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ABSTRACT

Large Language Model (LLM)-based systems present new
opportunities for autonomous health monitoring in sensor-
rich industrial environments. This study explores the poten-
tial of LLMs to detect and classify faults directly from sensor
data, while producing inherently explainable outputs through
natural language reasoning. We systematically evaluate how
LLM-system architecture (single-LLM vs. multi-LLM), in-
put representations (raw vs. descriptive statistics), and con-
text window size affect diagnostic performance. Our find-
ings show that LLM systems perform most effectively when
provided with summarized statistical inputs, and that sys-
tems with multiple LLMs using specialized prompts offer im-
proved sensitivity for fault classification compared to single-
LLM systems. While LLMs can produce detailed and human-
readable justifications for their decisions, we observe limita-
tions in their ability to adapt over time in continual learning
settings, often struggling to calibrate predictions during re-
peated fault cycles. These insights point to both the promise
and the current boundaries of LLM-based systems as trans-
parent, adaptive diagnostic tools in complex environments.

1. INTRODUCTION

Recent advances in the capabilities of large language models
(LLMs) have significantly enhanced the practicality of arti-
ficial intelligence, particularly for tasks involving language
understanding, reasoning, and decision-making. Trained on
vast textual corpora, LLMs have evolved from simple text-
completion tools into general-purpose agents capable of plan-
ning, tool use, memory retrieval, and multi-step reason-
ing (Fu, Peng, Ou, Sabharwal, & Khot, 2023; Li, 2025).
In this context, LLM-based systems have emerged as tools
that leverage language models to perform complex reason-
ing, provide explanations, and interact via natural language
interfaces (OpenAI, n.d.).

In the field of Prognostics and Health Management (PHM),
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there is a growing demand for intelligent systems that go be-
yond fault detection and diagnosis to integrate seamlessly
with human workflows. LLM-based systems address this
need by providing intuitive interfaces between data-driven di-
agnostics and domain experts. Because they operate through
natural language, these systems reduce the need for extensive
operational expertise in their design and usage. Unlike tradi-
tional black-box models, LLM-powered systems can explain
their inferences, seek clarifications from users, and adapt to
changing operational contexts through in-context learning.

Although LLM-based systems has demonstrated utility in ar-
eas such as document summarization, workflow automation,
and decision support across domains like finance, health-
care, and software development (Acharya, Kuppan, & Divya,
2025), its application in engineering fields such as PHM re-
mains underexplored. These domains typically involve high-
frequency numerical sensor data rather than structured text or
prompts. A central question is whether LLMs can be adapted
to operate effectively on such data and reliably detect anoma-
lies and diagnose faults in complex physical systems.

By studying LLM-based systems in a sensor-driven domain,
we contribute to a growing body of research seeking to bridge
the gap between general-purpose AI and domain-specific en-
gineering applications. Our findings suggest that while LLM-
based systems shows strong potential in PHM, important
challenges remain for enabling real-time, robust reasoning in
dynamic environments. Our contributions are as follows:

• We develop a simulated HVAC system with multiple sen-
sors and configurable fault types, allowing controlled ex-
perimentation across diverse fault scenarios and condi-
tions.

• We propose an LLM-based framework for anomaly and
fault detection, featuring multi-representation data inter-
pretation, in-context learning, and natural language ex-
planations. 1

• We conduct comprehensive evaluation across differ-
ent data representations (raw, statistical, and hybrid),

1Simulator, code and data available at
https://github.com/xylhal/PHM LLMFaultDiagnosis
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time-windowing strategies, and performance metrics for
anomaly and fault detection, including the system’s ca-
pacity for continual learning.

2. RELATED WORKS

Traditional Methods
Traditional anomaly and fault detection in time-series sen-
sor data relies on statistical and signal-processing meth-
ods (Rousseeuw & Hubert, 2018). Early techniques include
threshold-based control charts and statistical tests to identify
outliers (Basora, Olive, & Dubot, 2019). Subspace methods
like Principal Component Analysis (PCA) monitor deviations
in sensor covariance, often after preprocessing steps such as
multi-resolution wavelet transforms, as proposed by Jiang,
Yu, and Miller (2017). Meanwhile, distance and density-
based methods (e.g., k-NN, Local Outlier Factor) treat points
in low-density regions as anomalies but often struggle with
high-dimensional, large-scale data (Basora et al., 2019).

