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ABSTRACT

This contribution examines the usefulness of Acoustic Emis-
sions (AE) as a non-destructive testing (NDT) method for de-
tecting and distinguishing damages in carbon fiber reinforced
polymer (CFRP) structures. Despite the widespread use of
CFRP materials in various industries due to their favorable
strength-to-weight ratio, the susceptibility to concealed in-
ternal damages necessitates advanced inspection techniques.
Acoustic Emission, describing the use of ultrasonic waves
emitted during deformation or damage events, is a proven and
promising solution for real-time and reliable damage assess-
ment. The study focuses on comparing two approaches: 1) a
one-class Support Vector Machine (SVM) for initial damage
detection, followed by detailed damage classification, and 2)
a direct classification approach using five classes (four repre-
senting the material specific damage types and one for back-
ground noise). Both approaches undergo a systematic eval-
uation under diverse loading conditions to assess their relia-
bility. A comprehensive experimental setup subjects CFRP
specimens to controlled loading conditions, inducing various
damage types and severities. Signal analysis reveals char-
acteristic patterns associated with different damage modes,
including matrix cracking, fiber breakage, debonding, and
delamination. The investigation considers the influence of
loading conditions on the detection and classification results
to examine the robustness of the approach. The compari-
son between methodologies involves established metrics and
analyses the posterior probability of the trained models, con-
sidering the impact of loading conditions on performance.
The experimental results show AE’s effectiveness in detecting
and classifying damages in CFRP structures, offering insights
into technique sensitivity and specificity for different dam-
age types. These findings contribute new knowledge to the
NDT field, presenting a promising path for the advancement
of CFRP structural health monitoring and maintenance prac-
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tices in engineering applications. The study’s nuanced under-
standing of the strengths and limitations of the two classifica-
tion approaches, considering loading conditions, contributes
to the optimization of NDT strategies for diverse operation
scenarios.

1. INTRODUCTION

The industrial demand for carbon fiber reinforced plastics
(CFRP) has been steadily increasing over the past decades,
primarily due to its high strength-to-weight ratio. This
characteristic makes CFRP especially advantageous in the
aerospace sector, where it is used to replace heavier mate-
rials such as aluminum. Its widespread adoption is driven
not only by the need to reduce fuel consumption and carbon
dioxide emissions but also by the potential to extend mainte-
nance intervals and reduce overall operational costs (Zhang,
Lin, Vaidya, & Wang, 2023). In addition, CFRP plays a cru-
cial role in meeting climate targets across sectors including
automotive and renewable energy, where the material is used
in components like hydrogen pressure vessels and wind tur-
bine structures (Azeem et al., 2022; Olabi et al., 2021).

Replacing metals with CFRP introduces new challenges, par-
ticularly in monitoring and maintenance, due to the material?s
non-ductile failure behavior and anisotropic structure. Tra-
ditional visual inspection methods are inadequate for CFRP,
prompting the adoption of advanced Structural Health Mon-
itoring (SHM) techniques. Among these, Acoustic Emission
(AE) stands out as a passive non-destructive testing (NDT)
method that enables in-situ monitoring without injecting ex-
ternal energy. Acoustic Emission relies on ultrasonic waves
generated within the material during damage events. These
waves propagate through the structure and can be detected by
piezoelectric wafer active sensor (PWAS), allowing the iden-
tification and classification of damage mechanisms in real
time.

The increasing complexity and remote operation of modern
industrial plants, such as offshore wind farms, further em-
phasize the importance of reliable SHM systems. In such en-
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vironments, accessibility is limited and weather-dependent,
making reactive maintenance strategies costly and inefficient
(Tusar & Sarker, 2022). To address this, condition-based
maintenance strategies utilizing AE monitoring are developed
to schedule interventions before failure occurs, thereby re-
ducing downtime and enhancing operational efficiency (Ren,
Verma, Li, Teuwen, & Jiang, 2021; Colone, Dimitrov, &
Straub, 2019).

