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ABSTRACT

Scientific Machine Learning (SciML) integrates physics
and data into the learning process, offering improved
generalization compared with purely data-driven models.
Despite its potential, applications of SciML in prognos-
tics remain limited, partly due to the complexity of in-
corporating partial differential equations (PDEs) for age-
ing physics and the scarcity of robust uncertainty quan-
tification methods. This work introduces a Bayesian
Physics-Informed Neural Network (B-PINN) framework
for probabilistic prognostics estimation. By embedding
Bayesian Neural Networks into the PINN architecture,
the proposed approach produces principled, uncertainty-
aware predictions. The method is applied to a trans-
former ageing case study, where insulation degradation
is primarily driven by thermal stress. The heat diffu-
sion PDE is used as the physical residual, and different
prior distributions are investigated to examine their im-
pact on predictive posterior distributions and their ability

Ibai Ramirez et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

to encode a priori physical knowledge. The framework
is validated against a finite element model developed and
tested with real measurements from a solar power plant.
Results, benchmarked against a dropout-PINN baseline,
show that the proposed B-PINN delivers more reliable
prognostic predictions by accurately quantifying predic-
tive uncertainty. This capability is crucial for support-
ing robust and informed maintenance decision-making
in critical power assets.

1. INTRODUCTION

Scientific Machine Learning (SciML) is an emerging
interdisciplinary field that integrates physics and data
within the learning process (Karniadakis et al., 2021).
Several SciML solutions have been proposed to address
scientific and engineering problems, including Physics-
Informed Neural Networks (PINNs) (Raissi, Perdikaris,
& Karniadakis, 2019a), Kolmogorov Arnold Networks
(KANs) (Liu et al., 2025), Neural operators (Kovachki et
al., 2023), Physics-informed Neural Operators (Z. Li et
al., 2024), and their variants (Toscano et al., 2025).

In the area of Prognostics & Health Management (PHM),
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hybrid prognostics models have been widely explored
(Aizpurua & Catterson, 2015; Guo, Li, & Li, 2020; Zio,
2022), which are conceptually aligned with SciML prin-
ciples (Xu, Kohtz, Boakye, Gardoni, & Wang, 2023).
These approaches integrate physics-of-failure models
with machine learning (ML) methods through (i) sequen-
tial configurations, i.e. connect physics model outcomes
with ML models (Arias Chao, Kulkarni, Goebel, & Fink,
2022) or vice-versa (Daigle, Roychoudhury, & Bregon,
2015), and (ii) parallel configurations, where physics
and ML models are used simultaneously and their out-
comes are fused, e.g. for error-correction configurations
(Alcibar, Aizpurua, Zugasti, & Peñagarikano, 2025).

The focus of this work is on SciML approaches that learn
the dynamics of the physics model along with the ML
model. Namely, PINNs focus on the use of Neural Net-
work (NN) architectures, and they learn to solve partial
differential equations (PDE) through modifications in the
NN loss function (Raissi et al., 2019a). Despite their
promise, PINN-based solutions for PHM remain limited
(Xu et al., 2023). There have been solutions focused
on battery prognostics through imposing a monotonic
degradation constraint in the loss function (F. Wang,
Zhai, Zhao, Di, & Chen, 2024) and transformer prognos-
tics through heat diffusion PDEs (Ramirez et al., 2025).

Other relevant hybrid prognostics methods have fo-
cused on the integration of principled models in a Re-
current Neural Network for Li-Ion battery prognostics
(Nascimento, Viana, Corbetta, & Kulkarni, 2023). The
approach captures epistemic uncertainty through varia-
tional layers to estimate reduced-order model parame-
ters. Similarly, (Fernández, Chiachı́o, Chiachı́o, Barros,
& Corbetta, 2023) proposed a physics-guided Bayesian
Neural Network (BNN) for reinforced concrete columns
under lateral loading, using Approximate Bayesian Com-
putation for robust uncertainty quantification.

It can be observed that PINN-based solutions for PHM
have been focused on deterministic predictions. This is
aligned with the observation that, while the progress and
application of ML and AI models is rapidly increasing
in different scientific and engineering areas, in contrast,
the development of ML reliability assessment methods
are relatively underdeveloped. In the context of fail-
ure prognostics, uncertainty quantification (UQ) is essen-
tial for reliable future ageing predictions (Sankararaman,
2015). To this end, different UQ methods have been
developed, including state-space models incorporating
Bayesian principles (Daigle et al., 2015), Gaussian Pro-
cess based approaches (Biggio, Wieland, Chao, Kasta-
nis, & Fink, 2021), Conformal Prediction for prognostics
(Javanmardi & Hüllermeier, 2023), and Bayesian Convo-
lutional NNs (Alcibar, Aizpurua, & Zugasti, 2024). For

a complete picture of UQ for prognostics, refer to an ex-
tensive tutorial (Nemani et al., 2023) and benchmarking
studies (Basora, Viens, Chao, & Olive, 2025).

Within the SciML community, extensions of PINNs
with UQ have been explored by replacing deterministic
NNs with BNNs, leading to Bayesian-PINNs (B-PINNs)
(Linka et al., 2022). More broadly, Bayesian deep learn-
ing integrated with physics principles has shown solid
and reliable results, not only for PINNs (Flores, Graf,
Protopapas, & Pichara, 2025), but also for Neural Op-
erators (Garg & Chakraborty, 2023) and KANs (Gao &
Karniadakis, 2025). Other principled UQ alternatives for
PINNs have focused on the modification of the output
layer with a Gaussian process (J. Li et al., 2024). Refer
to (Psaros, Meng, Zou, Guo, & Karniadakis, 2023) for
an extensive review.

Additionally, there have been studies that focused on the
development of wrapper models that operate as an add-
on to existing PINN models for UQ, such as Epistemic-
PINN (EPINN), which are trained through Hamiltonian
Monte Carlo (HMC) methods (Nair, Jacob, Howard,
Drgona, & Stinis, 2025) or Conformal Prediction PINNs
(C-PINNs), which provides guaranteed uncertainty esti-
mates (Podina, Rad, & Kohandel, 2024).

Simpler yet effective UQ modelling techniques include
Monte Carlo dropout (Gal & Ghahramani, 2016) and
deep ensemble methods (Lakshminarayanan, Pritzel, &
Blundell, 2017), also used for PINNs, i.e. dropout-PINN
(dPINN) (Zhang, Lu, Guo, & Karniadakis, 2019) and
deep ensemble PINNs (EnsPINN) (Jiang, Wang, Wen,
Li, & Wang, 2023; Zou, Wang, & Karniadakis, 2025).

Table 1 summarizes representative SciML and hybrid
PHM methods, highlighting if they incorporate UQ, ad-
here to SciML principles, their underlying method, and
the specific PHM application considered (if addressed).

