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ABSTRACT

Accurate gearbox fault diagnosis across different operating
conditions plays an important role in prognostics and health
management. In real industrial scenarios, a common chal-
lenge arises when the source domain contains multiple fault
classes, while the target domain includes only healthy sam-
ples during training. To address this issue, this study pro-
poses a unified industrial fault diagnosis framework designed
to handle the partial domain adaptation problem. Specifically,
the overall framework involves: a unified data processing
pipeline, a robust deep learning architecture for accurate fault
classification, and integration of maximum mean discrepancy
loss to align feature distributions between source and target
domains. Experimental results demonstrate that our proposed
partial domain adaptation-based deep learning model signif-
icantly outperforms benchmark models, achieving accuracy
improvements exceeding 20% across multiple domain adap-
tation tasks. This study provides a practical solution for intel-
ligent gearbox diagnosis under domain shift constraints.

1. INTRODUCTION

In the prognostics and health management (PHM) domain,
the gearbox system often plays an important role in many in-
dustrial applications, and effective fault diagnosis is critical
for maintaining operational reliability and safety of rotating
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machinery (Tsui, Chen, Zhou, Hai, & Wang, 2015; Yuce-
san, Dourado, & Viana, 2021; Polverino et al., 2023; Lee
& Su, 2025). Failures in gearbox systems can cause unex-
pected downtime and high maintenance costs. A major chal-
lenge in real-world diagnostics is domain shift, which arises
when there are distribution discrepancies between the source
domain and the target domain (Farahani, Voghoei, Rasheed,
& Arabnia, 2021; Singhal, Walambe, Ramanna, & Kotecha,
2023; S. Zhang et al., 2023). It will significantly affect the
performance of diagnostic models when the source and target
domains differ substantially. Therefore, many deep learning
based domain adaptation methods have been proposed to ad-
dress this problem in recent years (X. Liu et al., 2022; Yao,
Kang, Zhou, Rawa, & Abusorrah, 2023; Yan et al., 2024; Lee,
Su, Ji, & Minami, 2025). Despite these advancements, in real
scenarios, labeled fault data are often available only in the
source domain, while the target domain contains only healthy
samples during training, with no labeled fault data. This set-
ting is commonly referred to as a partial domain adaptation
problem.

To address these challenges, this study proposes a unified in-
dustrial fault diagnosis framework designed for the partial
domain adaptation problem. This framework enables accu-
rate multi-class gearbox fault classification across different
domains, even when the target domain is limited exclusively
to healthy samples during training. The main contributions
include an efficient data processing pipeline for feature ex-
traction, a robust convolutional neural network-based feature
extractor, and an optimized loss function integrating cross-
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entropy with maximum mean discrepancy loss to align fea-
ture distributions across domains.

The rest of this paper is structured as follows: Section 2 re-
views relevant literature, formulates the problem, and pro-
vides the dataset description used in this study. Section 3
presents the proposed methodology framework addressing
the partial domain adaptation problem. Experimental settings
and model results are discussed in Section 4. Finally, Sec-
tion 5 concludes the paper with key findings and directions
for future research.

2. BACKGROUND
2.1. Literature review

Domain adaptation is a subtopic of transfer learning. It
aims to address the domain shift problem, where the train-
ing (source) and testing (target) data have different distribu-
tions (Farahani et al., 2021; Singhal et al., 2023; S. Zhang et
al., 2023). This phenomenon is common in real-world indus-
trial applications due to factors such as changes in environ-
mental conditions, sensor drift, and varying working regimes.
All of these can cause the underlying data distribution to
change. Directly applying a model trained on one domain
to a different domain without adaptation often results in sig-
nificant performance degradation (Shi, Ying, & Yang, 2022;
Singhal et al., 2023; Su & Lee, 2024). Meanwhile, collect-
ing labeled data under all possible operating conditions and
fault modes is often prohibitively expensive and sometimes
impractical. Therefore, there is a need to develop domain
adaptation techniques (aiming to align features or distribu-
tions across domains) to make the model more robust and
generalizable.