Carbon fiber reinforced plastics damage classification via AE
signals commonly involves extracting features from time-
frequency and frequency domains. Each type of damage,
delamination, matrix crack, debonding, and fiber breakage,
is associated with a characteristic frequency range, typically
between 10 to 500 kHz (Baccar & Soffker, 2017). Delamina-
tion, the separation of fiber layers, is observed in the lowest
frequency range, e.g., 30 to 90 kHz (Hamdi et al., 2013) and
50 to 150 kHz (Gutkin et al., 2011). This damage type is
additionally characterized by the existance of the extensional
and dominant flexural modes (Prosser, 1998; de Oliveira &
Marques, 2008; Baccar & Soffker, 2017). Matrix cracks,
which affect the resin matrix, are typically detected in the 100
to 250 kHz range (Oskouei, Heidary, Ahmadi, & Farajpur,
2012; Azadi, Sayar, Ghasemi-Ghalebahman, & Jafari, 2019),
while debonding, fiber-matrix separation, occurs between
170 to 350 kHz (Marec, Thomas, & El Guerjouma, 2008;
Yousefi, Ahmadi, Shahri, Oskouei, & Moghadas, 2014). A
extensional with higher propagation speed and flexural modes
are observed in the AE signals of matrix cracks (Johnson,
2000). Fiber breakage, the most severe form of damage,
manifests at the highest frequencies, reported between 270 to
500 kHz (Chelliah, Parameswaran, Ramasamy, Vellayaraj, &
Subramanian, 2019; Sayar, Azadi, Ghasemi-Ghalebahman,
& Jafari, 2018; De Groot, Wijnen, & Janssen, 1995).

The absolute frequency values vary with material and loading
conditions, the relative frequency order of damage mecha-
nisms remains consistent. In Sai Krishna, Raju, and Desarkar
(2024) damage mechanisms in CFRP are classified using a
convolutional neural network (CNN) with features based on
the short-time Fourier transform (STFT) of the related AE
signals. This approach reches an accuracy of 96.9 %. Liu
et al. (2023) classify the damage mechanisms matrix crack,
debonding, and fiber breackage based on features derived
from continuous wavelet transform (CWT) of the AE signals.
The trained CNN reaches an accuracy of 96.3 %. In Barile,
Casavola, Pappalettera, and Paramsamy Kannan (2022) the
damage mechanisms are classified by employing a CNN in
combination with features from Mel spectrograms of the
acoustic waveforms. The overall accuracy for all four dam-
age mechanisms is 97.9 %. Xue, Wang, Liang, Ma, and Zhou
(2025) classifiy AE signals measured during tensile tests of
fiber bundles and resin polymer. The classification of fiber
breakages and matrix cracks based on the signals peak fre-
quency reached an accuracy of 96.2 and 97.9 %. In the liter-

ature high accuracies in the classification of damage mecha-
nisms in CFRP using data driven methods are shown, but the
detection of relevant AE events is often ignored. Amplitude
threshold approaches for detection are unreliable due to the
exponential attenuation of ultrasonic waves in CFRP. There-
fore, the detection of damage events must be considered in
the classification, because only detected events can be clas-
sified. Additionally, studies show that classification accuracy
is influenced by the system’s operational conditions. For in-
stance, (Rothe, Wirtz, Kampmann, Nelles, & Softker, 2017),
(Wirtz, Beganovic, & Soffker, 2016) and (Wirtz, Beganovic,
& Soffker, 2019) demonstrate that AE signal classification
can be affected by load-induced changes, and reliability im-
proves through classifier fusion or probabilistic approaches.

This work presents an experimental study on AE signal de-
tection and classification in CFRP under controlled loading
conditions. The results of the detection and classification are
combined for a full damage assessment. The influence of
loading conditions on detection and classification reliability is
investigated by analyzing the posterior probabilities. In sec-
tion 2 the experimental setup, data acquisition process, and
labeling strategy are introduced. In section 3 signal process-
ing and feature extraction methods along with the machine
learning-based classification approach are discussed. In sec-
tion 4 detection and classification results using standard eval-
uation metrics are presented, while section 5 the work is con-
cluded with a summary and outlook.

2. DATA SET

The experiments are divided into two main phases: the initial
damage phase and the cyclic loading phase. In both phases,
CFRP specimens are used, consisting of three layers arranged
in a 90°/0°/90° orientation. The dimensions of the tested
CFREP plates for cyclic loading are 130 x 60 x 2 mm. The
specimens are equipped with piezoelectric sensors to detect
AE signals generated during damage events.

In the initial damage phase, the CFRP specimens are dam-
aged through indentation. The experimental procedure is de-
scribed in (Wirtz et al., 2019). Compared to (Wirtz et al.,
2019), the current set-up has been modified to accommodate
shorter specimens, and displacement is no longer used as the
control parameter due to the progressive degradation in ma-
terial stiffness (Wang & Zhang, 2020). Instead, the input am-
plitude of the power supply is controlled to maintain constant
loading conditions.