Table 1. Comparison of SciML and hybrid PHM meth-
ods, including relevant features for this work.

Method UQ SciML Method PHM

(Fernández et al., 2023) ✓ ✗ BNN Material
(Nascimento et al., 2023) ✓ ✗ RNN Battery
(F. Wang et al., 2024) ✗ ✓ PINN Battery
(Ramirez et al., 2025) ✗ ✓ PINN Transformer
(Linka et al., 2022) ✓ ✓ B-PINN ✗
(Podina et al., 2024) ✓ ✓ C-PINN ✗
(Nair et al., 2025) ✓ ✓ EPINN ✗
(Zhang et al., 2019) ✓ ✓ dPINN ✗
(Zou et al., 2025) ✓ ✓ EnsPINN ✗
Ours ✓ ✓ B-PINN Transformer

In this context, it can be observed that, focused on prog-
nostics activities, existing PINN models have been based
on deterministic models. In the broader SciML commu-
nity, uncertainty-aware PINN methods have been pro-
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posed, but to the best of authors’ knowledge, tested on
synthetic controlled problems without addressing PHM
problems.

Accordingly, the main contribution of this work is the
development of a Bayesian-PINN model for electrical
transformer prognostics. The proposed approach pre-
dicts a full posterior distribution for each spatiotempo-
ral coordinate, which enables the inference of the max-
imum likelihood estimate along with the confidence of
the model on the prediction.

The influence of different sources of uncertainty is thor-
oughly investigated to determine the most appropriate
hyperparameters. Furthermore, the robustness of the de-
signed B-PINN model is evaluated with respect to noise
of the input and residual data points. The methodology
is validated on a real transformer case study using proba-
bilistic evaluation metrics. Obtained results demonstrate
that the proposed B-PINN (i) delivers more accurate re-
sults than the dropout-PINN, with the added flexibility
of specifying prior knowledge, and (ii) produces more
reliable predictions than vanilla PINN model due to the
probabilistic predictions and inferred uncertainty levels.

The remainder of this article is organized as follows.
Section 2 provides background theory to understand
transformer thermal and ageing modelling. Section 3 in-
troduces the proposed approach. Section 4 presents the
case study. Section 5 presents the results, and finally,
Section 6 concludes.

2. POWER TRANSFORMER THERMAL AND AGEING
MODELLING

Transformers are key assets for the reliable operation of
the power grid. The increasing penetration of renew-
able energy sources (RESs) to the grid affects the trans-
former’s health (Aizpurua et al., 2023). The main in-
sulating material for oil-immersed transformers is paper
immersed oil, and their main failure mode is the insula-
tion degradation. The insulating paper is made of cel-
lulose polymer and the degree of polymerization deter-
mines the strength of the insulating paper (International
Electrotechnical Commission, 2018). The insulation pa-
per degradation is directly caused by the thermal stress.

Accordingly, this section reviews the main transformer
thermal modelling steps, including an oil temperature
estimation stage (Section 2.1) and subsequent winding
temperature estimation stage, which is used to calcu-
late the hottest-spot temperature (HST), i.e. highest in-
sulation temperature (Section 2.2). Finally, the thermal
model is connected to the insulation aging assessment
model, which is used to estimate the loss of life of the
insulation (Section 2.3).

2.1. Spatiotemporal Oil Temperature Modelling

The spatial distribution of oil and winding temperature
is key for the cost-effective transformer health manage-
ment. To capture this, a thermal modelling approach is
developed based on partial differential equations (PDE).
The heat diffusion PDE is considered to model the tem-
poral and spatial evolution of the transformer oil temper-
ature (ΘO(x, t)). Due to the transformer oil characteris-
tics, radiative heat diffusion is considered and not con-
vection. The general form of the one-dimensional heat
diffusion equation is defined as (Ramirez et al., 2025):

k
∂2ΘO(x, t)

∂x2
+ q(x, t) = ρcp

∂ΘO(x, t)

∂t

∂2ΘO(x, t)

∂x2
+

1

k
q(x, t) =

1

α

∂ΘO(x, t)

∂t

(1)

where x, t ∈R are the independent variables, which de-
note position [m] and time [s], respectively, ΘO(x, t)
is given in Kelvin [K], k is the thermal conductivity
[W/m.K], cp is the specific heat capacity [J/kg.K], ρ is
the density [kg/m3], q(x, t) is the rate of heat generation
[W/m3], and α = k

ρcp
is the thermal diffusivity [m2/s].

Figure 1 shows the thermal parameters of the transformer
of the heat diffusion model (Ramirez et al., 2025), which
considers the heat source, q(x, t), and the convective heat
transfer, h(ΘO(x, t)−ΘA(t)).

Transformer
tank

0

0

H

q (x,t)

ΘO 
(0,t) = ΘA 

(t)

ΘO 
(H,t) = ΘTO 

(t)

h (ΘO 
(x,t) - ΘA(t))k

Δt

x

t

Figure 1. Transformer heat diffusion model.

The evolution of the heat source in space and time,
q(x, t), is defined as follows:

q(x, t) = P0 + PK(t)− h (ΘO(x, t)−ΘA(t)) (2)

where ΘA(t) is the ambient temperature, h is the con-
vective heat transfer coefficient, P0 is the no load losses
[W], and PK(t) is the load losses, defined as follows:

PK(t) = K(t)2µ, (3)

where K(t) is the load factor [p.u.], and µ is the rated
load losses [W].

The challenge is to accurately model the transformer oil
temperature vertically along its height H (Figure 1). It
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can be observed that the spatial distribution is considered
along the vertical axis (x). It is assumed that ΘO(x, t) is
equal to ΘA(t) at the bottom (x=0) and ΘTO(t) at the
top (x=H). Namely, these are the Dirichlet boundary
conditions of the PDE that is going to be solved:

ΘO(0, t) = ΘA(t)

ΘO(H, t) = ΘTO(t)
(4)

2.2. Hotspot Temperature (HST) Modelling

The HST is the most critical thermal indicator. How-
ever, direct measurements are difficult and expensive.
Generally the HST value, ΘH(t), is estimated indirectly
from the top-oil temperature (TOT), ΘTO(t), defined as
(International Electrotechnical Commission, 2018):

ΘH(t) = ΘTO(t) + ∆ΘH(t) (5)

where ∆ΘH(t) is HST rise over TOT and t∈R is time.

With the spatiotemporal oil temperature estimate
Θ̂O(x, t), the winding temperature distribution,
Θ̂W (x, t), is defined as follows:

Θ̂W (x, t) = Θ̂O(x, t) + ∆ΘH(t) (6)

where, x, t ∈R are the position and time, respectively,
Θ̂O(x, t) is the spatiotemporal oil temperature esti-
mate. The hottest spatial temperature in Eq. (6) at each
time instant t, corresponds to the HST in Eq. (5), i.e.
max(Θ̂W (·, t))=ΘH(t).