Machine Learning Approaches
With the rise of data-driven methods, machine learning tech-
niques have gained traction in the PHM domain by learn-
ing normal system behavior and detecting deviations (Su
& Lee, 2023). For instance, Rocchetta, Gao, Mavroeidis,
and Petkovic (2022) combine multiple SVMs with system-
structure models to detect component failures, optimizing
hyperparameters to minimize system-level errors under lim-
ited failure data. Deep learning approaches, such as LSTM-
based and variational autoencoders, detect anomalies in sen-
sor data via reconstruction errors (Zhang et al., 2019). For
example, Liang, Vanem, Knutsen, Æsøy, and Zhang (2024)
apply Transformer autoencoders for unsupervised anomaly
detection, using residual-based statistical tests to flag faults.
Other studies use convolutional networks or deep regression
to identify anomalous patterns directly from raw data (Lee
et al., 2023). While these models perform well on complex
datasets, they often sacrifice interpretability and typically re-
quire substantial labeled data. To address this, unsupervised
techniques such as DBSCAN and k-means cluster normal be-
havior and flag deviations (Usmani, Happonen, & Watada,
2022), while ensemble methods such as Vanem and Brand-
sæter (2021)’s work on marine engine sensor clustering com-
bine multiple models to improve robustness. Despite their po-
tential, ML-based approaches require careful tuning and val-
idation to avoid overfitting and ensure reliable performance.

LLM-Based Methods
Recent work has explored the use of LLMs for time-series
tasks by encoding signals as token sequences. Alnegheimish,
Nguyen, Berti-Equille, and Veeramachaneni (2024) propose
SigLLM, which uses LLMs to label anomalies via prompt-
ing or detect them through forecasting by comparing pre-
dictions to actual signals. The forecasting approach outper-
forms prompting and a moving-average baseline, though spe-
cialized neural models still yield higher scores. Jin et al.

(2023) introduce Time-LLM, which adapts frozen LLMs for
forecasting using a prompt-as-prefix strategy. While it per-
forms well in few-shot settings, later studies show that sim-
pler attention layers can achieve comparable or better results.
More recently, Gu et al. (2025) present Argos, an LLM-based
anomaly detector for cloud infrastructure metrics. Argos
uses multiple LLM-powered agents to autonomously gen-
erate, verify, and refine interpretable rule-based detectors,
achieving strong performance on both public and industrial
datasets.

In this work, we build on these ideas but specifically study the
ability of LLMs to detect multiple simultaneous faults in data
derived from a simulated engineered HVAC system, compar-
ing performance across different input representations.

3. HVAC SIMULATION ENVIRONMENT

To study the LLM system’s ability to detect faults from real-
istic sensor data, we developed a simulator that emulates the
behavior of commercial HVAC systems under different op-
erational conditions. The simulator models key components
such as the compressor, heat exchanger, and air handling
units; producing multi-sensor time-series data. The environ-
ment includes ambient conditions, thermal dynamics, power
consumption, and supports fault injection with multi-sensor
effects as well as capability to include sensor drifts.

3.1. Thermal and Physical Models

3.1.1. Temperature Dynamics

We begin with the model of the temperature dynamics, where
the indoor temperature is governed by a simplified first-order
thermal model:

Tin(t+1) = Tin(t) + α(Tamb(t)−Tin(t))− βQcool(t) (1)

where Tin is the indoor temperature, Tamb is the ambient
temperature, Qcool is cooling output, α is the thermal gain
coefficient, and β is cooling effectiveness. Ambient tempera-
ture is modeled as a daily sinusoidal cycle with noise:

Tamb(t) = Tmean +A sin (2π(t−ϕ)/24) + ϵ(t) (2)

where Tmean is the mean temperature, A is amplitude, ϕ is
the phase offset, and ϵ(t) ∼ N (0, σ2).

3.1.2. Pressure and Power Models

To model the mechanical part of the system, we assume the
suction Psuct(t) and discharge Pdisc(t) pressures, i.e., pres-
sure of refrigerant entering and exiting the compressor, scale
with the normalized cooling demand, where Qnom denotes
the nominal cooling capacity of the system:

Psuct(t) = P0+γ1
Qcool(t)

Qnom
, Pdisc(t) = P0+γ2

Qcool(t)

Qnom
(3)
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and P0 denotes base pressure, and γ1, γ2 are scaling factors.
Furthermore, the compressor power is modeled as:

Pcomp(t) =

{
Pnom + η(t) if cooling is active
0 otherwise

(4)

where Pnom is the nominal power consumption of the com-
pressor and η(t) ∼ N (0, σ2

p) representing power variation.