Different indentors are employed to simulate various damage
mechanisms. A conical indentor with an obtuse angle and a
diameter of 100 mm is used to apply bending loads, while a
smaller indentor with an acute angle and a diameter of 16 mm
is used to directly damage the matrix, simulating impact-type
damage (Baccar & Soffker, 2017). The CFRP specimens are
fixed using a clamping system to ensure repeatability during
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the indentation procedure. Depending on the indentor shape
and size, different damage mechanisms are induced.

Additionally, two- and three-point bending tests are con-
ducted. For these procedures, the CFRP specimens are fixed
at two or three support points, respectively, and bent until full
material failure occurs. These methods further diversify the
types of damage mechanisms captured during testing.

In the cyclic loading phase, previously damaged specimens
are clamped between a stationary bench vise and a slider. The
test rig shown in figure 1 converts a voltage sine signal into
a proportional current signal using a power supply, ensuring
constant excitation force (Liebeton, Soon, & Soffker, 2023).
Frequencies and amplitudes range from 2 to 6 Hz and 2 to
6 V, respectively. A crank mechanism converts rotary motion
into translatory motion to cyclically bend the specimen. Dis-
placement of the slider is monitored by a proximity sensor,
with measured values between 6 to 10 mm.

In both static and cyclic experiments, AEs are recorded con-
tinuously from the undamaged state through to full material
failure. PWASSs, each with a diameter of 10 mm and a thick-
ness of 1 mm, are bonded to the surface of the specimens.
These sensors transform mechanical stress waves into ana-
log electrical signals via the piezoelectric effect. The analog
signals are pre-amplified with high input impedance and low
output impedance to preserve signal quality, then digitized by
a field programmable gate array (FPGA) board with a 4 MHz
sampling frequency and 16-bit resolution (Dettmann, 2012).

The AE data are manually labeled based on literature-
described waveform and frequency content. Signal sections
containing no AE events are labeled as noise. This ap-
proach enables the development of a detailed and mechanism-
specific AE data set.

3. METHODS

The raw AE measurement data are processed using a multi-
stage signal processing and classification pipeline to extract
features and assign them to specific damage mechanisms.
The AE signals are continuously recorded and divided into
segments of 2'0 samples. To mitigate frequency artifacts
caused by signal segmentation, a half Hamming window is
applied to the first and last 2° samples of each segment.

Relevant AE events are first detected through signal energy
analysis in the frequency range of 10 to 500 kHz. This is
achieved by computing the STFT of the measurement data.
The STFT of a signal x(t) is defined as

Xr(orr) = | T an( - e, ()

where (¢t — 7) denotes the window function applied at time
7. The resulting spectral coefficients are used to compute the

signal energy over time. Thresholding is applied to identify
segments with high energy content in the defined frequency
range. These segments are manually analyzed and labeled
based on the known characteristics of AE signals for various
damage mechanisms.

Each identified AE event segment is transformed into two dis-
tinct sets of features. One is based on the fast Fourier trans-
form (FFT), the other on the CWT. For both methods, only
the frequency range of 10 to 500 kHz is considered.

The FFT transforms the time-domain signal z(n) into the fre-
quency domain and is defined as

N-1

Xp(k) =) z(n)e 7", )

n=0
with  wy = 27k/N,

The resulting FFT-based feature vector consists of 126 fea-
tures describing the frequency behavior within the relevant
frequency band.

The CWT is defined as

Xy (s, 7) = \}5/0; ()T <t - T) dt,  (3)

where W* is the complex conjugate of the wavelet function,
s is the frequency scale, and 7 is the translation in time. The
CWT provides a time-scale representation of the signal, of-
fering high frequency resolution at large scales and high time
resolution at small scales. The CWT-based feature vector is
derived from the column of the coefficient matrix with the
maximum overall value. The resulting vector contains 53 el-
ements.

k=0,1,..,N—1.