∆ΘH(t) is the HST rise over TOT, which is given by:

∆ΘH(t) = ∆ΘH1(t)−∆ΘH2(t) (7)

where ∆ΘH1
(t) and ∆ΘH2

(t) model the oil heat-
ing considering the HST variations defined as follows
(International Electrotechnical Commission, 2018):

d∆ΘHi(t) = υi [βiK(t)y −∆ΘHi(t)] (8)

where K(t) is the load factor [p.u.], y is the wind-
ing exponent constant, which models the loading expo-
nential power with the heating of the windings, i={1,
2}, υ1=∆t/k22τw, β1=k21∆ΘH,R both for i=1, and υ2

=k22∆t/τTO, β2=(k21 -1)∆ΘH,R both for i=2. ∆t=t -
t′, τw and τTO are the winding and oil time constants,
k21 and k22 are the transformer thermal constants, and
∆ΘH,R is the HST rise at rated load. The operator d de-
notes a difference operation on ∆t, such that d∆ΘHi(t)

=∆ΘHi(t)-∆ΘHi(t
′) also for i={1, 2}. To guarantee nu-

merical stability, ∆t should be small, never greater than
half of the smaller time constant.

Under steady state, the initial condition, ΘH(0), can be
defined as:

ΘH(0)=ΘTO(0)+k21∆ΘH,RK(0)y−(k21−1)∆ΘH,RK(0)y

(9)

Eq. (9) allows iteratively estimating the next HST values,
ΘH(n∆t), n ∈ Z+, using Eqs. (5), (7), and (8).

2.3. Ageing Assessment

The IEC 60076-7 standard defines insulation ageing ac-
celeration factor at time t, V (t), as (International Elec-
trotechnical Commission, 2018):

V (t) = 2(ΘH (t)−98)/6 (10)

Using the spatiotemporal winding temperature
Θ̂W (x, t), the ageing acceleration factor at time t
and position x, V (x, t), can be defined as:

V (x, t) = 2(Θ̂W (x,t)−98)/6 (11)

The IEC 60076-7 assumes an expected life of 30 years,
with a reference HST of 98◦C (International Electrotech-
nical Commission, 2018). The loss of life (LOL) at loca-
tion x and time t can be defined as:

LOL(x, t) =

∫ t

0

V (x, t)dt (12)

Consequently, the LOL at discrete time L∆t and location
x can be obtained by summing the ageing (cf. Eq. (11))
evaluated at the same time instants:

LOL(x, L∆t) =

L∑
n=0

V (x, n∆t) (13)

where n,L ∈Z+.

LOL can be converted into a recurrence relation for re-
maining useful life estimation (Aizpurua et al., 2023).

3. PROBABILISTIC AGEING APPROACH BASED ON
BAYESIAN PINNS

The proposed transformer ageing estimation approach is
based on a probabilistic spatiotemporal thermal stress
model coupled with an ageing estimation model, as il-
lustrated in Figure 2. The thermal model is formu-
lated using a Bayesian-PINN, which estimates the spa-
tiotemporal oil temperature Θ̂o(x, t). This estimate is fed
into an empirical winding temperature estimation model,
that computes the spatiotemporal winding temperature,
Θ̂w(x, t). Finally, the winding temperature is connected
to an empirical insulation ageing model, which calcu-
lates the probabilistic ageing estimate, p(V̂ (x, t)).

For clarity, this section focuses on the B-PINN approach.
Figure 3 shows the proposed method, which integrates
PINNs with Bayesian inference by replacing the deter-
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Figure 2. Overall framework for probabilistic transformer insulation ageing estimation. The Bayesian PINN-based oil
temperature model is coupled with an empirical winding temperature model and an empirical insulation ageing model.

Inputs

Output

BC and IC Loss

R
e

s
id

u
a

l 
L

o
s

s

Total Loss

Bayesian Neural Network

Physics

Figure 3. Proposed Bayesian-PINN approach for the probabilistic spatiotemporal transformer thermal model.

ministic NNs in PINNs with BNNs. Accordingly, Sec-
tion 3.1 introduces PINN basics, Section 3.2 defines
BNNs, and Section 3.3 describes the B-PINN approach.

3.1. PINN basics

PINNs were introduced with the goal of encoding PDE-
based physics in ML models (Raissi, Perdikaris, & Kar-
niadakis, 2019b), taking advantage of the ability of NNs
to act as universal approximators (Wright et al., 2022).
A general PDE can be written as (Anagnostopoulos,
Toscano, Stergiopulos, & Karniadakis, 2024):

d{u(x, t)} = f(x, t) (14)

where x, t∈R denote position and time, u(x, t) is the un-
known solution, d is the differential operator, and f(x, t)
is a forcing function introducing external influences.

PINNs consist of the NN part, in which the inputs de-
fine temporal (t∈R) and spatial coordinates (x∈R for
one-dimensional cases) for the initial conditions (IC) and
boundary conditions (BC). The NN output is an approx-
imated PDE solution at the space and time coordinates,
denoted û(x, t). This is calculated through the iterative
application of weights (w), biases (b), and non-linear ac-
tivation functions (σ) over the input. Namely, the inputs
are connected through neurons, where they are multi-

plied with the weights and summed with the bias term.
Finally, the weighted sum is passed through an activa-
tion function (σ). Subsequently, the outcome û(x, t) is
post-processed via automatic differentiation to compute
the derivatives in space and time at certain collocation
points (CP), generated via random sampling in the inte-
rior of the domain. The PINN is trained at these CPs by
minimizing the residuals of the underlying PDE.

The loss function, L(θ, λ0, λb, λr), incorporates the pre-
diction error of the NN at IC and BC, and the residual of
the PDE estimated via automatic differentiation at CP:

L(θ, λ0, λb, λr) = L0(θ, λ0)+Lb(θ, λb)+Lr(θ, λr) (15)

where θ ={w, b} are the weights and bias terms of the
NN, and L0(θ, λ0),Lb(θ, λb), and Lr(θ, λr) are, re-
spectively, the loss terms corresponding to IC, BC, and
the residual of the PDE with their corresponding weights,
λ0, λb, and λr, defined as follows:

L0(θ, λ0) = λ0
1

N0

N0∑
i=1

|û(xi, 0)− u(xi, 0)|2 (16)

Lb(θ, λb) = λb
1

Nb

Nb∑
i=1

|û(xi, ti)− u(xi, ti)|2 (17)

5



Annual Conference of the Prognostics and Health Management Society 2025

Lr(θ, λr) = λr
1

Nr

Nr∑
i=1

|(r(xi, ti)|2 (18)

where N0, Nb, and Nr are, respectively, the number of
IC, BC, and residue points, while u(xi, ti) and r(xi, ti)
denote the known solution and the residual of PDE, for
each training point i defined at the coordinates (xi, ti).
According to the PDE defined in Eq. (14), the residual
r(x, t) is defined as follows:

r(x, t) = d{u(x, t)} − f(x, t) (19)

Unlike classical NNs, which only minimize the predic-
tion error at measurement points, PINNs enforce gov-
erning physics throughout the domain.