3.2. Fault Modeling and Sensor Effects

To model potential faults in the system, we assume the fault
dynamics can be parameterized by their severity S and differ-
ent temporal functions f(t):

F (t) = S · f(t) (5)

We consider the following common onset profiles :

• Step: f(t) = 1

• Linear ramp: f(t) = min
(
1, t−t0

t1−t0

)
• Exponential: f(t) = 1− e−

t−t0
τ

where t0 and t1 denote the fault onset and saturation times
and τ is defined as the exponential time constant

In our work, we consider three types of potential faults: re-
frigerant leaks, compressor faults and filter blockage. The
faults are modeled to simultaneously influence several sys-
tem variables, resulting in correlated patterns in the sensor
data. Given that Tsupply, Treturn, and Qair denote the sup-
ply air temperature, return air temperature, and airflow rate
respectively, and the other notations are as defined above, we
define:

Refrigerant Leak (Fleak):

Qcool = Qcool(1− 0.5Fleak) (6)

Psuct = Psuct(1− 0.3Fleak) (7)

Pcomp = Pcomp(1 + 0.2Fleak) (8)

Tsupply = Tsupply + 3.0Fleak (9)

Compressor Fault (Fcomp):

Pcomp = Pcomp(1− 0.7Fcomp) (10)

Qcool = Qcool(1− 0.9Fcomp) (11)

Psuct = Psuct(1 + 0.2Fcomp) (12)

Pdisc = Pdisc(1− 0.5Fcomp) (13)

Filter Blockage (Ffilter):

Qair = Qair(1− 0.4Ffilter) (14)

Treturn = Treturn + 2.0Ffilter (15)

Pcomp = Pcomp(1 + 0.15Ffilter) (16)

In summary, the simulator takes in a set of user configurations
such as ambient mean temperature, target indoor temperature,
and cooling capacity, simulates the dynamics of the system,

and generates time-series data for the following nine sensors:
Tamb, Tin, Pcomp, Qcool, Psuct, Pdisc, Tsupply, Treturn, and
Qair. This data is then used by the LLM-system to detect
anomalies and faults.

4. EXPERIMENTAL METHOD

4.1. Overview

Figure 1. Overview of an LLM-based framework for fault di-
agnosis. LLM capabilities enables operator to describe faults
in natural language and predictions made by the framework
are explainable.

This section outlines the experimental setup used to evaluate
the capabilities of LLM-based system in the context of fault
detection. We formulate the task as a multi-stage problem in-
volving two primary LLMs: an anomaly detection LLM and
possibly multiple classification LLM(s), shown in Figure 1

In the first stage, the anomaly detection LLM receives time-
series sensor data and determines whether an anomaly is
present. It is prompted with a task-specific instruction and
outputs both a binary decision (anomaly/no anomaly) and a
textual explanation, as shown in Anomaly Detection Prompt.
If an anomaly is detected, the relevant data is passed to the
second LLM, which is responsible for classifying the fault
into one of three types. This fault-classification LLM is pro-
vided with prior fault descriptions, including how each fault
typically manifests in the sensor data (e.g., gradual increase in
temperature, sudden pressure drop), embedded directly into
the prompt as contextual information, as shown in Fault De-
tection Prompt.

This part of the study addresses two key research questions:
Q1. Are LLMs inherently capable of detecting anomalies
from sensor data across different data representations? Q2.
Does the architecture of the LLM system influence fault clas-
sification performance?

To answer these questions, we generated synthetic time-series
data spanning 10 days, sampled at 1-hour intervals. The
dataset includes instances of three fault types: refrigerant
leaks, compressor faults, and filter blockages, with controlled
overlaps in their occurrence. Fault onset patterns were varied
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using a combination of three distinct onset profiles to evaluate
the robustness of different system architectures.

Thee fault profiles and the corresponding sensor data are
shown in Figure 3 and 2. In all experiments, the LLM systems
are given a sliding window of historical data (e.g., past 24
hours) and tasked with evaluating whether an anomaly, and
subsequently a fault, has occurred in the most recent hour.
The stride between evaluations is fixed at 1 hour, ensuring
that detection resolution matches the sampling frequency.

Anomaly Detection Prompt

You are an expert HVAC monitoring system. Your job is to
analyze sensor data from HVAC systems to detect potential
anomalies.

When analyzing sensor data:
- Look for unusual patterns or trends in the data
- Consider relationships between different sensors

Common anomaly patterns:
- Sudden spikes or drops in readings
- Unusual patterns in sensor relationships
- Values outside normal operating ranges
- Inconsistent behavior between related sensors

Analyze the following HVAC sensor data to determine if the
latest hour of data is anomalous with respect to the previous
hours of data.

Sensor data:
{Raw sensor data}
Statistics:
{Sensor data statistics}
Reference sensor data:
{Normal operational data - Raw data}
Reference sensor statistics
{Normal operational data - Statistics}

Is there evidence of any anomalies? Provide your analysis, in-
cluding:
- Concise, key observations from the sensor data
- Whether you believe an anomaly is present (yes/no)
- If an anomaly is present, provide a concise explanation for
your conclusion

Fault Detection Prompt

You are an expert HVAC fault classification system. Your job
is to analyze sensor data and classify the type of fault present
in the system.

