Bearing Spall Size Estimation Under Varying Speed Conditions
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ABSTRACT

Accurate estimation of spall size in rolling element bearings
is critical for effective diagnostics and prognostics in rotating
machinery. Traditional methods often struggle with gener-
alization due to noise and speed variability. This work ad-
dresses these limitations by proposing a novel approach that
leverages trends in vibration measurements over time and in-
troduces a speed-normalized condition indicator. Building
on prior work, we model the bearing fault signal as a pe-
riodic pulse wave and derive a Fourier-based representation
that links harmonic magnitudes to spall size. We then intro-
duce a normalization technique using harmonic speed ratios
to eliminate the influence of the system’s transfer function.
Experimental validation using controlled lab data confirms
the method’s ability to preserve signal extrema and improve
generalizability over different speeds, offering a promising
path toward scalable, real-world bearing health monitoring.

1. INTRODUCTION

Bearing diagnostics and prognostics using vibration analysis
is an important area of research due to its effectiveness in
early fault detection and remaining useful life (RUL) estima-
tion of rotating machinery. Vibration signals carry rich in-
formation about the dynamic behavior of bearings, enabling
the identification of defects such as spalls—localized material
losses on the bearing surface.

Bearings have been observed to still operate for a significant
amount of time after the appearance of the first spall (Kotzalas
& Harris, 2001). Moreover, the propagation of the damage
appears to be a rather deterministic process (Rosado, Forster,
Thompson, & Cooke, 2009; Mason, Trivedi, & Rosado,
2017). Hence, these properties are promising ingredients
to predict the RUL of a spalled bearing, e.g., as was also
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proposed in (Bolander, Qiu, Eklund, Hindle, & Rosenfeld,
2009).

Unfortunately, estimating the spall size from a vibration sig-
nal is not trivial. Typically, existing algorithms try to detect
signal characteristics corresponding to the interactions of the
rolling element (RE) with the spall, resulting in specific exci-
tations of the system (Epps, 1991; Sawalhi & Randall, 2011;
H. Zhang et al., 2021). Although these studies have made im-
portant contributions to the understanding of the dynamics of
bearing containing systems, the algorithms proposed are diffi-
cult to generalize to real applications. The main reason is that
these spall-RE interactions might not always be visible due
to challenging signal-to-noise ratios not present in clean lab
conditions. More recently, a significant amount of pure data-
driven methods have also been proposed based on deep learn-
ing (S. Zhang, Zhang, Wang, & Habetler, 2020). However, it
has been shown that these methods typically lack generaliza-
tion outside the scope of the trained dataset (Liefstingh, Taal,
Restrepo, & Azarfar, 2021) and are difficult to adjust due to
their black box nature. Another challenge is that it is not al-
ways possible to capture the same type of data on different
industrial applications, which demands a feasible method ap-
plicable on different setup.

To overcome some of these challenges, it has recently been
proposed to investigate multiple vibration measurements over
time (i.e., trends) instead of a single vibration measurement
(Bublil et al., 2025). Here, it was revealed that for specific
setups, detecting extrema over time of bearing fault frequency
Fourier magnitudes can be used to estimate the size of large
spalls. However, in the work of (Bublil et al., 2025) constant
speeds are assumed, while in reality, speed fluctuations will
be present. This will distort these signals due to the transfer
function, making the detection of extrema challenging. In this
work, we propose a new method to eliminate the effect of the
transfer function, enabling the use of varying speeds in spall
size condition indicators.
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Figure 1. Following the work of (Bublil et al., 2025), the
assumption is made that the force signal can be simplified as
a pulse wave signal.