Minimizing the loss function in Eq. (15) using a suitable
optimization algorithm provides an optimal set of NN pa-
rameters θ={w, b}. That is, approximating the PDE be-
comes equivalent to finding θ values that minimize the
loss with a predefined accuracy. Overall, the key training
parameters include: number of neurons and number of
layers, number of CP, activation function, and the opti-
mizer. Finding the correct solution requires knowing IC
and BC. Additionally, random locations (xi, ti), named
CP, are used to evaluate the residual loss in Eq. (18).

The main motivation for using PINNs over numerical
methods is the computational effort and adaptability to
different solutions. Numerical models require a mesh
of parameters to model and evaluate the PDE. As for
PINNs, there is no need to define the whole mesh.

3.2. Bayesian Neural Networks basics

Bayesian Neural Networks (BNNs) aim to estimate the
posterior parameter distribution P (θ|D), from a training
dataset D = {x(i),y(i)}, of a set of NN parameters θ:

P (θ|D) =
P (D|θ)P (θ)

P (D)
(20)

where P (D|θ) is the likelihood, P (θ) is the prior, i.e.
prior NN parameters knowledge expressed as a PDF over
θ, and P (D) is the marginal likelihood.

The likelihood is often estimated the individual product
of pointwise estimated likelihoods pi(D|θ) based on the
normal distribution N(µ, σ) defined as follows:

P (D|θ) =
N∏
i=0

p(y(i)|x(i),θ) (21)

p(y(i)|x(i),θ) =
1√
2πσ

exp(−||xi − x(ti)||2

2σ2
) (22)

The selection of a good prior distribution, P (θ), for
BNNs is challenging (Fortuin, Garriga-Alonso, van der
Wilk, & Aitchison, 2021). The most common choice is
to use a non-informative prior, which follows a Gaus-
sian distribution with mean zero and unit variance,
N (0, 1), i.e. isotropic Gaussian prior. In addition to the
isotropic Gaussian prior, alternative priors implemented
in this work include Spike-and-Slab (SS) prior (Williams,
1995), which is defined as follows:

P(θ)SS=

d∏
i=1

[
πN (θi; 0, σ

2
1)+(1−π)N (θi; 0, σ

2
2)
]

(23)

where π ∈ (0, 1) is the mixing coefficient, σ1 and σ2

correspond to the variance of the two Gaussian distribu-
tions, with σ2

1 ≫ σ2
2 , and d is the dimensionality of θ.

The first component (slab) is a wide Gaussian that allows
for larger parameter values, while the second (spike) is a
narrow Gaussian centered at zero, encouraging sparsity.
This prior combines flexibility with regularization by al-
lowing most weights to be close to zero while allowing a
few to have large magnitudes.

In addition, the Laplace prior will be also implemented
(Williams, 1995), defined as follows:

P (θ)Laplace =

d∏
i=1

λ

2
exp (−λ|θi|) (24)

where λ > 0 is the scale parameter, and d is the dimen-
sionality of θ. The Laplace prior also promotes sparsity
due to its sharp peak at zero and heavier tails compared
to the non-informative Gaussian prior.

The analytical posterior in BNNs, p(θ|D), is intractable,
and therefore approximation methods are required. In
this work, variational inference (VI) is used to approx-
imate the true posterior with a variational distribution
q(θ|ϕ) of known functional form by minimizing the
Kullback–Leibler (KL) divergence between them. Since
the true posterior cannot be computed directly, this mini-
mization is performed indirectly by maximizing the Evi-
dence Lower Bound (ELBO), which includes a KL diver-
gence term between the variational distribution and the
prior p(θ). The corresponding optimization objective is
defined as follows:

L(D,ϕ) = KL[q(θ | ϕ) ∥ p(θ)]−Eq(θ|ϕ)[log p(D | θ)]
(25)

The first term is the KL divergence between the varia-
tional distribution q(θ|ϕ) and the prior p(θ) (known as
the complexity cost). The second term is the expected
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value of the likelihood with respect to the variational dis-
tribution (known as the likelihood cost). The cost func-
tion can be also written as:

L(D,ϕ) = Eq(θ|ϕ) [log q(θ|ϕ)]
− Eq(θ|ϕ) [log p(θ)]− Eq(θ|ϕ) [log p(D|θ)]

(26)

It can be observed from Eq. (26) that loss terms are
expectations with respect to the variational distribution
q(θ|ϕ). Therefore, the cost function can be approxi-
mated by Monte Carlo sampling, drawing N samples
θ(i) from q(θ|ϕ):

L(D,ϕ)≈ 1

N

N∑
i=1

[
log q(θ(i)|ϕ)−log p(θ(i))−log p(D|θ(i))

]
(27)

Throughout this paper, the variational posterior is as-
sumed to follow a Gaussian distribution ϕ = (µ,σ),
where µ is the mean vector of the distribution and σ is
the standard deviation vector.

3.3. Bayesian PINNs

Bayesian PINNs (B-PINNs) extend standard PINNs by
replacing the deterministic NN with a Bayesian NN.
This enables the estimation of epistemic uncertainty,
which reflects the model’s lack of complete knowl-
edge (Kendall & Gal, 2017). In practice, epistemic
uncertainty is quantified by placing probability density
functions (PDFs) over the BNN parameters.

The main outcome of interest in the B-PINN approach
is the posterior distribution. This is calculated following
the Bayes rule (cf. Eq. (20)). Namely, the prior distribu-
tion is assumed to be given based on a priori knowledge
(i.e., Gaussian, Spike-and-Slab, or Laplace). The likeli-
hood, P (D|Θ), is estimated for the initial point, bound-
ary condition points, and residual samples assuming a
Gaussian distribution (cf. Eq. (22)), defined as follows:

p(u0|x0,θ
(i)) =

N0∏
i=1

1
√
2πσ0

exp

(
−
∥û(x0, 0;θ(i))− u0∥2

2σ2
0

)

p(ubc|xbc, tbc,θ
(i))=

Nbc∏
i=1

1
√
2πσbc

exp

(
−
∥̂u(xbc, tbc;θ

(i))−ubc∥2

2σ2
bc

)

p(r(xf , tf ;θ
(i))) =

Nf∏
i=1

1
√
2πσf

exp

(
−
∥r(xf , tf ;θ

(i))∥2

2σ2
f

)
(28)

where σ0, σbc, and σf denote the standard deviation of
initial, boundary, and residual points.