When analyzing sensor data:
- Look for unusual patterns or trends in the data
- Consider relationships between different sensors

Common fault patterns:
- Refrigerant leak: Reduced suction pressure, reduced cooling

output, increased compressor power and increased supply air
temperature
- Compressor failure: Reduced compressor power, reduced
cooling output, increased suction pressure and decreased
discharge pressure
- Blocked filter: Reduced airflow rate, increased return air
temperature and increased compressor power

Analyze the following HVAC sensor data to classify the most
probable type of faults present in the last hour of data with
respect to the previous hours of data.

Sensor data:
{Raw sensor data}
Statistics:
{Sensor data statistics}

Classify the type of fault present. For each fault type, indicate
whether it is present (true/false):
- Refrigerant leak
- Compressor failure
- Blocked filter
Provide a concise, brief explanation for your classification

4.2. Anomaly Detection and Fault Classification

To answer Q1, we assess the LLM’s anomaly detection capa-
bilities across the following experimental dimensions:

• Data representation: We compare two input formats:
– Raw data, represented as a table (timestamps × sen-

sor values).
– Descriptive statistics, including min, max, mean,

standard deviation, median, 25th and 75th per-
centiles, and trend (general direction over time).

This comparison helps determine whether LLMs can na-
tively infer statistics from raw data or benefit from ex-
plicit summary statistics.

• Use of reference data: In some configurations, LLMs
are provided with a reference sample of ordinary (non-
faulty) operational data. This enables us to assess
whether comparative reasoning (i.e., anomaly vs base-
line) enhances the LLM’s performance.

• Historical context window size: We vary the window
length of past data to assess whether a longer temporal
context improves performance.

• LLM model variant: We evaluate performance across
model scales, including GPT-4.1-nano and GPT-4o,
to study how model size impacts detection and classifi-
cation accuracy.

To answer Q2, we compare two system architectures:

• Single-LLM: A single LLM performs both anomaly de-
tection and fault classification.
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Figure 2. Visualization of simulated data with faults.

Figure 3. Visualization of fault onset profiles used to generate
data in Fig 2.

• Multi-LLM: Multiple LLMs, each dedicated to detect-
ing a specific fault type independently.

This comparison allows us to evaluate the trade-offs between
specialization and generalization. The single-LLM system
benefits from global context and shared knowledge across all
fault types, but it may suffer from task interference or limited
capacity in recognizing multiple fault dynamics simultane-
ously. Conversely, the multi-LLM setup allows each LLM to
focus on a narrower, fault-specific detection problem, poten-
tially improving sensitivity and interpretability for individual
fault types.

Through this experiment, we aim to determine whether fault-
specific specialization enhances detection and classification
accuracy, or if a single generalized LLM can perform com-
petitively across a range of fault scenarios. This also has im-

plications for real-world deployment: single-LLM systems
may be easier to scale and maintain, while multi-LLM sys-
tems could offer higher robustness in environments where
fault types have highly distinct signatures. Note that for fair
comparison, all our experiments uses API calls to commercial
LLMs with default values for inference-time hyperparame-
ters, such as top-p and temperature values.

4.2.1. Statistical rule baseline

As a baseline, we developed a simple rule-based method
to compare against the LLM system. For anomaly detec-
tion, a time window is evaluated for deviations from the
statistical patterns observed in historical normal operation
data. For each sensor, we compute the minimum, maxi-
mum, mean µ, and standard deviation σ based on the nor-
mal operational data. A window is flagged as anomalous
if it violates any of the following criteria: if the mini-
mum or maximum value within the window falls outside
the historical bounds, i.e., min(xwindow) < min(xnormal) or
max(xwindow) > max(xnormal); if the variability in the win-
dow is unusually high such that σwindow > σnormal; or if
there is a sudden trend shift, measured by splitting the win-
dow in half and comparing the means of each half, where
|µ2 − µ1| > 2σnormal indicates a significant change.

For fault classification, we rely on domain knowledge to de-
fine rule-based conditions that capture characteristic combi-
nations of sensor behaviors, with thresholds derived from
each sensor’s mean and standard deviation under normal con-
ditions. A Fleak is inferred when suction pressure and cooling
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output fall at least one standard deviation below their respec-
tive means, while compressor power and supply air temper-
ature rise above the same amount. In contrast, a Fcomp is
identified by a drop in compressor power and cooling output,
both one standard deviation below their means, accompanied
by elevated suction pressure and reduced discharge pressure,
each deviating from the mean by at least one standard devi-
ation in opposite directions. A Ffilter is detected when the
airflow rate is drops relative to its mean, while return air tem-
perature and compressor power simultaneously exceed their
normal levels by a similar margin of one standard deviation
above the mean.

While this may not represent the most sophisticated baseline,
and more advanced statistical or machine learning methods
could yield better performance, we consider it a valuable and
appropriate comparison due to its simplicity and ease of im-
plementation.

4.3. Continual Learning

In the second part of our study, we evaluate the LLM sys-
tem’s ability to adapt over time in an online setting using in-
context learning principles (Dong et al., 2022). We simulate a
human-in-the-loop feedback process where an expert reviews
the system’s predictions, provides corrected labels, and these
corrections are incorporated into subsequent prompts. This
approach emulates continual learning through prompt-based
feedback, without altering the model’s internal weights.

