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ABSTRACT

Predictive maintenance based on remaining useful life (RUL)
estimation is widely recognized as a promising strategy for
monitoring the health of critical systems such as aircraft en-
gines, anticipating failures, and optimizing maintenance plan-
ning. A variety of approaches have been proposed in the liter-
ature, including data-driven, physics-based, and knowledge-
based methods. Among them, deep learning-based methods
have shown strong performance and gained the most traction,
but industrial adoption remains limited due to challenges in
interpretability, scalability and adaptability. Recent advances
in generative artificial intelligence (GAI) offer new opportu-
nities to address challenges related to data scarcity and vari-
ability but issues of model transparency persist. In this con-
text, our paper highlights how these recent advances could
open new opportunities, especially when integrated within
hybrid frameworks combining data-driven and knowledge-
based reasoning. By clarifying industrial requirements and
open challenges, this work provides a comprehensive synthe-
sis of current needs and outlines a framework establishing a
methodological foundation for producing interpretable RUL
estimates along with the rules guiding the reasoning process.

1. INTRODUCTION

In recent decades, predictive maintenance (PdM) has become
a strategic solution to detect anomalies and anticipate fail-
ures in industrial equipment and sophisticated machines. This
strategy relies on the continuous collection of multi-sensor
data and performance indicators to feed machine learning
(ML) algorithms capable of identifying early signs of mal-
function, thereby enabling preventive interventions and re-
ducing downtime (de Pater, Reijns, & Mitici, 2022). In the lit-
erature, three main approaches are described. Physics-based
methods require accurate mathematical modeling of the phys-
ical degradation processes involved, but they are often dif-
ficult to apply to complex systems where physical laws are

Meriem HAFSI et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

hard to formalize. Data-driven methods dominate current im-
plementations due to their ability to learn complex patterns
from large datasets. However, they suffer from several limi-
tations, such as a lack of interpretability, dependence on large
amounts of labeled data, and poor generalization to new oper-
ating conditions. Knowledge-based approaches, on the other
hand, are more explainable and rely on expert-defined rules,
but they struggle with adaptability and scalability in dynamic
or uncertain environments. This study investigates the po-
tential of GAI to address these limitations by supporting the
creation of hybrid PdAM models that combine the strengths
of both data-driven and knowledge-based approaches. GAI
offers new capabilities to simulate realistic failure scenarios,
augment limited datasets, and extract structured knowledge
from unstructured technical sources (Lang, Peng, Cui, Yang,
& Guo, 2021). It can also support the construction of domain-
specific knowledge graphs or ontologies —formal representa-
tions of concepts and their relationships in a given domain—
by identifying relevant concepts and semantic relationships,
as well as generating logical reasoning rules based on expert
input or technical resources. In addition, GAI shows promis-
ing potential in assisting the physical modeling of complex
systems by proposing plausible approximations or surrogate
models when traditional analytical modeling proves diffi-
cult. To support this investigation, the study addresses a use
case on RUL estimation for aircraft engines and introduces
a methodological framework that combines data-driven ap-
proaches with domain knowledge and symbolic reasoning to
enable interpretable and reliable predictions.

2. PROBLEM STATEMENT

The emergence of Industry 4.0 has led to the development of
several innovative applications, such as PdM. This trend is
further driven by the vast amounts of data produced by mod-
ern systems and IoT-based monitoring technologies. While
these advancements are promising, their implementation of-
ten depends on accurately estimating the RUL of components
or systems. However, deploying such solutions comes with
a range of challenges. First, several data-related issues arise:
large volumes of data are required to train robust models ca-
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pable of generalizing. The datasets used must be rich, con-
taining diverse and rare failure events, elements that are often
missing in existing datasets. Additionally, the data must be
complete and of high quality. However, in industrial settings,
data are frequently noisy and incomplete. This makes prepro-
cessing necessary, but it also introduces uncertainty, which
can compromise the training of reliable models. The lack of
complete data and the absence of detailed descriptions of var-
ious faults and anomalies represent a major obstacle to the
implementation of such reliable approaches.

ML and deep learning (DL) have enabled the development
of advanced solutions for RUL prediction. Despite the high
levels of accuracy achieved by some methods, their deploy-
ment in real-world scenarios remains limited due to a lack
of robustness, generalization, and scalability. Beyond the
challenges related to training data previously mentioned, the
black-box nature of these models, limiting their explainabil-
ity, as well as their failure to account for non-stationary en-
vironments and their rigidity regarding specific data formats,
significantly constrain their applicability (Benatia, Hafsi, &
Ayed, 2025). As a result, the adoption of these solutions by
domain operators is hindered by a lack of trust in the deci-
sions made by such systems, particularly in complex systems.