For computational tractability and efficiency, the log-

likelihood terms are considered by taking the logarithm
of Eq. (28). Subsequently, the Monte Carlo ELBO loss
defined for a generic BNN [cf. Eq. (27)], is adapted for
B-PINN posterior inference:

L(i) = log q(θ(i)|w)− log p(θ(i))− λ0 log p(u0|x0,θ
(i))

− λb log p(ubc|xbc, tbc,θ
(i))− λr log p(r|xf , tf ,θ

(i))

(29)

This process results in the approximation of the varia-
tional posterior distribution q(θ|w). The training process
of the B-PINN approach is shown in Algorithm 1.

Algorithm 1 B-PINN Training via Variational Inference

1: Input: Collocation points (xf , tf ), initial con-
dition data (x0, u0), boundary condition data
(xbc, tbc, ubc), prior distribution p(θ)

2: Initialize variational parameters w = {µ,σ} for θ
3: while not converged do
4: Sample θ(i) ∼ q(θ|w) via reparameterization

trick
5: Evaluate predicted solution: û(x, t;θ(i))
6: Compute residual: r(xf , tf ;θ

(i)) =

N [û](xf , tf ;θ
(i))− f(xf , tf )

7: Evaluate log-likelihood terms taking the log of
Eq. (28)

8: Evaluate prior log-probability: log p(θ(i))
9: Evaluate variational density: log q(θ(i)|w)

10: Compute Monte Carlo estimate of ELBO loss
via Eq. (29)

11: Update w = {µ,σ} using gradient ∇wL(i)

12: Return: Learned variational posterior q(θ|w)

4. CASE STUDY & EXPERIMENTS

The case study examines the lifetime of a distribution
transformer installed in a floating solar power plant in
Spain (Aizpurua et al., 2023). The transformer’s name-
plate parameters are summarized in Table 2.

Table 2. Transformer parameter values.

Parameter Value
Rating [kVA], V1/V2 1100, 22000/400

R=Load losses/No load losses [W] 9800/842
∆ΘH,R [◦C] 15.1

k21, k22 2.32, 2.05
τ0, τw [min.] 266.8, 9.75

The dataset was preprocessed by removing variables
without measurements, duplicate entries, and incorrect
sensor readings. Missing values were imputed with aver-
age values. Figure 4 shows the available minutely sam-
pled time-series for ambient temperature, oil tempera-
ture, and load with a total of 5760 samples over 4 days of
operation. Oil and winding temperature profiles analysed
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in this study are based on this minute-level sampling.

Figure 4. Available load (K), ambient temperature (ΘA),
and top-oil temperature (ΘTO) over four days of opera-
tion with one-minute resolution.

Since the PDE solution is unknown, no validation
dataset is available for hyperparameter tuning. This
makes balancing the loss function particularly challeng-
ing (S. Wang, Sankaran, Wang, & Perdikaris, 2023). To
assess learning and generalization capabilities, the model
is evaluated under varying numbers of initial condition
samples Ni (known values) and residual points Nr (PDE
evaluation points, unknown values), as detailed in Sec-
tion 4.3.

4.1. Evaluation Metrics

The accuracy of probabilistic predictions is evaluated us-
ing three complementary metrics.

Negative Log Likelihood (NLL) evaluates how well
a probabilistic model explains a given set of observa-
tions. It is defined as the negative logarithm of the
likelihood function, which measures the probability of
the observed data under a particular model (Murphy,
2012). For a model with parameters θ and observed data
X={x1,. . .,xn}, NLL is defined as:

NLL(θ) = −
n∑

i=1

log p(xi | θ) (30)

where p(xi | θ) is the probability of observation xi given
the model parameters. Minimizing the NLL is equivalent
to maximizing the likelihood function, as the logarithm
is a monotonically increasing function. NLL is particu-
larly useful because it avoids numerical underflow with
small probabilities and transforms the product of prob-
abilities into a sum of log probabilities, which is more
computationally stable (Bishop & Nasrabadi, 2006).

Continuous Ranked Probability Score (CRPS) mea-
sures the discrepancy between the predicted Cumulative
Distribution Function (CDF), F (·), and the observed em-
pirical CDF for a given scalar observation y (Zamo &
Naveau, 2018):

CRPS(F, y) =

∫
(F (x)− 1(x ≥ yi))

2dx, (31)

where 1(x ≥ yi) is the indicator function, which models
the empirical CDF.

In order to obtain a single score value from Eq. (31), a
weighted average is computed for each individual ob-
servation of the test set (Gneiting, Raftery, Westveld, &
Goldman, 2005):

CRPS =
1

N

N∑
i=1

CRPS(Fi, yi) (32)

where N denotes the total number of predictions.

Prediction Interval Coverage Probability (PICP)
quantifies the reliability of prediction intervals by eval-
uating the fraction of true observations that fall within
the predicted interval. PICP evaluates the effectiveness
of the prediction interval in capturing the variability of
the data, reflecting the accuracy and validity of the pre-
dictions (González-Sopeña, Pakrashi, & Ghosh, 2021):

PICP =
1

N

N∑
i=1

Θ̂Oi (33)

where N denotes the total number of predictions and
Θ̂Oi

individual observations in the prediction interval.

4.2. Benchmarking

The proposed B-PINN approach is benchmarked against
a probabilistic hybrid method. Namely, dropout based
PINN implementation has been selected due to its com-
putational efficiency (Zhang et al., 2019).

Dropout-PINN

Dropout-PINN extends the vanilla PINN (Section 3.1)
by inserting dropout layers after each hidden layer, with
dropout rate ρ. During training, neurons are randomly
deactivated, improving generalization and reducing over-
fitting (Gal & Ghahramani, 2016). During inference, K
stochastic forward passes are performed, each with dif-
ferent neuron subsets deactivated. The resulting ensem-
ble of predictions captures predictive uncertainty (Zhang
et al., 2019).

The dropout rate strongly affects the uncertainty quality
(Alcibar et al., 2025) and therefore a sensitivity analysis
is conducted to select the best dropout rate.

8
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4.3. Experiments and Implementation Details

The base-case B-PINN uses two layers with 50 neurons
each, Ni=100 initial points, Nbc=11520 boundary con-
dition points, and Nr=10000 residual points. Input data
noise and residual data noise follow σi=N (0, 0.01) and
σr=N (0, 0.01), respectively.

Starting from the base-case, different hyperparameters
are evaluated including the number of neurons and the
number of initial and residual points. After identifying
the best-performing configuration, experimental results
are obtained for the selected configuration. In addition
to the hyperparameters, three different priors are tested:
Gaussian, Spike-and-Slab (cf. Eq. (23)), and Laplace (cf.
Eq. (24)). Table 3 summarizes the configurations and
corresponding hyperparameters.

Table 3. Base-case and tested hyperparameter ranges for
B-PINN models.