This process can also be viewed through the lens of few-
shot prompting in a temporal context: at each evaluation cy-
cle, the LLM receives a prompt containing labeled examples
from previous cycles. This design tests whether incremental
prompting can improve fault classification performance over
time.

To isolate the effects of the continual learning mechanism,
we simulated a dedicated dataset with a single fault type, fil-
ter blockage, that recurs periodically over 20 days, and sam-
pled hourly. Fault instances follow randomized onset profiles
(e.g., linear progression with varying severity), as shown in
Figure 4a. Each fault event lasts no more than one day and
recurs periodically at first, with a long fault-free interval in-
serted towards the end.

We define a learning cycle as one evaluation-feedback-update
loop. In each cycle, performance is measured, and the labeled
examples from the prior cycle is appended to the next prompt.
This setup enables a systematic assessment of the LLM’s abil-
ity to leverage historical feedback to improve anomaly detec-
tion accuracy across successive cycles.

5. RESULTS AND DISCUSSION

5.1. Anomaly detection results

Table 1 lists the performance of the LLM system in anomaly
detection, sorted in descending order of F1-score—the har-
monic mean of precision and recall. Several observations can
be made from these results. First, in terms of input data repre-
sentation, when the LLM system is provided with either raw
sensor data, descriptive statistics, or both, the top-performing
configurations are generally those that use descriptive statis-
tics. These are followed by setups that combine both types of
input, and finally by those using only raw data. This suggests
that summarizing raw numerical values into key descriptors
is beneficial for anomaly detection. This trend is further sup-
ported by the fact that configurations using both representa-
tions tend to fall in the middle of the performance ranking,
while those relying solely on raw data consistently rank low-
est.

With respect to the inclusion of reference data from normal
operations, there is no consistent pattern indicating whether
its presence, or the representation in which it is included, has
a significant effect. This suggests that reference data, in this
context, may not be particularly beneficial. Another consis-
tent pattern is that recall is higher than precision, indicating
that the model tends to produce more positive predictions, po-
tentially resulting in more false positives. Precision itself re-
mains relatively stable across all configurations, ranging nar-
rowly between 0.72 and 0.75, which implies that the variation
in F1-score is primarily driven by differences in recall.

It is also worth noting that accuracy does not align well with
F1-score in this setting. For example, the highest-performing
configuration based on F1-score (input data in the form of de-
scriptive statistics with both representations of reference data)
achieves an F1 of 0.84 but an accuracy of only 0.73, while
one of the lowest-performing setups in terms of F1 (raw in-
put data with raw reference data) still achieves an accuracy of
0.67. This discrepancy arises from class imbalance, as shown
in the fault distribution in Figure 3, which leads to artificially
inflated accuracy when the model overpredicts the dominant
class. As such, F1-score offers a more reliable measure of
anomaly detection performance in this task. For comparison,
we also include the performance of a rule-based statistical
baseline. The results show that with the appropriate data rep-
resentation, the LLM system can approach the baseline’s per-
formance. However, under suboptimal input conditions, the
LLM system tends to lag behind.

To illustrate the model’s behavior more concretely, we anec-
dotal examples of the LLM system’s predictions, covering
both true positives and false positives. As seen in the key ob-
servations generated by the LLM system, it is generally effec-
tive at identifying and describing numerical trends. However,
a common failure point lies in its lack of causal grounding and
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Table 1. Performance of GPT-4.1-nano Across Various Input Conditions

Model Data Representation Reference Data Representation Precision Recall F1-Score Accuracy

GPT-4.1-nano

Descriptive statistics Both 0.73 0.99 0.84 0.73
Descriptive statistics Descriptive statistics 0.73 0.99 0.84 0.73
Descriptive statistics None 0.73 0.99 0.84 0.72
Descriptive statistics Raw Data 0.73 0.99 0.84 0.72

Both Descriptive statistics 0.73 0.95 0.83 0.71
Both None 0.73 0.93 0.82 0.70
Both Both 0.73 0.93 0.82 0.69

Raw Data None 0.73 0.91 0.81 0.69
Raw Data Descriptive statistics 0.72 0.93 0.81 0.68
Raw Data Both 0.72 0.91 0.80 0.68

Both Raw Data 0.72 0.88 0.79 0.66
Raw Data Raw Data 0.75 0.84 0.79 0.67

Rule-based NA NA 0.73 1.00 0.85 0.73

Output: True positive prediction

Key observation: The latest hour shows a significant increase
in outdoor temperature to 21.98◦C, a rise in indoor temper-
ature to 20.33◦C, and a spike in compressor power to 0.23
kW, with the airflow rate returning to 200, which is typical for
non-operational or low operation states.