2. BEARING FAULT MODEL

We first revisit the work of (Bublil et al., 2025) in Figure 1,
where the assumption is made that the underlying force signal
can be simplified as a pulse wave. Let L denote the distance
between two REs, d the spall size and V' the RE velocity in
circumferential direction. Hence, the spatial distribution of
the force, F'(x), can be defined with period L as follows,

F(z)=F(z + L). (1)

Similarly, in the time domain we observe periodicity in 7" =
L/V assuming a constant speed, which gives a force signal
f(t) = F(Vt) such that

f(t)=fQt+T). )

Subsequently, by expanding f(¢) in its Fourier series as fol-
lows,

F#) =" fre??™T 3)

kEZ

We can use the fact that the Fourier series of a time-domain
pulse with varying pulse width can be expressed as a sinc
function. Defining 7 = T'd/L as the time the rolling element
is over-rolling the spall, we have,

. (krT\ 1 . (krd\ 1
fk = sin <T> ﬁ = sin (L> ﬁ (4)

It is important to note at this stage that the Fourier coefficients
fi of the force signal are independent of the speed V" and de-
pend only on the geometry of the fault through the ratio d/ L.
However, this will not be the case for the Fourier coefficients
of the acceleration signal.

To facilitate our proposed method in the next section, we in-
troduce the angular frequency 2 = 1/T which denotes the
rotational speed of our machine in Hertz.
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Figure 2. Fourier magnitudes at the fault frequencies of a pro-
gressing outer ring spall for speeds 300RPM (top), 3000RPM
(middle) and a force model (bottom) with a rolling element
distance of 16mm.

Note that in reality, we cannot observe the force signal di-
rectly and measure an acceleration signal instead. Therefore,

cx(2) = H (k) i, ©)

where H (k€2) stands for the transfer function between force
and acceleration at frequency k€, and ¢ () stands for the
Fourier coefficient of the acceleration signal with explicit no-
tation of its dependence on speed ).

An example for the first four harmonics of the aforemen-
tioned model is illustrated in the bottom plot of Figure 2 for
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Figure 3. Test-rig schematic overview with sensor positions.

a RE distance of 16 mm where the spall size d progresses
from 0 mm to 16 mm. Notice the extrema of the trendlines.
For example, a spall size of half of the RE distance results
in only the presence of odd harmonics. How to further map
this signal to spall sizes the reader is referred to (Bublil et al.,
2025).

3. SPALL GROWTH EXPERIMENT

To validate our proposed method, we used the experimental
data as described in (Bublil, Taal, Maljaars, Klein, & Bort-
man, 2024). A schematic overview of the test-rig with the
sensor placements is shown in Fig.(3). Here, a small outer
ring spall is artificially created on an N209 ECP bearing,
which is propagated under high load and speed. During in-
termediate intervals, say after an hour of growth, snapshots
of sensor data are recorded for different speeds [300, 332,
500, 600, 750, 1000, 1500 and 3000 rpm]. A lower load is
used when recording these snapshots to prevent further spall
growth. Hence, for a fixed spall size we obtain a set of vi-
bration recordings for different speeds. The spall size ground
truth is based on a load-cell sensor and intermediate visual
inspections (see (Bublil et al., 2024) for more details on the
load-cell algorithm).

These are used to validate our methods. Moreover, snapshots
are recorded at a sample rate of 49152 Hz for a duration of
36 seconds. A tachometer signal with two pulses per shaft
rotation is available to accommodate speed fluctuations. This
is achieved by means of angular resampling.

A summary of the experimental results is presented in the top
two plots in Figure 2. Here, the Fourier magnitude values of
the first four harmonics (BPFO) versus the spall size refer-
ence is depicted. The top and middle plots represent signals
for the frequencies 300 RPM and 3000 RPM, respectively.
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Figure 4. The effect of the transfer function at frequency f is
cancelled by dividing the integer-related speed ratios denoted
by Q

» Speed

Some observations can be made.

* For both speeds, we can clearly see the local maxima
and minima of the harmonics aligned with the proposed
model from the previous section.

* The harmonic magnitude ratios for a given spall size are
not aligned with the model.

* For the two different speeds, the underlying ratios of the
harmonics are also different. For example, for 300 RPM
we have a dominant fourth harmonic, while the second
harmonic is dominant for 3000 RPM.

In the remainder of this paper, we propose a solution for the
last two observations. In this manner, we aim to construct a
condition indicator for different speeds while preserving the
local minima and maxima, as observed for a fixed speed.