2.1. Existing Approaches

To anticipate failures, optimize maintenance operations, and
reduce costs associated with breakdowns (Davari et al.,
2021), PdM aims to predict the RUL of a component or sys-
tem using four main approaches (Zio, 2022):

(1) Knowledge-based approach Uses expert rules and past
failure patterns to anticipate issues, refining models over
time to improve decisions and adapt to new conditions (Isik,
2023). (2) The physics-based approach estimates degradation
through physical laws and simulations, requiring deep math-
ematical knowledge for precise component analysis (Nunes,
Santos, & Rocha, 2023; Hagmeyer, Zeiler, & Huber, 2022).
(3) data-driven approach leverages large datasets and uses sta-
tistical models, ML or DL algorithms to predict failures and
estimate RUL. It identifies patterns in sensor data without re-
lying on physical models. However, its effectiveness heav-
ily depends on the quality and availability of the data (Eker,
Camci, & Jennions, 2019; Santiago et al., 2024). (4) The
hybrid approach combines multiple methods to improve ac-
curacy and address data limitations or complex scenarios. It
seeks to balance the strengths and mitigate the weaknesses
of the individual approaches (Traini, Bruno, & Lombardi,
2021; Barry & Hafsi, 2023). Figure 1 provides a summary
of maintenance strategies, as well as the various approaches
and methods for PAM within the context of Industry 4.0.

Each PdM approach offers distinct advantages but also faces
notable limitations as summarized in Table 1. Data-driven
models are highly valued for their adaptability and scalabil-
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Figure 1. PdAM approaches classification.

ity, especially in modern industrial environments where real-
time predictions are essential. Their ability to process large
datasets allows them to uncover subtle patterns in sensor data,
often missed by traditional approaches. However, their per-
formance heavily depends on the quality, quantity, and com-
pleteness of the data. In practice, industrial data are often
noisy, incomplete, or imbalanced, which can significantly af-
fect model reliability. Moreover, these models typically lack
interpretability, making it difficult to explain predictions or
build trust in critical applications. Physics-based models, on
the other hand, provide high accuracy and are grounded in
a deep understanding of the physical mechanisms of failure.
Yet, they require extensive domain expertise and are often
difficult to scale or adapt to varying conditions. Their devel-
opment can be time-consuming and cost-intensive, especially
when applied to complex systems with dynamic behaviors.
Hybrid approaches attempt to combine the strengths of two or
more models to improve prediction accuracy and robustness.
While promising in theory, they often come with increased
complexity in terms of conception, integration and valida-
tion. Amid these challenges, the knowledge-based approach
emerges as a complementary solution. It incorporates expert
knowledge drawn from operators, technicians, and domain
specialists, into the prognostic process. Models such as rule-
based systems, case-based reasoning, ontologies, or knowl-
edge graphs offer interpretability, transparency, and traceabil-
ity of the reasoning behind predictions. This is especially
valuable in high-stakes environments where understanding
the rationale behind a decision is as important as the deci-
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Approach Advantage Limitations
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implement.
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Table 1. Overview of PAM approaches and their effective-
ness.

sion itself. However, this approach is not without challenges.
The main difficulty lies in capturing accurate, structured, and
comprehensive expert knowledge. Access to domain experts
can be limited, and formalizing their experience into usable
models is often complex. Despite this, the explicit nature of
the knowledge-based approach and its ability to function with
limited data make it a strong candidate for reliable and ex-
plainable prognostics, especially when combined with other
approaches in a human-in-the-loop framework. Finally, while
no single approach is universally superior, the knowledge-
based method stands out for its interpretability, adaptability in
data-scarce environments, and potential to complement other
models, making it a cornerstone in the development of robust,
transparent PAM systems.

3. GENERATIVE AI FOR PDM
3.1. Principles

GAl is a class of Al techniques capable of automatically gen-
erating content such as synthetic data instances, insights, or
decisions from existing datasets, supporting tasks like de-
sign optimization, PdM, and intelligent automation in indus-
trial systems. The three common generative models in lit-
erature are Generative Adversarial Networks (GANSs), Varia-
tional Autoencoders (VAEs), and Transformers.

Generative Adversarial Networks (GANs): are models
composed of two neural networks: a generator, which creates
synthetic data samples, and a discriminator, which evaluates
their authenticity. GANs are commonly used in industrial ap-
plications to generate synthetic sensor data and simulate fault
scenarios, thereby improving the performance of predictive
models. They offer the ability to explore distribution features
from real data and extrapolate them to unseen operation con-
ditions through a two-player game between the generator and
the discriminator (X. Y. Li, Cheng, Fang, Zhang, & Wang,
2024).