Predicted anomaly: True

Explanation: The sudden spike in outdoor and indoor temper-
atures, combined with the increase in compressor power and
the low airflow rate, suggests an abnormal change in system
behavior, possibly indicating a fault or external environmental
influence affecting the HVAC system’s normal operation.

Ground truth: True

domain-specific operational knowledge, which often results
in false positives. For instance, the LLM system may flag an
airflow spike as anomalous purely because it is statistically
extreme, even when provided with reference data, whereas a
domain expert would recognize it as expected during high-
demand periods, such as peak cooling hours in summer.

This points to a tendency toward statistical over-reliance, par-
ticularly when the LLM is making predictions without suf-
ficient system-level context. In such cases, the model may
overgeneralize from statistical norms and fail to recognize
contextually valid exceptions. Nonetheless, the LLM’s abil-
ity to provide detailed explanations for its predictions is a
valuable feature. These explanations offer insight into the
model’s reasoning process and can serve as a useful tool in fu-
ture work. By systematically analyzing them, operators can
identify recurring reasoning patterns and use these insights
to design better prompts or input structures that incorporate
domain knowledge, ultimately improving anomaly detection
accuracy and reducing misclassifications.

Next, the results in Table 2 examines the effects of both model
size and input window size. As the results show, varying the
window size does impact performance, with a window size of
36 emerging as the most effective in our setting. Increasing

Output: False positive prediction

Key observation: The latest hour shows a significant spike
in airflow rate to 1000, which is well above the 75th per-
centile (319.44) and the maximum of previous data (1000).
Additionally, compressor power and cooling output are also
elevated compared to their typical ranges, with compressor
power reaching 4.43 and cooling output at 9.29, both higher
than their median values.

Predicted anomaly: True

Explanation: The sudden and extreme increase in airflow rate
to 1000, which is substantially above the typical maximum
and the interquartile range, indicates an abnormal behavior.
The concurrent spikes in compressor power and cooling output
further support the presence of an anomaly, likely due to a
sensor malfunction or an operational fault.

Ground truth: False

the window size to 48 yields a slight drop in F1-score for both
models, and decreasing it to 24 results in a more noticeable
decline. We believe the optimal window size depends in part
on the nature of the faults. Larger windows may overwhelm
the model with too much context or dilute fault-relevant pat-
terns, while smaller windows may fail to provide enough con-
text for the LLM to identify the anomaly. Although we can-
not conclude a single ideal window size across all scenarios,
these results suggest that tuning this parameter is important
for maximizing performance.

We also observe that model size has a modest but consistent
effect. Switching GPT-4.1-nano to GPT-4o leads to a
small improvement across nearly all metrics, especially recall
and F1-score. While the gains are not large, they are consis-
tent, suggesting that model capacity can help the LLM make
more confident or accurate anomaly predictions, particularly
when more context is available.

Finally, for reference, we include the rule-based baseline,
which again slightly outperforms all LLM variants in terms
of F1-score. However, the best-performing LLM configura-

7



Annual Conference of the Prognostics and Health Management Society 2025

Table 2. Anomaly Detection Performance Comparison Between Model and Window Size (Input Source: Statistics, Input
Normal Example: Both)

Model Window Size Precision Recall F1-Score Accuracy

GPT-4o
36 0.73 0.99 0.84 0.73
48 0.72 1.00 0.84 0.72
24 0.69 0.99 0.82 0.69

GPT-4.1-nano
36 0.73 0.99 0.84 0.73
48 0.71 0.97 0.82 0.69
24 0.69 0.98 0.81 0.68

Rule-based 36 0.73 1.00 0.85 0.73

tion (GPT-4o with a window size of 36) comes very close,
indicating that with appropriate tuning, LLMs can approach
traditional baselines in this domain.

5.2. Fault classification results

Building on these findings, Table 3 explores fault classifica-
tion performance across two different LLM models, GPT-4o
and GPT-4.1-nano, under varying LLM system archi-
tectures and reference data representations, given both raw
data and descriptive statistics as inputs. The primary metric
again is F1-score, reflecting the balance between precision
and recall in this imbalanced classification task. The results
show that the multi-LLM architecture, where three special-
ized LLMs, each focusing on one fault type, outperforms the
single-LLM approach, which relies on a single LLM to detect
all faults simultaneously. For GPT-4o, the model achieves an
F1-score of around 0.59 with multi-LLM architectures, which
marginally but consistently surpass those of the single-LLM
architecture that reach an F1-score of at most 0.58. Mean-
while, GPT-4.1-nano performs substantially worse across
the board, with F1-scores near 0.43 in multi-LLM setups and
below 0.36 in single-LLM conditions.