Parameters Configurations
Base-Case Range

Neurons 50 [10,25,50,100]
Ni 100 [5,100,200]
Nr 10000 [5000,10000, 20000]
σi 0.01 [0.01, 0.05, 0.1]
σr 0.01 [0.01, 0.05, 0.1]

All experiments use variational inference to approximate
the posterior distribution. Each simulation is repeated
five times for numerical stability, and mean and stan-
dard deviation values are reported. All models are imple-
mented from scratch in PyTorch. The optimization algo-
rithm is Adam (learning rate = 0.01, batch size = 16) and
all B-PINN models are trained with 15000 epochs. The
weights of the individual loss terms have been manually
weighted, with final values of λ0=1, λb=1, and λr=10-6.

The vanilla PINN model is implemented using the Adam
optimization algorithm for the first 20000 iterations, fol-
lowed by the L-BFGS optimizer for the last 10000 it-
erations. The terms of individual loss terms have been
manually weighted with final values of λ0=1, λb=1, and
λr=10-6. Finally, the dropout-PINN model is designed
taking the vanilla PINN architecture as the reference
model, including additional dropout layers. The dropout
rate is tested for a range of values ρ=[0.05, 0.1, 0.15, 0.2,
0.25], with K=200 Monte Carlo iterations.

5. RESULTS & DISCUSSION

Figure 5 shows the numerical solution of Eqs. (1)–(4),
solved using finite element method (FEM) with Matlab’s
pdepe solver (The MathWorks, Inc., 2023). The solu-
tion is experimentally validated against fiber optic sensor
measurements installed at different transformer heights.
Refer to (Ramirez et al., 2025) for more details.

Figure 5. Spatiotemporal transformer oil temperature es-
timation obtained through a finite element method.

The oil temperature values, Θ̂O(x, t), follow the season-
ality of solar energy, i.e. peak values coincide with peri-
ods of maximum solar irradiation and vice-versa (cf. Fig-
ure 4). As for vertical temperature resolution, the highest
temperatures are observed near the top position (x→1).

The validated FEM model in Figure 5 serves as ground
truth. Next, starting from the base-case configuration,
a detailed hyperparameter tuning evaluation will be per-
formed to select an appropriate B-PINN configuration.

5.1. Hyperparameter tuning

Neurons and prior distributions. The influence of the
network width (number of neurons) and prior distribution
is first examined with the remaining parameters fixed ac-
cording to the base-case configuration (cf. Subsection
4.3). Table 4 reports the results.

Table 4 shows that the best performance is obtained
with 50 neurons, with the Laplace prior distribution.
This setting achieves the lowest CRPS (0.1156±0.0242)
and NLL (0.0179±0.3536), indicating both accurate and
sharp predictive distributions. At the same time, it main-
tains a high PICP (0.3501±0.0327), confirming that pre-
dictive intervals are well-calibrated and consistent with
the observed data. These results suggest that the Laplace
prior, in combination with a moderate network width,
provides an adequate balance between predictive accu-
racy and reliable UQ.

Across all priors, increasing the number of neurons im-
proves performance up to a point. Specifically, moving
from 10 to 50 neurons leads to substantial improvements
across all UQ metrics, producing sharper distributions,
better likelihood scores, and higher coverage. However,
further increasing the width to 100 neurons does not con-
sistently improve results. While PICP occasionally in-
creases, this often comes at the cost of higher CRPS
and NLL values, indicating a deterioration in the over-
all quality of the predictive distributions.
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Table 4. Comparison of different number of neurons and prior distributions for different UQ metrics with remaining
parameters fixed (2 layers, Ni=100, Nr=10000, σi=σr=N (0, 0.012)). Best results highlighted.

#N Gaussian Spike-and-Slab Laplace
PICP (↑) CRPS (↓) NLL(↓) PICP (↑) CRPS(↓) NLL (↓) PICP (↑) CRPS (↓) NLL (↓)

10 0.078±.0225 0.287±.051 5.774±2.850 0.067±.012 0.365±.096 15.898±11.827 0.071±.018 0.297±.075 11.933±5.840
25 0.197±.028 0.180±.045 0.445±.608 0.159±.043 0.130±.021 -0.063±0.136 0.170±.016 0.153±.034 0.136±.345
50 0.377±.034 0.159±.042 0.194±.323 0.351±.036 0.139±.054 -0.023±.336 0.350±.032 0.115±.024 0.017±.353

100 0.465±.018 0.238±.125 0.927±1.066 0.495±.058 0.278±.205 0.654±.776 0.463±.083 0.204±.048 0.402±.255

Legend. #N: Number of neurons.

Table 5. Comparison of different number of samples and prior distributions for different UQ metrics with re-
maining parameters fixed (2 layers, 50 neurons, σi = σr = N (0, 0.012)). Best results highlighted.

# Samples Gaussian Spike-and-Slab Laplace
Ni Nr PICP (↑) CRPS (↓) NLL(↓) PICP (↑) CRPS(↓) NLL (↓) PICP (↑) CRPS (↓) NLL (↓)

I1
R1 0.320±.027 0.208±.052 0.451±.255 0.334±.060 0.233±.083 0.641±.569 0.390±.059 0.178±.030 0.338±.127
R2 0.409 ±.052 0.202 ±.022 0.390 ±.083 0.363 ±.040 0.184±.058 0.261±.237 0.450±.018 0.177±.045 0.331±.178
R3 0.387±.099 0.192±.043 0.325±.216 0.511±.070 0.175±.038 0.227±.203 0.541±.043 0.169±.022 0.208±.150

I2
R1 0.282±.044 0.157±.035 0.173±.183 0.322±.042 0.187±.048 0.358±.226 0.305±.032 0.113±.027 -0.096±.208
R2 0.363±.022 0.163±.046 0.236±.349 0.351±.036 0.139±.054 -0.023±.336 0.360±.027 0.108±.022 -0.145±.150
R3 0.448±.097 0.119±.023 -0.202±.126 0.375±.076 0.150 ±.050 0.080±.346 0.377±.040 0.128±.033 -0.112±.194

I3
R1 0.281±.044 0.125±.032 -0.058±.307 0.234±.022 0.109±.061 -0.063±.720 0.289±.036 0.134±.046 -0.009±.247
R2 0.416±.041 0.092±.026 -0.374±.218 0.348±.083 0.131±.045 0.127±.733 0.324 ±.034 0.077±.009 -0.478±.071
R3 0.435±.072 0.166±.051 0.455±.590 0.390±.082 0.121±.048 -0.113±.414 0.420±.042 0.137±.034 -0.050±.336

Legend. # of initial samples (Ni): I1=5, I2=100, I3=200. # of residual samples (Nr): R1=500, R2=10000, R3=20000.

In summary, the results highlight the need for a trade-
off when selecting the network width with respect to the
prior distribution. In this case, the configuration with 50
neurons under the Laplace prior provides the most robust
compromise, offering strong predictive performance to-
gether with well-calibrated uncertainty estimates.