Recent advancements in deep learning have significantly
enhanced domain adaptation techniques in PHM domain.
Methods such as domain-adversarial neural networks
(DANN) (Jiang et al., 2024; He, Zhao, Song, Su, & Liu,
2025; Z. Zhu, Chen, & Tang, 2023), Deep CORAL (Qin,
Yao, Wang, & Mao, 2021; Kavianpour, Ghorvei, Kavian-
pour, Ramezani, & Beheshti, 2022; G. Zhang, Zhou, & Cai,
2023), convolutional neural networks (CNNs)-based mod-
els (Mao, Zhang, Qiao, & Li, 2022; H. Liu, Chen, Chen,
& Gu, 2022; Y. Zhu, Pei, Wang, Xie, & Qian, 2023), long
short-term memory (LSTM)-based models (Z. Liu et al.,
2023; Li et al., 2024; Lu et al., 2025), and attention-based
models (Cui, Wang, Liu, & Pan, 2024; D. Liu, Cui, Wang,
& Cheng, 2025; Y. Zhang et al., 2023) have been proposed.
For instance, (Y. Zhu et al., 2023) proposed a partial domain
adaptation approach for wind turbine gearbox diagnosis.
Specifically, they integrated a residual convolutional network
enhanced by attention mechanisms to extract discriminative
features and developed a weighted adversarial network under
a novel weighting strategy. In addition, (Xu, Dai, Zhao,
Liu, & He, 2024) introduced a manifold embedded ensemble

partial domain adaptation framework, combined with max-
imum mean and covariance discrepancy and a novel joint
weighting mechanism, addressing negative transfer in gear-
box fault diagnosis. For cross-machine diagnosis, (Cui et al.,
2024) proposed a dictionary domain adaptation transformer
(DDAT) for rolling bearing diagnosis. In detail, DDAT
utilized a feature dictionary constructed from multi-batch
data and was trained under a novel dictionary adaptation
framework. A domain-shared transformer architecture using
multi-head attention was introduced for learning domain-
invariant features. Moreover, (Mao et al., 2022) developed
a fusion domain-adaptation CNN using multimodal data
(combining vibration signals and infrared thermal images)
for gearbox fault diagnosis. Adversarial training was applied
to transfer diagnosis knowledge effectively across different
operating conditions. In another study, (Kavianpour et al.,
2022) proposed a deep coral adversarial network (DCAN),
using a CNN backbone for feature extraction and deploying
deep coral adaptation and domain adversarial learning to
reduce distribution discrepancies between source and tar-
get domains. Meanwhile, (Su & Lee, 2025) introduced
an ensemble-based transfer learning framework for gearbox
fault diagnosis. The framework integrates multiple deep
learning architectures, including CNNs, hybrid LSTMs, and
transformers, and employs transfer learning to enable adapta-
tion to new data without requiring full retraining. Lastly, (He
et al., 2025) developed a deep transfer learning framework
for gearbox diagnosis. They utilized convolutional block
attention modules and discriminant loss functions to cap-
ture distinguishable features. To handle feature distribution
inconsistency, they applied the multiple kernel maximum
mean discrepancy (MK-MMD) method for global distri-
bution alignment and employed adversarial strategies for
sub-domain distribution alignment.

2.2. Problem formulation

This study focuses on a partial domain adaptation (PDA) set-
ting, where the label space of the target domain during train-
ing is a subset of that of the source domain. Specifically,
the source domain dataset is denoted as Ds = {(z%,v%)}1=,,
including labeled samples from all three health conditions:
healthy, gear wear, and bearing corrosion. The target do-
main dataset is denoted as D, = {(x%,y?)},. During train-
ing, only a subset D" is used, which includes only a small
number of labeled samples from the healthy class and does
not contain any samples with gear wear or bearing corrosion
class. The remaining portion of the target domain D' is used
strictly for performance evaluation, which contains samples
from all three classes. The goal is to learn a classifier f that
is trained on Dy and D", in order to generalizes well to the
entire target domain Dy,
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Figure 1. A unified industrial fault diagnosis framework designed for the partial domain adaptation problem, consisting of:
(a) data collection; (b) a unified data processing pipeline; (c) an industrial PDA-based deep learning model; (d) benchmark
industrial machine learning models; and (e) results and discussion.