The detection and classification of AE events are realized
through variations of SVM. The classical support vector ma-
chine (SVM) is a binary supervised classifier that finds a hy-
perplane to separate two classes. The objective of the training
process is to maximize the margin between the hyperplane
and the support vectors, the data points closest to the decision
boundary. If data are not linearly separable, kernel functions
are employed to project the data into a higher-dimensional
space where linear separation is feasible. Slack variables can
be introduced to create soft-margin SVMs, enabling tolerance
for misclassifications and mitigating overfitting. Strategies
for extending SVMs to multi-class problems are used. In
the one against all (OAA) approach each class is compared
against all others, resulting in Noa4 = C classifiers for C
classes. The class with the highest decision value is selected.
The one against one (OAO): Every pair of classes is com-
pared, requiring Npo a0 = @ classifiers. The final class
decision is based on majority voting across all binary classi-
fiers.

For probabilistic classification, the decision value f of each
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Figure 1. Experimental set-up for cyclic loading, Chair Dynamics and Control, U DuE, Germany

SVM is transformed into a posterior probability 7;; using

1
" T Ty AT @

where A and B are parameters estimated by minimizing the
negative log likelihood of the training data ((Chang & Lin,
2011; Platt, 1999)). The overall class probabilities p; are
computed by solving the quadratic program proposed by (Wu,
Lin, & Weng, 2004)

N
1
min Z Z_(Tﬂpz’ —riip;)°, &)
i=1 j:j#i
N
where p; > 0,Vi, and Zpi =1.
i=1

In addition to supervised classification, an unsupervised one
class support vector machine (1C-SVM) is used and trained
only on a single class of data. The algorithms learns the
boundary that encompasses the majority class. Points far
from the decision boundary, particularly those close to the
origin, are considered anomalies. Kernel transformations are
also applicable in the one-class setting.

This contribution evaluates two approaches for AE signal de-
tection and classification, which are initially introduced in
(Liebeton & Soffker, 2025). The general framework is shown
in figure 2. The first approach is a direct distinction between
the four damage classes and noise. Detection and classifica-
tion is done in one step using a five class support vector ma-
chine (5C-SVM). In the second approach a 1C-SVM is first

Measurement data ]

|

Feature calculation

and classification:
five-class SVM

one-class SVM

!

Damage classification:
four-class SVM

!

Probability analysis

Damage detection: ]

Damage detection ]

Probability analysis

Figure 2. Detection and classification framework

used to separate noise from relevant AE signals. The non-
noise signals are then classified into one of the four damage
types using a four class support vector machine (4C-SVM).
Both approaches are trained and tested using CWT- and FFT-
based features. To enhance generalization and prevent over-
fitting, 10-fold cross-validation is applied. Each damage class
includes 390 labeled samples, of which 260 samples are used
for training and the remaining 130 samples are used for test-
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Figure 3. 5C-SVM direct classification results using FFT-
based features

ing. The noise class consists of 1040 samples for training and
520 samples for testing.

4. RESULTS

The two approaches and the two sets of features are evalu-
ated based on their combined performance in detection and
classification of AE events.

The direct classification results of the SC-SVM using FFT-
based features are shown in figure 3. The model is using
the OAA approach to combine the single SVM model. The
SVMs use a linear kernel and a regularization parameter of
0.0101. The model has perfect detection results as all noise
and damage events are correctly separated, but for the dam-
age class fiber breakage an accuracy of 84.6 % is achieved.
The best results of this approach is reached for the damage
class delamination. The combined accuracy for the detection
and classification is 96.5 %.

In figure 4 the direct classification results of the SC-SVM us-
ing CWT-based features are shown. The OAA strategy is em-
ployed to combine multiple SVM classifiers. Each SVM ap-
plies a linear kernel and uses a regularization parameter set to
0.0024. In direct comparison with the FFT-based features us-
ing the same approach, the CWT-based features reach higher
accuracies. One damage event is not being detected, but all
events containing noise are correctly classified. The lowest
accuracy with 96.2 % is obtained for the classification of ma-
trix cracks and the highest with 98.5 % for the two classes
delamination and debonding. With an overall accuracy of
98.8 % the CWT-based features outperform the FFT-based
features in the direct classification apporach.