Similar to the anomaly detection results, the representation or
presence of reference data appears to have limited impact on
classification performance, reinforcing the idea that including
reference data representation is not beneficial in this context.
A closer look at recall and precision reveals that multi-LLM
architectures deliver very high recall, above 0.90 for both
models, indicating strong sensitivity to fault presence, though
precision remains low, especially for the smaller model. We
also note that single-LLM architectures trade recall for mod-
estly improved precision, which aligns with their compara-
tively lower F1-scores.

The rule-based baseline, despite achieving the highest accu-
racy of 0.71 by predominantly predicting the dominant nega-
tive class, fails entirely at fault classification, with zero preci-
sion, recall, and F1-score. This contrast underscores the dif-
ficulty of the task and highlights that while LLM-based mod-
els do not yet fully resolve these challenges, especially under
single-LLM settings or smaller model conditions, they may
provide valuable and more nuanced fault detection capabili-
ties beyond simple heuristics. Overall, these results suggest

that specialized multi-LLM architectures improve fault clas-
sification effectiveness, particularly for more capable mod-
els like GPT-4o, while reference data inclusion remains sec-
ondary.

5.3. Continual learning results

(a)

(b)

Figure 4. (a) Visualization of the fault onset profile used to
generate data for the continual learning experiments. (b) Per-
formance (anomaly detection accuracy) of model configura-
tions across continual learning cycles.

In this section, we delve deeper into the experiments investi-
gating the capability of LLMs to learn continually in an on-
line setting. Specifically, we examine whether these LLMs
can improve their performance on the fly when provided with
feedback in the form of their own previous predictions along-
side the corresponding ground truth, using the data described
in Subsection 4.3. Figure 4a illustrates the onset of the fault
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Table 3. Fault Classification Performance Across Model and System Classification Architecture

Model Reference Data Representation Architecture Precision Recall F1-Score Accuracy

GPT-4o

Both Multi-LLM 0.48 0.94 0.59 0.56
Raw Data Multi-LLM 0.46 0.95 0.59 0.55

Descriptive statistics Multi-LLM 0.47 0.95 0.59 0.55
None Multi-LLM 0.46 0.94 0.59 0.56
None Single-LLM 0.49 0.76 0.58 0.69

Raw Data Single-LLM 0.49 0.73 0.58 0.68
Descriptive statistics Single-LLM 0.48 0.71 0.57 0.68

Both Single-LLM 0.47 0.74 0.56 0.67

GPT-4.1-nano

None Multi-LLM 0.29 0.95 0.44 0.29
Descriptive statistics Multi-LLM 0.29 0.96 0.43 0.29

Raw Data Multi-LLM 0.28 0.97 0.43 0.28
Both Multi-LLM 0.28 0.96 0.44 0.28

Descriptive statistics Single-LLM 0.37 0.36 0.36 0.66
None Single-LLM 0.37 0.35 0.36 0.67

Raw Data Single-LLM 0.35 0.36 0.35 0.67
Both Single-LLM 0.33 0.32 0.32 0.64

Rule-based NA NA 0 0 0 0.71

profile, while Figure 4b shows the progression of accuracy
achieved by the anomaly detection LLM over multiple cycles.
In this experiment, we use accuracy as the primary evaluation
metric rather than F1 score, as there are extended periods in
the dataset where no faults occur. During such periods, both
precision and recall, and consequently the F1 score, drop to
zero, providing limited insight.

Intuitively, as historical information accumulates, we would
expect detection performance to improve. The combination
of past predictions and their ground truth labels could serve
as in-context learning examples, enabling the LLM to refine
its internal representation of faults. However, contrary to this
expectation, our results (Figure 4b) show that most LLMs do
not exhibit effective continual learning. In fact, accuracy de-
clines in the early cycles and remains consistently low in later
ones. This trend suggests a growing confusion in the presence
of repeated fault events. From cycle 4 onward, when no faults
are present, the near-zero accuracy indicates a persistent bias
toward predicting faults, resulting in a high rate of false posi-
tives.

Moreover, most LLMs fail to correct this bias during fault-
free intervals, continuing to predict faults even when none
exist. An exception is observed for GPT-4o that is config-
ured to use only raw sensor data. Although its accuracy also
drops in the initial cycles, it begins to recover starting in cy-
cle 4, coinciding with the absence of faults, and gradually
returns to 100% accuracy. This pattern may suggest that the
LLM is incorporating feedback over time in a few-shot learn-
ing manner. However, this apparent improvement is brought
into question by the LLM’s failure to detect the final fault
event, during which it incorrectly predicts a normal opera-
tion.

These findings indicate that GPT-4o model relying on raw
data may be heavily influenced by trends in historical input,

potentially at the expense of sensitivity to current sensor read-
ings. The improvement in accuracy may reflect a form of in-
put pattern matching rather than true learning from feedback.
This supports our earlier hypothesis that while LLMs using
raw data can detect temporal patterns, they lack sufficient
grounding in system behavior to perform reliable anomaly
detection across changing conditions.