Variational Autoencoders (VAEs): are probabilistic mod-
els that learn latent representations by encoding data inputs
into a lower-dimensional space and decoding them back al-
lowing the generation of new data samples. VAEs are par-
ticularly effective in modeling normal system behavior, cap-
turing degradation patterns, and generating operational states
for simulation in industrial applications.

Transformers: are models that use attention mechanisms
to model complex dependencies in sequential data or text.
Originally designed for natural language processing (NLP),
the Transformer architecture has opened the way for a new
generation of Large Language Models (LLMs) that demon-
strate remarkable capabilities in understanding and generat-
ing human-like text. Notable examples include OpenAl’s
GPT series (GPT-3, GPT-4), Anthropic’s Claude, and emerg-
ing models like DeepSeek. These LLMs excel in a variety
of tasks, from text generation and summarization to code
synthesis and conversational Al (Klekowicki, Szymarski,
Waligérski, & Misztal, 2024). Another inspiration concerns
autoregressive models like GPT for text generation, encoder-
decoder models such as BART and T5 for translation and
summarization, and specialized variants for handling long
sequences (Transformer-XL), multimodal data fusion (e.g.,
Vision Transformers), and time-series forecasting. This di-
versity enables Transformers to address complex generative
tasks including language, vision, audio, and sensor data pro-
cessing, enabling powerful industrial applications like PdM
and enhanced human-machine interaction.

3.2. GAI in Data-Driven PdM

The capabilities of GAI have naturally led to its integration
in addressing data-related challenges in RUL estimation and
PdM tasks. (Mohapatra, 2024) explores the transformative
potential of GAI for anomaly detection and failure predic-
tion. GANs and VAEs are identified as well-suited for these
applications, with several key advantages highlighted, includ-
ing the simulation of equipment behavior, the generation of
synthetic data, and the optimization of maintenance sched-
ules. (Khan, Nasim, & Rasheed, 2025) examines various as-
pects of GAl-powered PdM in industrial systems, especially
in aircraft systems. The study demonstrates how GAI can
be leveraged to extract key features for building classifiers
and predictive models, thereby facilitating effective data rep-
resentation learning. GAI’s potential to address data scarcity
and imbalance is highlighted through three key tasks: data
augmentation, missing data imputation, and feature extrac-
tion for predictive modeling. To this end, GANs, VAEs, or
hybrids combining both are identified as the most commonly
used GAI models in this context. Despite their advantages,
challenges remain in model interpretability, integration, and
knowledge transfer, which are critical for real-world deploy-
ment and the effective adoption of such models in aeronau-
tics.
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3.2.1. Data augmentation

In real industrial contexts, limited or imbalanced data hin-
der the development of robust PAM models. Data augmen-
tation mitigates this challenge by generating new samples
from existing ones, thereby increasing dataset size and di-
versity (Khan et al., 2025). It improves model generaliza-
tion and robustness, especially under data scarcity. With the
advent of GAI, augmentation extends beyond simple pertur-
bations to produce realistic, semantically meaningful varia-
tions. Leveraging models such as GANs or VAEs, GAI en-
ables task-specific, distribution-aware synthesis that supports
the training of high-performing predictive models. (Lang et
al., 2021) address the lack of run-to-failure data for accu-
rate RUL prediction model and propose a data augmenta-
tion approach. A GAN learns the distribution of the origi-
nal dataset and generate a synthetic training set. The origi-
nal and generated datasets are then fused to train a Convolu-
tional Neural Network and Long Short-Term Memory (CNN-
LSTM) hybrid model for RUL prediction. Experimental on
the original and augmented C-MAPSS dataset demonstrate
the effectiveness of the proposed method. (Campbell, Ilan-
govan, Gregory, & Mikaelian, 2022) explores the integra-
tion of GAI for synthetic generation of realistic flight data
within NASA’s Integrated Cognitive Modeling (ICM) pro-
gram. The objective is to augment flight dynamics datasets
and reduce simulation costs while covering critical flight sce-
narios. GANs and advanced variants such as BigGAN are
suggested for their ability to produce diverse, high-quality
synthetic data. These models are proposed as potential sub-
stitutes for traditional simulation pipelines, pending valida-
tion. The study also examines other architectures, including
DCGANSs, which learn complete flight maneuvers via convo-
lutional layers, and cGANs, which generate scenario-specific
data reflecting conditions like loss of control, system failures,
or envelope violations. (X. Y. Li et al., 2024) highlights the
challenges faced by GAN-based data augmentation methods
in real environments, where time-series data are often mul-
tivariate, multiscale, and structurally complex. In such con-
texts, the inherent instability of the generative process fre-
quently results in synthetic data that fail to meet both fea-
ture diversity and usability requirements. To address these
limitations, a framework for aeroengine multitask progno-
sis is proposed, grounded in degradation behavior extrapo-
lation and a trade-off between diversity and usability. A First
Prediction Time (FPT) identification method is introduced,
leveraging a combination of the Health Index (HI) and its
volatility. The augmentation strategy is built upon the Dual
Discriminator Time-series GAN (DDTGAN) coupled with
a Negative Sample Elimination (NSE) mechanism. Specif-
ically, DDTGAN is designed to extrapolate degradation be-
haviors while capturing multiscale temporal features across
global and local domains. NSE subsequently filters out low-
quality samples, ensuring that only high-value synthetic data