Number of initial (Ni), residual samples (Nr), and
prior distributions. Table 5 presents the sensitivity of
the B-PINN model to the number of initial conditions
samples, residual points, and boundary conditions, eval-
uated under different prior distributions using probabilis-
tic metrics (cf. Subsection 4.3).

The results indicate that increasing the number of initial
condition samples generally improves the quality of un-
certainty estimates across all priors. For instance, under
the Gaussian prior, increasing Ni from 5 to 200 (with
fixed Nr=10000) reduces the NLL from 0.390±0.083 to
-0.374±0.218, while also lowering the CRPS. This pat-
tern is consistent across priors, suggesting that larger Ni

values leads to more informative predictive distribution,
reflected in higher coverage (PICP) and improved prob-
abilistic accuracy (CRPS, NLL).

In contrast, increasing the number residual points does
not consistently enhance performance. For example, un-
der the spike-and-slab prior with Ni=5, increasing Nr

from 10000 to 20000 results in only a marginal NLL im-
provement (0.261±0.237 to 0.227±0.203), with similar
trends observed for other priors. These results suggest
that excessively increasing the residual samples may re-
duce the relative influence of initial and boundary data,

potentially degrading uncertainty calibration.

Under the adopted loss weighing scheme (cf. Eq. (29),
Algorithm 1), this trade-off highlights the need for a
balanced allocation between residual points and ini-
tial/boundary condition samples. Residual points re-
main essential to enforce PDE dynamics, but their dom-
inance over data-driven terms can compromise calibra-
tion. Hence, an appropriate trade-off between Nr and
Ni is critical to achieve reliable predictive performance.

The best results are achieved with 200 initial samples
and 10000 residual points, using the Laplace prior dis-
tribution. Consequently, subsequent experiments will be
performed with the selected configuration.

5.2. Experimental Results

First, deterministic spatiotemporal transformer oil tem-
perature estimates are obtained using the vanilla PINN
(Section 3.1) following the implementation in (Ramirez
et al., 2025). Figure 6(a) shows the spatiotemporal tem-
perature estimate and Figure 6(b) shows the error with
respect to the ground truth (Figure 5).

To compare the B-PINN outcome with a probabilistic
estimate, a dropout-PINN model has been implemented
following the PINN architecture (3 layers, 20 neurons
each). Table 6 shows the results for different dropout
rates.

The best-performing dropout-PINN is obtained with a
dropout rate of 0.05. Higher dropout rates achieve bet-
ter PICP values, but at the cost of degraded CRPS and
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(a)

(b)

Figure 6. Spatiotemporal temperature estimation results
obtained using a vanilla PINN. (a) Predicted tempera-
ture distribution across the transformer oil domain and
(b) corresponding absolute error.

Table 6. Sensitivity of the dropout rate in dropout-PINN.
Best results highlighted.

Dropout Rate PICP (↑) CRPS (↓) NLL(↓)
0.05 0.714 ±.045 0.722 ±.044 1.955 ±.159
0.1 0.776 ±.061 0.853 ±.031 2.010 ±.143

0.15 0.805 ±.071 0.967 ±.060 2.248 ±.265
0.2 0.787 ±.013 1.069 ±.036 2.386 ±.157

0.25 0.724 ±.048 1.214 ±.019 2.731 ±.226

NLL performance. Accordingly, the best dropout-PINN
and B-PINN models were selected for comparison. Fig-
ure 7 shows the resulting probabilistic spatiotemporal
temperature estimates parameterized through the mean
and standard deviation.

Compared with the vanilla PINN (Figure 6), the B-PINN
is able to capture variation in the mean estimates, thereby
quantifying prediction confidence at each spatiotemporal
coordinate. The mean B-PINN predictions exhibit higher
accuracy than the dropout-PINN, as also reflected in the
error maps of Figure 8(a) and (c). Furthermore, the vari-
ance of B-PINN predictions is consistently lower than

dropout-PINN, confirmed in Figures 8(b) and (d), which
illustrate the standard deviation of the prediction error
relative to the ground truth (cf. Figure 5).

Figure 9 compares probabilistic spatiotemporal temper-
ature estimates for the B-PINN, dropout-PINN, and
vanilla PINN at selected time instants. The B-PINN con-
sistently provides more accurate estimates than both al-
ternatives. Importantly, the B-PINN not only delivers
mean predictions, but also quantifies the uncertainty of
the estimates. In most cases, the ground truth falls within
the confidence intervals, in line with the PICP metric.
The uncertainty bands are adaptive, reflecting prediction
confidence that varies across the spatiotemporal domain.
In contrast, the dropout-PINN produces wider and less
consistent uncertainty bands, which would lead to overly
conservative decision-making.

Building on the probabilistic temperature field, Figure 10
shows the spatiotemporal ageing estimates p(V̂ (x, t))
obtained with the B-PINN, including both the mean and
standard deviation. After 4 days of operation under the
loading profile of Figure 4, the maximum transformer
loss-of-life (cf. Eq. (12)) is 8.964 minutes according to
the B-PINN mean estimate (Figure 10(a)), with a max-
imum deviation of 0.985 minutes (Figure 10(b)). This
probabilistic ageing estimation framework supports in-
formed maintenance decisions by balancing worst-case
scenarios with less conservative, risk-adjusted strategies.

The ageing estimation errors of different models were
further evaluated relative to the FEM-based ageing es-
timates. Figure 11 shows the results for vanilla PINN,
dropout-PINN, and B-PINN models. The B-PINN
achieved the lowest error, with a worst-case ageing es-
timation error of 0.35 minutes (4.06%) (Figure 11(a)).
The dropout-PINN and vanilla PINN achieved worst-
case errors of 1.25 minutes (14.22%) and 1.28 minutes
(14.57%), respectively (Figure 11(b)). The small stan-
dard deviation of the B-PINN ageing estimates (Fig-
ure 10(b)) further indicates that prediction variability is
limited, avoiding the need for conservative decisions.

Overall, the probabilistic spatiotemporal ageing esti-
mates produced by the B-PINN provide a more in-
formative basis for asset health monitoring. On one
hand, the spatiotemporal ageing maps enable mainte-
nance planning that accounts for localized ageing effects,
improving conventional practices based on worst-case,
spatially-agnostic estimates. On the other hand, the ex-
plicit quantification of predictive uncertainty allows op-
erators to assess reliability and adapt decisions accord-
ingly, ranging from conservative interventions in uncer-
tain scenarios to optimized actions in reliable regimes.
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(a) (b)

(c) (d)

Figure 7. Spatiotemporal transformer oil temperature estimation using the B-PINN model (a) posterior mean; (b)
standard deviation; and dropout-PINN model (c) posterior mean, (d) posterior standard deviation.