4. A SPEED NORMALIZED SPALL-SIZE CONDITION
INDICATOR

The approach taken is to observe the Campbell diagram. As
shown in Figure 4, we observe that the first harmonic order
shares the same transfer function as the second harmonic at
half its speed denoted by 2. This means that we can ignore
the transfer function by calculating the ratio between higher
harmonic orders at higher speeds and the first harmonic at
lower speeds. By doing so, we can expect to create a plot that
has all the minimum points needed for the identification of
the spall size without the necessity of estimating the transfer
function, which is not always feasible. Based on the relation-
ship (5), one has

Q
o () =6 £ ©®
so that the ratio 0
al®) _fi o
a(@) A
is found independent of H ( f). For example, taking k& = 2,
Q
o (3)-H® L, ®)
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and
2(3) _f
CI(Q) fl'

Using the recorded speeds, this produces the following invari-
ants!:

®

2 (1500) 2 (750) ¢ (500)
c1(3000) ¢ (1500)  ¢; (1000)
2 (375) ¢ (300)
© ¢ (750) ¢y (600)° (10)

It is beneficial to inspect the trend lines of the first four har-
monics to better estimate the spall size, since the fourth har-
monic trend line divides the spall size range into 4 equal parts,
as shown in Figure 2. The first harmonic is chosen as the de-
nominator since its trend line hold a singular parabolic shape,
it allows the ratio to retain the location of the minima. These
points contribute to the ability to estimate the spall size by
comparing with experimental results.

5. RESULTS

The results of the proposed method based on the Fourier mag-
nitude ratios to eliminate the effect of the transfer function are
shown in Figure 5. The top figure shows harmonic ratio 2, the
center plot harmonic ratio 3 and the bottom plot harmonic ra-
tio 4. The dashed line in each plot shows the results of the
force model. For example, following Equation 4, the top fig-
ure illustrates co /¢ with L = 16 with varying spall size d on
the x-axis.

Within each speed ratio, we can clearly observe a highly con-
sistent transfer function normalization, regardless of the spe-
cific speeds selected. Moreover, the signal minima and max-
ima are perfectly preserved, even for different speeds, in con-
trast to what was shown in Figure 2. Consequently, we can
map these extrema of the signal to spall sizes as proposed in
(Bublil et al., 2025), while also considering different speeds,
provided that they are defined in harmonic ratios.

From the figure, we also observe that the overall condition
indicator values tend to be lower than those predicted by the
proposed model. This bias tends to be larger for higher har-
monic ratios. One possible reason could be that the under-
lying force model does not follow a perfect pulse wave, but
perhaps a more smooth waveform resulting in a faster drop
of harmonic amplitudes. More research is needed to validate
this.

6. DISCUSSION AND CONCLUSIONS

This study proposes a new bearing spall-size condition indi-
cator under varying operating speeds using harmonic speed

Note that € is in Hz, but for reasons of interpretation we write the argument
of ¢k (.) in RPM
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Figure 5. Fourier magnitude ratios at the outer ring harmonic
fault frequencies of a progressing outer ring spall for speed
ratios 2 (top), 3 (center) and 4 (bottom). Dashed line shows
analytical signals based on the force model.

ratios in vibration signals. By eliminating the influence of the
system transfer function, the proposed approach enables con-
sistent signal extrema across different speeds, significantly
enhancing the reliability and scalability of spall size estima-
tion. Experimental validation confirms the effectiveness of
the method, laying the groundwork for more accurate and
generalizable health indicators in real-world bearing diagnos-
tics and prognostics.

The force model used in this work represents approximately
the response that we could expect from a rectangular spall.
However, the reality shows that there is a difference in am-
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plitude of pulse signal at entry and exit of the spall. Further
research is required to further validate the generalizability of
the proposed model beyond the current test rig setup. Itis also
important to note that in real applications, spalls hold differ-
ent shapes, which might alter the excitation signal. There-
fore, it could be interesting to investigate the effect of differ-
ent force models on the method proposed by this work.

A further limitation of the proposed method is its reliance
on vibration data at two speeds in a harmonic (integer) ra-
tio, such as 300/600 RPM. This makes it most suitable for
variable-speed applications with discrete speed steps. An ex-
ample is the pulp and paper industry, where gradual ramp-up
protocols are used to prevent thermal stress, although similar
practices exist in other sectors as well.
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