are retained. Finally, the authors us an adaptive Transformer-
Multi-gate Mixture-of-Experts (T-MMOE) to incorporates a
gradient normalization-based joint loss function to dynam-
ically balance RUL prediction and fault diagnostic tasks.
GANSs have proven effective for addressing data scarcity and
imbalance (Konig, Wagner, Liebschner, & Kley, 2025) and
are widely applied to fault diagnostic in rotating machinery
(W. Huang, Zhang, Jiang, Shao, & Bai, 2025), with recent
methods such as CBAM-MVACGAN combining a Multi-
Scale Convolutional Block Attention Mechanism with Min-
imum Variance-Assisted Classification GANs. In this con-
text, (Z. Li, Jiang, & Wang, 2025) integrates an Equilib-
rium Deep Q-Network based agent with a Variational Au-
toencoder—Wasserstein GAN with Gradient Penalty (VAE-
WGAN-GP) to address the challenges of data imbalance and
limited sample availability caused by constraints in sampling
and labeling. The hybrid model enables the generation of
high-quality synthetic samples while ensuring class distribu-
tion balance and enhanced feature representation, thereby im-
proving diagnostic performance under real-world constraints.

3.2.2. Synthetic data generation

Synthetic data generation has undergone significant advance-
ments with the emergence of GAI, which enables the creation
of entirely new data instances based on learned distributions.
By generating realistic time series data, this approach is par-
ticularly valuable in scenarios where real data are scarce, ex-
pensive to collect, sensitive in nature, or inaccessible. More-
over, synthetic data generation contributes to mitigate the
class imbalance issue in real-world data and facilitates the
simulation of rare or extreme events, thereby enhancing the
robustness and generalizability of predictive models. In aero-
nautics, (Stanton, Munir, Ikram, & El-Bakry, 2024) addresses
the challenge of limited publicly available data, primarily due
to the proprietary nature of aircraft system information, by
generating synthetic datasets. Specifically, six time-series
datasets were synthesized using the Doppel GANger model,
trained on real Airbus landing gear system data. While the
resulting datasets contain no proprietary content, they pre-
serve the statistical properties and temporal patterns of the
original data, making them suitable for evaluating novel PAM
models and enabling broader exploration across various air-
craft systems. The proposed approach offers a replicable
framework for industry practitioners to generate and share
realistic, privacy-preserving datasets. To address the lack
of comprehensive life-cycle degradation data for bearings,
(Wen, Su, Li, Ding, & Feng, 2024) proposes a hybrid ap-
proach that first uses a Loop GAN (Loop-GAN) to gener-
ate high-quality pseudo data. Subsequently, a hybrid GRU-
AE-Wiener model is introduced, combining a Gated Recur-
rent Unit (GRU) as an autoencoder with a Wiener process
as its hidden layer. Both components are jointly optimized
with Loop-GAN, emphasizing collaborative information fu-
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sion. Validated on the PHM 2012 and XJTU-SY datasets,
the proposed model outperforms existing deep learning meth-
ods in RUL prediction, demonstrating the effectiveness of this
fusion-based approach.

3.2.3. Missing data imputation

Missing data imputation is a critical preprocessing step in
PdM, particularly in scenarios where sensor failures, trans-
mission errors, or incomplete logging result in partially ob-
served datasets. Data imputation techniques aim to “fill in
the blanks” in the raw data (Khan et al., 2025), ensuring con-
tinuity and consistency in temporal patterns essential for re-
liable prognostic modeling. Traditional methods, such as lin-
ear interpolation or statistical estimation, often fail to cap-
ture the complex dependencies inherent in multivariate in-
dustrial time-series data. GAI offers a more robust solution
by learning the underlying data distribution and synthesizing
plausible values for missing entries. VAEs and GANs have
demonstrated effectiveness in reconstructing incomplete se-
quences, preserving both local dynamics and global structure.
However, in the context of imbalanced datasets, these mod-
els tend to favor the over-represented normal class, which can
introduce bias and distort performance metrics such as accu-
racy. This challenge underscores the importance of carefully
designing imputation strategies that not only restore miss-
ing values but also account for class distribution and data
diversity to ensure diagnostic validity (Khan et al., 2025).
Finally, (Baptista & Henriques, 2022) proposes a 1-D De-
noising GAN for Prognostics and Health Management (1D-
DGAN-PHM) approach to enhance the quality of condition
monitoring signals in NASA’s C-MAPSS Dataset.