The combined results of the 1C-SVM detection and 4C-SVM
classification of detected events using FFT-based features are
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Figure 4. 5C-SVM direct classification results using CWT-
based features

shown in figure 5. The 4C-SVM classifier uses the OAA
method. Each SVM has a linear kernel with a regularization
parameter of 0.1096. The separated detection and classifica-
tion approach using FFT-based features is performing better
than the direct classification approach. The detection accu-
racy is 100 %. The lowest accuracy with 86.9 % is obtained
for the damage class fiber breakage. The combined accuracy
is 97.4 %.
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Figure 5. Combined 1C-SVM detection and 4C-SVM classi-
fication results using FFT-based features

In figure 6 the combined results of the 1C-SVM detection and
4C-SVM classification of detected events using CWT-based
features are shown. The trained 4C-SVM classifier is using
the OAA method. Each SVM employs a linear kernel with
a regularization parameter of 0.0060. The detection of dam-
age events and classification of delaminations is performed
with an accuracy of 100 %. In total only seven missclassi-
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fications are observed for the classes matrix crack, debond-
ing, and fiber breakage. For the combined 1C-SVM detec-
tion and 4C-SVM classification using CWT-based features
the highest overall accuracy is achievd with 99.3 %. Neglect-
ing the detection, the classification accuracy is 98.6 %, which
ist slightly higher than the reported results in the literature.
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Figure 6. Combined 1C-SVM detection and 4C-SVM classi-
fication results using CWT-based features

Both approaches and sets of features are able to success-
fully separate damage events from noise, only in the case
of directly classifying AE signals based on CWT features
one damage event is not detected. An increased number
of Fiber breakage missclassifications can be observed us-
ing FFT-based features. The AE signature of fiber breakage
events is generally in the range of 10 ps and the evaluated time
window has a length of 256 ps. Therefore, the FFT is not al-
ways able to filter the required information of highly transient
signals, but contains information of the entire window dura-
tion enabling detection of multiple damage events within the
windowed signal. The two stage approach of detection and
classification outperforms the direct classification approach
and the CWT-based features lead in both approaches to bet-
ter results than using only features from FFT analysis.

The evaluation of probability estimations with respect to the
loading conditions is performed for each damage mechanism.
Because of the better performance of the CWT-based fea-
tures, only the probability estimations of the separated de-
tection and classification approach and the direct classifica-
tion approach using CWT-based features are presented. In
the case of multiple damage mechanisms of the same class
being detected at the same excitation frequency and excita-
tion voltage combination, the average probability estimation
is calculated. If no damage is detectable at a specific com-
bination of excitation frequency and excitation voltage, the
probability estimation is zero.

In figure 7 the probability estimations depending on fre-
quency and input voltage for SC-SVM direct classification
results using CWT-based features are visualized by the color
code. In the range of 1 to 2 V and 2 Hz, and starting from
3 V and 6 Hz to 4.5 V and 2 Hz no delaminations are de-
tectable. In the enclosed region delaminations are detected
with high probabilities. In the range of 2 to 2.5 V and 2.5 to
3.5 Hz matrix cracks are detected with a probability of 60 %.
The surrounding regions in the range of 1.5 to 4.5 V and 2
to 6 Hz the probability is at 100 %. Debonding is detected
at 2 Hz in the range of 2 to 5V, at 3 Hz and 3 V, 5 Hz and
2.5V, and 3 Hz and 1 V. Fiber Breakages are detectable in
the range of 1.5to 4 V and 2.5 to 6 Hz, at 3 Hz and 5 V, and
2Hzand 5.5 V.

The probability estimations depending on frequency and in-
put voltage for combined 1C-SVM detection and 4C-SVM
classification results using CWT-based features are shown in
figure 8. The only difference in the detection of delamina-
tions can be observed at 2.5 Hz and 2 V, where the separated
detection and classification approach shows higher probabil-
ities. Differences in matrix crack detection are observable in
the range of 2 to 2.5 V and 2.5 to 3.5 Hz, where the direct
classification approach shows a lower probability.

The high accuracy of the chosen models lead to high proba-
bility estimations in specific ranges of excitation frequencies
and excitation voltages. The combinations of excitation fre-
quencies and excitation voltages with probability estimations
of zero indicate that under certain loading conditions dam-
ages are not detectable.

5. CONCLUSIONS AND OUTLOOK

The comparison of direct classification and separated detec-
tion and classification in combination with FFT- and CWT-
based features shows, the chosen CWT-based features in
combination with separated detection and classification out-
performs the direct classification approach and FFT-based
features. The highest overall accuracy is achievd for the com-
bined 1C-SVM detection and 4C-SVM classification using
CWT-based features with 99.3 %. The evaluation of proba-
bility estimations show a dependency between detection and
classification performance and loading conditions.

In future works an online detection and classification loop can
be established which switches between detection and classifi-
cation models based on their performance at the given loading
conditions. Additionally the occurrence of multiple damage
mechanisms at the same time are to be investigated to further
improve monitoring reliability.
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