5.4. Discussion

In this study, we evaluated two large language models,
GPT-4.1-nano and GPT-4o, for fault detection in a sim-
ulated HVAC system. While the models demonstrated strong
potential, many LLMs with more explicit reasoning capa-
bilities remain unexplored. These alternatives may offer
improved performance but often involve higher computa-
tional costs and inference latency, which are important trade-
offs for real-time applications. In parallel, an important
comparison for future work lies in evaluating LLM-based
approaches against advanced non-LLM methods, such as
physics-informed models, rule-based expert systems, or tradi-
tional machine learning pipelines, which may offer different
tradeoffs of efficiency, usability, interpretability, robustness,
and modularity. For example, data-driven approaches may be
more generalizable if they’re trained on a large amount of his-
torical data while rule-based expert systems may be more in-
terpretable and reliable as they’re grounded in domain knowl-
edge.

Additionally, our prompt design in this work focused on pro-
ducing natural, user-like queries to align with practical us-
age patterns. Given the vast and non-exhaustive nature of
the prompt space, we limited our scope to a single, inter-
pretable prompt per setting. More sophisticated prompting
strategies, including few-shot prompting, tool use, or chain-
of-thought reasoning, represent valuable directions for future
exploration. It is also worth noting that prompt complexity it-
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self may act as a confounding factor when comparing single-
LLM versus multi-LLM architectures, since richer reasoning
styles (e.g., CoT) may yield disproportionate gains or penal-
ties depending on system organization.

Similarly, while we incorporated a mechanism for contin-
ual learning, more work is needed to study and develop a
robust adaptation mechanism over time as system behav-
ior evolves. With the pace of ongoing improvements in
LLMs, future models may significantly impact both reason-
ing capability and deployment feasibility as well. While
general-purpose LLMs offer flexibility and ease of inter-
action, domain-specific models or hybrid approaches could
yield greater transparency and alignment with engineering
practice. Exploring such domain-specific solutions, either
through fine-tuned models or tightly coupled physics–data
hybrids, represents another valuable research path.

Another adjacent direction for future work is to use the HVAC
simulator developed in this study to evaluate the ability of
LLMs to distinguish between true system faults and sensor
drift. This is a particularly challenging diagnostic task that
is common in real-world industrial systems. The simulator’s
ability to generate controlled, configurable fault and drift sce-
narios offers a useful platform to investigate how well LLMs
can reason about subtle differences in temporal patterns and
fault signatures. Advancing this capability would be an im-
portant step toward building LLM systems that are both accu-
rate and trustworthy in practical monitoring applications. Fi-
nally, connecting these findings more explicitly to real-world
industrial deployment remains an open challenge. Issues such
as system integration, safety assurance, regulatory compli-
ance, and operator trust needs to be addressed to ensure that
LLM-driven monitoring systems transition from controlled
studies into reliable, field-ready tools.

6. CONCLUSION

LLM-based systems show promise for fault detection in
sensor-driven industrial environments, offering advantages
in usability, explainability, and accessibility over traditional
methods. In our experiments, most LLMs either under per-
form or match the performance of simple rule-based statisti-
cal baselines in anomaly detection. For fault classification,
rule-based methods achieve higher accuracy, while LLMs
tend to perform better in precision and recall, highlighting
a nuanced trade-off between approaches. However, these dif-
ferences are often small and may not justify the higher com-
putational cost of LLMs. Initial results from continual learn-
ing experiments show minimal improvement, indicating that
further development is needed to realize adaptive capabilities.
Future work will focus on improving continual learning effec-
tiveness, exploring more advanced reasoning-oriented LLMs,
and designing hybrid systems that combine rule-based logic
with LLM-driven analysis to leverage the strengths of both.

NOMENCLATURE

Tin Indoor temperature
Tamb Ambient (outdoor) temperature
Tmean Mean ambient temperature
Tsupply Supply air temperature
Treturn Return air temperature
Qcool Cooling output
Qnom Nominal cooling capacity
Qair Airflow rate
Psuct Suction pressure of refrigerant
Pdisc Discharge pressure of refrigerant
P0 Base refrigerant pressure
Pcomp Compressor power consumption
Pnom Nominal compressor power
α Thermal gain coefficient
β Cooling effectiveness
γ1, γ2 Pressure scaling coefficients
ϕ Phase offset for ambient temperature
A Ambient temperature oscillation ampli-

tude
ϵ(t) Ambient temperature noise, N (0, σ2)
η(t) Compressor power variation, N (0, σ2

p)
f(t) Fault onset function
F (t) Time-varying fault impact
Fleak Refrigerant leak fault indicator
Fcomp Compressor fault indicator
Ffilter Filter blockage fault indicator
S Fault severity scalar
t0, t1 Fault ramp start and end times
τ Fault exponential time constant
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