3.2.4. Rare events generation

One of the major challenges in RUL prediction is the scarcity
of data related to failures, anomalies, and rare events. This
lack of representative samples makes it difficult to train robust
and generalizable models. GAI techniques such as GANs
and VAEs enable the synthesis of synthetic failure data, im-
proving fault detection accuracy and addressing the limita-
tions posed by limited historical failure records. These meth-
ods further enhance anomaly detection by generating realistic
failure scenarios, allowing predictive models to better antic-
ipate potential breakdowns (Prabha, Nataraj, Sathish, Sujith,
& Suthakarr, 2025). (M. Huang, Sheng, & Rao, 2025) tackles
the problem of motor fault diagnosis under long-tailed data
distributions, where healthy conditions dominate and fault
samples are underrepresented. To address this, the authors
propose integrating a Conditional VA (CVAE) with a Condi-
tional GAN (CGAN) to improve the generation of rare fault
instances. The resulting LT-CVAE-GAN model combines
the conditional generation and uncertainty modeling capabil-
ities of CVAEs with the high-fidelity sample generation of

CGAN:Ss, thereby enhancing diagnostic performance in imbal-
anced scenarios.

3.2.5. LLM integration for decision-making support

Recent studies have demonstrated the growing relevance of
LLMs in PdM. These models offer advanced capabilities for
interpreting heterogeneous data sources, detecting anoma-
lies, and supporting maintenance decision-making processes.
(Klekowicki et al., 2024) explores the capabilities of LLMs,
particularly GPT-4, in interpreting sensor data, detecting
anomalies, and generating maintenance guidelines for aircraft
engines in the aviation sector. LLMs can also be used to pro-
vide maintenance personnel with insights and recommenda-
tions based on comprehensive data analysis, supporting better
decision-making and reducing reliance solely on human judg-
ment (Klekowicki et al., 2024). (Prabha et al., 2025) presents
multimodal LLMs as a promising approach for problem de-
tection in IoT-based real-time monitoring. These models can
leverage various data sources, such as sensor readings, his-
torical logs, and images, to enhance decision-making. The
integration of LLMs with smaller models has proven effec-
tive for real-time anomaly detection, improving both inter-
pretability and accuracy. By aligning with structured knowl-
edge bases, LLMs can deliver maintenance insights tailored
to specific industrial contexts, thereby reducing downtime
and optimizing maintenance schedules. Furthermore, the use
of user-defined prompts has been explored to create flexible
and reliable data processing systems. Allowing domain ex-
perts to define custom prompts enables LLMs to adapt to spe-
cific PAM scenarios, supporting more dynamic and context-
aware fault detection. (Prabha et al., 2025) also compared
several LLMs (OpenAl GPT-4, Mistral, DeepSeek, Gemma-
3, and LLaMA-3) in terms of response time and accuracy.
Their evaluation showed that LLaMA-3 achieved the high-
est accuracy, while Mistral offered the fastest response time.
In the leather tanning industry, (Palma, Cecchi, & Rizzo,
2025) explores the use of LLMs to integrate multimodal data
for PAM of compressors. The objective is to uncover fail-
ure patterns often missed by traditional ML methods and to
identify degradation mechanisms not captured by numerical
models alone. The study presents a comprehensive perfor-
mance evaluation of several LLMs, including Qwen-2.5-32B,
DeepSeek-R1-Distill-Qwen-32B, Qwen-QWQ-32B, LLaMA
3.3-70B-Versatile, LLaMA 3.2-11B-Vision, and LLaMA 3.2-
90B-Vision. Among these, Qwen-2.5-32B demonstrated
strong performance in anomaly detection tasks. However, the
study also highlights key limitations, particularly concerning
the explainability and interpretability of LLM-based predic-
tions. Despite encouraging results, the inherent complexity
of LLMs poses challenges in terms of transparency and their
practical deployment in industrial environments.

GAI models have shown strong potential in addressing sev-
eral key challenges in PdM, fault diagnostic, and prognostics,
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offering promising solutions. The main issues tackled by GAI
in this context are summarized in Table 2.

