL predictions. 

The key conclusions of this study are as follows: 

 

1) DO-PINN inserted physical constraints into the loss

 function to effectively identify performance degrad

ation and accurately estimate optimal model param

eters. 

2) Phi-GPR, MCMC, and B-

PINN produced RUL predictions that were compar

able to deterministic models, while further quantify

ing the predictive uncertainty in the lifespan estima

tes. 

3) Comparative Arrhenius regression analysis showed

 that all four methods produced consistent lifetime 

predictions at room temperature, with Phi-

GPR, MCMC, and B-

PINN providing additional insight into confidence i

ntervals and distributional reliability. 

In summary, this study utilized a framework that combines 

PINN and Bayesian Berlin quantification to support 

deterioration modeling and explanation. This methodology is 

easily conditionally extensible to other material properties or 

conditions and promises to provide interesting predictions 

and state predictions (PHM) depending on the data context. 

In future work, we will extend the hybrid framework 

proposed in this study to incorporate probabilistic uncertainty 

quantification even at the Arrhenius regression stage to 

enable full probabilistic lifetime prediction at all modeling 

stages. We also plan to extend the B-PINN-based framework 

to different degradation prediction mechanisms such as 

mechanical fatigue and chemical corrosion, and to further 

enhance its practicality as a PHM system through 

demonstrations using real sensor-based monitoring data. 
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