Table 7. Comparison of different noise levels and prior distributions for different UQ metrics with remaining parame-
ters fixed (2 layers, 50 neurons, Ni=200, Nr=10000). Best results highlighted.

Noise Level Gaussian Spike-and-Slab Laplace
PICP (↑) CRPS (↓) NLL(↓) PICP (↑) CRPS(↓) NLL (↓) PICP (↑) CRPS (↓) NLL (↓)

σi=σr=N (0,0.012) 0.416±.041 0.092±.026 -0.374±.218 0.348±.083 0.131±.045 0.127±.733 0.324 ±.034 0.077±.009 -0.478±.071
σi=σr=N (0,0.052) 0.242 ±.029 0.151±.050 0.192±.237 0.266±.048 0.225±.024 0.482±.161 0.245±.025 0.179±.014 0.285±.105
σi=σr=N (0,0.12) 0.191±.037 0.179±.041 0.351±.125 0.215±.026 0.275±.097 0.957±.805 0.216±.043 0.202±.011 0.441±.050

5.3. Robustness to Noise

After observing the probabilistic prediction results, the
effect of different noise levels on the best-performing
model (i.e. B-PINN) will be examined. Namely, noise
was introduced in the initial condition samples (σi) and
residual samples (σr), and the resulting performance
was evaluated under three prior configurations (Gaus-
sian, spike-and-slab, and Laplace), while keeping all
other base-case configuration parameters fixed (cf. Sub-
section 4.3). The results are summarized in Table 7.

The results indicate a deterioration in probabilistic per-
formance as the noise level increases. Higher noise re-
duces the PICP values, indicating a smaller proportion
of true values fall within the predicted intervals, which
compromises the reliability of the uncertainty estimates.
At the same time, CRPS and NLL increase with noise,

indicating a decline in the quality and calibration of the
predictive distributions. Specifically, higher CRPS in-
dicates less accurate probabilistic forecasts, while higher
NLL values show that the model assigns lower likelihood
to observed outcomes.

These trends are consistent across all priors, but their
magnitudes are different. The Gaussian prior achieves
the highest PICP values, but simultaneously produces
worse NLL scores compared to the Laplace prior. This
suggests that the Gaussian prior generates wider pre-
dictive intervals, capturing more true values but at the
expense of less accurate probability assignment. Con-
versely, the Laplace prior provides better calibration
(lower NLL and CRPS) despite offering narrower inter-
vals and lower coverage. This illustrates the trade-off
between interval coverage (PICP) and calibration qual-
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Figure 8. Spatiotemporal transformer oil temperature estimation error of the B-PINN model (a) mean absolute error
and (b) standard deviation; and dropout PINN model (c) mean absolute error and (d) standard deviation.

ity (NLL, CRPS), showing that a higher PICP may not
imply superior probabilistic performance.

Overall, the results confirm that increasing noise in both
initial and residual data degrades the probabilistic per-
formance and calibration of the B-PINN model. These
findings emphasize the importance of carefully account-
ing for data noise and quality in UQ tasks.

5.4. Computational Cost

Table 8 reports the computational cost of the different
models, obtained on an AMD 4900HS processor with
32GB of RAM for 466560 evaluation points (81 in space,
5760 in time). The dropout-PINN achieves the shortest
training time because randomly deactivating neurons re-
duces the effective model size during optimization. In
contrast, the vanilla PINN requires more training time,
and the B-PINN incurs additional cost due to uncertainty
quantification. The FEM does not require training.

During evaluation, the vanilla PINN serves as the base-
line without UQ and therefore avoids additional compu-
tational overhead. The dropout-PINN requires multiple
stochastic forward passes to estimate predictive distri-
butions, leading to higher evaluation time than vanilla

Table 8. Computational cost of the evaluated models.
Train and evaluation times averaged over repeated runs.

Model Train [s] Evaluation [s]
Vanilla-PINN 719.62 ± 8.64 3.73 ± 0.05
Dropout-PINN 685.66 ±4.06 110.22± 0.64

B-PINN 785.72± 24.12 498.38± 2.87
FEM 25.83 ± 3.69

PINN, but lower than B-PINN. The B-PINN incurs the
highest evaluation cost because posterior inference re-
quires repeated sampling across weight distributions.
The FEM is the most efficient when training and evalua-
tion are considered jointly. However, for more complex
PDEs, the computational cost of FEM increases rapidly
and PINNs provide a scalable and flexible alternative.

6. CONCLUSIONS

Scientific Machine Learning (SciML) combines physi-
cal knowledge with machine learning (ML), resulting in
predictive models that generalize better than purely data-
driven approaches and require less data. Hybrid Prognos-
tics and Health Management (PHM) methods share sim-
ilarities with SciML, as both integrate physics-of-failure
models and data. However, SciML provides a more prin-
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Figure 9. Spatiotemporal temperature estimates at different time instants for vanilla PINN, dropout-PINN, and
Bayesian PINN (mean and standard deviation) models and ground truth values.

cipled learning framework that, to the best of the authors’
knowledge, has not been fully explored within PHM.

This work introduces a Bayesian Physics-Informed Neu-
ral Network (B-PINN) framework for probabilistic age-
ing estimation in electrical transformers. The method
integrates the heat diffusion partial differential equation
with transformer loading and temperature data, while
modeling neural network weights probabilistically to
capture epistemic uncertainty. Several prior distribu-
tions (Gaussian, spike-and-slab, Laplace) were evalu-
ated, along with a range of B-PINN configurations (vary-
ing network width, number of initial and residual sam-
ples, and noise levels), and a dropout-PINN baseline for
comparison.

Numerical results demonstrate that B-PINNs improve re-
liability over deterministic PINNs by providing both ac-
curate predictions and well-calibrated uncertainty esti-
mates. Compared with dropout-PINNs, B-PINNs yield
more consistent and sharper predictive intervals, reduc-
ing the tendency toward overly conservative estimates.
Among the priors, the Laplace prior consistently delivers
the best performance across different settings, while the

Gaussian prior performs robustly under high noise condi-
tions. The spike-and-slab prior, in contrast, is more sen-
sitive to data quality. Sensitivity analysis indicates that
noise levels and the number of initial condition samples
have the greatest influence on uncertainty quantification,
whereas the number of residual samples has a compara-
tively lower influence.

Beyond methodological contributions, the proposed B-
PINN framework offers practical benefits for transformer
asset management. By quantifying and propagating
epistemic uncertainty, the method supports informed
decision-making under data scarcity, mitigating the risks
of overly conservative or unsafe maintenance strategies.

The present implementation employs variational infer-
ence for posterior estimation. Future research will
explore alternative Bayesian inference methods and
physics-informed priors to further enhance uncertainty
quantification in SciML-based PHM frameworks.
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Figure 11. Transformer ageing estimation error for (a) mean B-PINN, (b) mean dropout-PINN, and (c) vanilla PINN.
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