Problem

Propositions

Lack of histori-
cal data

* Generate synthetic data using GAN
variants: BigGAN, DCGAN, cGAN
(Campbell et al., 2022)

* Data augmentation by generating syn-
thetic data (Stanton et al., 2024) (Khan et
al., 2025)

Limited run-to-
failure data

* Generate synthetic failure data (Khan et
al., 2025; Prabha et al., 2025)

e Equipment behavior simulation with
GANSs and operating scenarios generation
using VAE:s for subtle anomaly detection
(Mohapatra, 2024)

Imbalanced
data

e Extraction of meaningful patterns and
insights from large volumes of data using
LLMs (Klekowicki et al., 2024)

e Data augmentation to overcome both
insufficient data per condition class and
an unbalanced amount of data (Konig et
al., 2025)

Noisy or poor-
quality data

* Signal denoising using a GAN model
(Baptista & Henriques, 2022)

* Missing data imputation (Khan et al.,
2025)

* Analysis and processing of large vol-
umes of text data by LLMs (Klekowicki
et al., 2024)

Integration of
heterogeneous
data sources

e Using Multimodal LLMs to detect
problems and improve decision-making
(Prabha et al., 2025).

Maintenance
schedules opti-
mization

e Simulation of different maintenance
scenarios to identify the most efficient
schedules (Mohapatra, 2024)

Table 2. Key issues in PAM addressed by GAI

3.3. Current Challenges and Limitations

Despite their increasing versatility, GAI models exhibit sev-
eral critical limitations that constrain their deployment in sen-
sitive and critical domains. One of the most prominent chal-
lenges is the phenomenon of hallucination, particularly ob-
served in LLMs, where the system generates outputs that
are syntactically plausible yet factually incorrect or fabri-
cated (Khan et al., 2025). This issue undermines the re-
liability of generative models, especially in contexts where
factual accuracy is essential. Another persistent concern in-
volves data bias, as these models tend to replicate or am-
plify, the biases present in their training data, leading to
fairness and ethical concerns across various application do-
mains. Furthermore, GAI systems often lack transparency
and interpretability. Their black-box nature makes it diffi-
cult for users and practitioners to trace, justify, or understand
the decision-making process, thereby limiting trust in high-

stakes environments (Mohapatra, 2024). The explainability
gap is particularly pronounced in architectures such as GANs
and transformer-based models, where the complexity of inter-
nal representations obscures causal reasoning. In addition to
interpretability, generative models are resource-intensive, re-
quiring significant computational power for both training and
inference. This imposes constraints on scalability and limits
integration into real-time or embedded systems (Mohapatra,
2024). Finally, effective deployment often depends on pre-
processing tasks such as data cleaning, quality assurance, and
format conversion. For instance, in aviation diagnostics, raw
heterogeneous data must be transformed into vector embed-
dings compatible with LLMs, a process that introduces addi-
tional complexity and potential sources of error (Klekowicki
et al., 2024). Finally, security considerations including data
protection and access control, represent a key challenge for
implementing the proposed approach and must be carefully
addressed alongside other infrastructure requirements.

Despite recent advances, GAI in its current form remains
insufficient for enabling fully reliable PAM. A primary lim-
itations lies in the difficulty of root cause analysis: while
black-box models may predict failure events, they rarely pro-
vide insight into the underlying causative factors, which is
essential for informed diagnostic and maintenance decisions
(Mohapatra, 2024). This lack of interpretability not only lim-
its operational utility but also presents significant challenges
in highly regulated sectors such as aviation, where trans-
parency is crucial for compliance and accountability. Reg-
ulatory audits often require clear justification of decisions,
which opaque AI models struggle to provide. Moreover, is-
sues related to integration, domain knowledge transfer, and
contextual understanding further hinder the effective deploy-
ment of generative models in real-world maintenance systems
(Khan et al., 2025). These constraints underscore the need for
approaches that combine the generative capacity of Al with
structured domain knowledge, enabling more interpretable,
traceable, and actionable outputs. In this context, we pro-
pose a knowledge-based integration of GAI to enhance PdM
frameworks, aiming to bridge the gap between data-driven
predictions and expert-driven reasoning.

4. PROPOSED APPROACH: TOWARD HYBRID MODELS

To address the aforementioned limitations, particularly in
high-stakes PdM applications like in aviation or for air-
craft engine (Hafsi, 2024), there is an increasing need for
hybrid frameworks that combine the generative capabili-
ties of modern Al with structured domain expertise. Data-
driven approaches, while powerful, suffer from several well-
documented constraints, including black-box behavior, sen-
sitivity to non-stationary data requiring frequent retraining
(Benatia et al., 2025), difficulty in integrating heterogeneous
data sources, and a lack of interpretability and transparency.
Conversely, knowledge-based approaches offer the potential
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to address these limitations by enabling explainable and struc-
tured reasoning. However, they introduce their own chal-
lenges, such as the dependency on domain experts for knowl-
edge extraction, the difficulty of reaching consensus on rule
formalization, the need for interoperability standards, and
the time-consuming nature of rule definition and evaluation
(Barry & Hafsi, 2023).

To overcome the respective drawbacks of both paradigms,
we propose a hybrid framework that integrates GAI within
a knowledge-based reasoning architecture. In this approach,
GALI is not used as a mere black-box predictor, but as an ac-
tive component in the construction, enrichment, and evolu-
tion of the knowledge base. Specifically, generative models
are employed to automatically extract and generate domain
concepts, relationships, and ontology elements from hetero-
geneous datasets and technical documentation. Furthermore,
we leverage GAI to propose reasoning rules, whose relevance
is then evaluated using data-driven metrics. This enables a
weighted, context-aware activation of rules, allowing the sys-
tem to dynamically adapt to changing operational conditions,
thus addressing the issue of data non-stationarity. The hy-
bridization of generative and knowledge-based Al enhances
system transparency, supports root cause analysis, and facil-
itates compliance with regulatory requirements by enabling
traceable and interpretable decision-making processes. Ad-
ditionally, it provides a scalable way to integrate expert in-
put and heterogeneous data formats into a unified reasoning
framework, making it well-suited for complex and evolving
maintenance environments.

4.1. Motivation

The integration of GAI into ontology engineering offers sig-
nificant opportunities across the ontology lifecycle, includ-
ing creation, enrichment, and reasoning. LLMs, in par-
ticular, have demonstrated strong capabilities in generating
initial concept hierarchies, extracting knowledge from un-
structured text, aligning heterogeneous ontologies, and even
generating SPARQL queries or logical rules from natural
language (Westerinen & Bennett, 2023). Techniques such
as DRAGON-ATI leverage Retrieval-Augmented Generation
(RAG) to dynamically synthesize both textual and logical
components of ontologies, drawing from existing ontologies
and large knowledge corpora (Toro et al., 2024). These mod-
els greatly enhance scalability and interactivity, enabling on-
tology engineers to build and refine knowledge structures
more efficiently. Beyond LLMs, other generative models like
GGANSs and Autoencoders (AEs) also offer potential, albeit
in more specialized roles. GANs can be used to generate syn-
thetic data or embeddings that simulate plausible instances of
knowledge graphs, which may assist in ontology population
or feature augmentation. Autoencoders, especially VAEs,
can learn compact latent representations of concepts and rela-
tions, supporting tasks like ontology alignment, concept sim-

ilarity detection, or reconstruction of incomplete knowledge
structures. While these models are less suited for symbolic
reasoning, their ability to capture semantic regularities and
generate new candidates for concepts or relations makes them
valuable complements in data-driven ontology development.

4.2. Proposed framework

We propose a methodological framework based on a mod-
ular architecture that combines the strengths of GAI and
knowledge-based systems in an explainable hybrid approach.
The framework is designed to be robust during development
and adaptable after deployment through continuous learning
from real-world data. It processes heterogeneous raw inputs
(e.g., measurements, sensor data, technical reports, textual
data) and is organized into four main modules, as illustrated
in Figure 2.
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Figure 2. The proposed framework for interpretable RUL pre-
diction integrating GAI to address multiple challenges in a
hybrid approach.

Data ingestion module: This module handles the acquisi-
tion and integration of heterogeneous data sources, including
sensor readings, maintenance records, and unstructured tex-
tual documents. It performs data cleaning, transformation,
and feature engineering to generate enriched representations.
In addition, it indexes textual documents to support semantic
search and knowledge extraction in later stages.

Data and knowledge generation module: This module
plays a dual role in enhancing both the dataset and the knowl-



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

edge base. First, it improves the quality and robustness of
the dataset through techniques such as data augmentation,
synthetic data generation, data imputation, and run-to-failure
data generation, particularly valuable in domains with limited
labeled data. Second, it leverages GAI to construct the core
components of the domain ontology. This includes the au-
tomatic extraction, generation and formalization of concepts,
their properties, hierarchical and semantic relationships, and
symbolic reasoning rules. These elements form the backbone
of the knowledge-based system, enabling structured represen-
tation and reasoning over heterogeneous information sources.

Validation module: This module ensures the reliability
and contextual relevance of the generated knowledge compo-
nents. It begins with a human-in-the-loop validation phase,
where domain experts review and confirm the coherence of
the generated ontology, including the correctness of its hierar-
chical and semantic structure. Next, each generated reasoning
rule is evaluated using data-driven techniques, assessing its
performance and consistency against historical datasets. Val-
idated rules are then assigned contextual weights, enabling
selective activation based on operational conditions, an es-
sential feature for adapting to non-stationary environments.
Additionally, this module assesses the relevance and impact
of newly engineered features, ensuring that only informative
and robust variables are retained for downstream predictive
tasks.

Hybrid prediction module: This module delivers inter-
pretable RUL estimations by combining data-driven infer-
ence with symbolic reasoning. It implements two comple-
mentary prediction pathways: (1) A ML or DL model trained
on the enriched and structured dataset produced by the up-
stream modules. and (2) a knowledge-based reasoning ap-
proach, which uses validated rules and ontological relation-
ships to derive RUL estimates through symbolic inference.
A configurable fusion mechanism integrates the outputs of
both pathways, allowing for adaptive weighting or selection
depending on the use case, system criticality, or data avail-
ability. Crucially, the module outputs not only the estimated
RUL value but also a traceable explanation detailing which
rules and knowledge elements contributed to the final pre-
diction, enhancing interpretability and trust in the decision-
making process.

5. DISCUSSION

To validate the proposed methodological framework, we sug-
gest its application to a well-established industrial use case:
aircraft engine PdM using the C-MAPSS dataset (Saxena,
Goebel, Simon, & Eklund, 2008). Developed by NASA, this
dataset provides run-to-failure simulations, including multi-
variate time series sensor data that closely reflect real-world
degradation patterns. To make the validation more construc-
tive, we propose leveraging the accompanying technical doc-

umentation and incorporating the physical rules that describe
engine behavior and its interactions with the environment.
This approach enables the framework to integrate domain
knowledge and symbolic reasoning, providing a more robust
and interpretable assessment of RUL predictions.

Aircraft engines are particularly suitable for evaluating PdAM
frameworks due to their high reliability requirements and
abundant sensor data. A major challenge in this domain
is the imbalance between normal and faulty operating data,
which limits the generalization of purely data-driven mod-
els and the representation of the full range of degradation
behaviors. By combining GAI techniques with knowledge-
based reasoning, the framework can enrich training data, gen-
erate meaningful features, and formulate interpretable deci-
sion rules—capabilities that are especially valuable in imbal-
anced scenarios. The symbolic layer also supports extrapo-
lation to previously unseen cases, which data-driven models
alone may fail to handle.

Future work will involve applying this framework to C-
MAPSS and evaluating its performance in terms of prediction
accuracy, interpretability, and robustness under low-fault-
sample conditions, as illustrated in Figure 3.
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Figure 3. Proposed framework applied to the estimation of
RUL for aircraft engines using the C-MAPSS dataset.

6. CONCLUSION

In PdM, RUL estimation of components in critical systems
remains a highly complex task. While recent models par-
ticularly those based on data-driven have achieved impres-
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sive accuracy, several persistent challenges continue to hin-
der their practical deployment. These include the scarcity
of high-quality failure data, the lack of interpretability, the
difficulty of generalization across different operational con-
ditions, and the complexity of integrating domain knowledge
into learning systems. In this evolving landscape, the emer-
gence of GAI opens new avenues. By enabling synthetic data
generation, knowledge extraction, and advanced reasoning
capabilities, generative Al brings promising contributions to
overcome data limitations and enhance model explainability.
However, its integration also raises new challenges, includ-
ing ensuring the reliability of generated outputs, maintain-
ing trust and transparency, and aligning generated knowledge
with domain-specific constraints. Among the various ap-
proaches reviewed, the knowledge-based paradigm stands out
as a promising and complementary direction. Its emphasis
on human expertise, system understanding, and interpretabil-
ity makes it a valuable asset especially when integrated with
data-driven methods. This convergence paves the way toward
neuro-symbolic approaches, which aim to combine the learn-
ing capacity of neural networks with the reasoning and trans-
parency of symbolic systems, thereby moving toward more
robust and explainable artificial intelligence.

In this work, we have provided a review of the most recent
contributions in PdM that leverage GAI, identifying both their
strengths and current limitations. Building on these insights,
we proposed a novel hybrid framework that integrates GAI
into a knowledge and data-based PdM approach. This frame-
work is designed to enhance the reliability and interpretabil-
ity of RUL estimation models. Future work will focus on
implementing and evaluating this framework in a real-world
use case involving aircraft engines, a critical domain where
accurate and trustworthy prognostics are essential.
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