2.3. Dataset description

In this study, the dataset is collected from an industrial plan-
etary gearbox system operating under different operational
conditions. The experimental setup is illustrated in Fig-
ure 1.(a). The dataset comprises three classes: (1) healthy
(gear and bearing in normal condition), (2) gear wear (faulty
gear and healthy bearing), and (3) bearing corrosion (healthy

gear and corroded bearing). Data are collected under three
working regimes corresponding to different rotational speeds:
500, 1000, and 3000 RPM. For each regime, 12 distinct com-
mand patterns are executed under the high servo gain setting,
with a total of 36 patterns across all regimes. Each pattern is
repeated 100 times for the healthy and gear wear class and 88
times for the bearing corrosion class. The command patterns
include both forward (positive) and backward (negative) rota-
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Figure 2. Architecture of the proposed deep learning model for partial domain adaptation.

tions. Moreover, feedback torque current, command velocity,
feedback velocity, command position, and feedback position
signals are recorded at a fixed sampling interval of 444 us.

3. METHODOLOGY

Figure 1 presents the overall framework to enhance indus-
trial fault diagnosis under the PDA setting. The process be-
gins with data collection, where a dataset consisting of mul-
tiple operating conditions with three classes—healthy (H),
gear wear fault (F), and bearing corrosion (C)—is constructed
to support this study. A unified data processing pipeline is
then applied. It includes data preprocessing, data visualiza-
tion, and feature engineering to prepare Al-ready industrial
datasets. Following this, a PDA-based deep learning model is
developed to address the challenge of partial label availability
in the target domain. To ensure a comprehensive comparison,
multiple benchmark industrial machine learning models are
also evaluated.

3.1. Data processing pipeline

To construct a high-quality dataset suitable for model train-
ing, a unified data processing pipeline is proposed, as shown
in Figure 1.(b). The raw time-series signals contain both tran-
sient and steady-state components. Since the steady-state part
better reflects stable machine behavior, only this part is re-
tained. After removing the transient components, each signal
is truncated to 4000 sampling points. Next, outlier detection
is applied to each signal. Abnormal points are identified and
replaced with the average of their two nearest neighboring
points to smooth abrupt noise. Once clean, steady-state sig-
nals are obtained, a sliding window segmentation technique
is used to augment the data. Each signal is divided into five
overlapping segments using a window size of 2000 points
and a step size of 500 points. Finally, each segment is trans-
formed into the frequency domain using Fast Fourier Trans-
form. The resulting frequency-domain features are then nor-
malized within each working regime (i.e., rotational speed).
In summary, a total of 17,280 samples were generated and
used for training and evaluation of the proposed method.

3.2. PDA-based deep learning model

In this study, a deep learning model, named PDA-DLM, is
proposed to address the partial domain adaptation problem.
The model architecture is shown in Figure 2. It consists of
a convolutional neural network (CNN)-based feature extrac-
tor, followed by fully connected (FC) layers, dense layers,
and a softmax classifier. In detail, the CNN feature extractor
includes three convolutional layers with kernel size 3, stride
2, and filter sizes of 24, 32, and 32, respectively. Two max
pooling layers with a pooling size of 2 are applied after the
first and second convolutional layers. The extracted low-
dimensional features are then flattened and passed through
three dense layers with 200, 64, and 3 neurons, respectively.
A softmax activation is used to generate class probabilities.
To prevent overfitting, dropout regularization with a rate of
0.2 is applied after the first FC layer.

Additionally, the model is trained using a joint loss function
that combines the cross-entropy loss L. and the Maximum
Mean Discrepancy (MMD) loss Lywp- The intuition behind
the MMD loss is to minimize the statistical distance between
the feature distributions of the source and target domains. In
practical terms, the model learns to extract features that are
not only discriminative for fault classification but also invari-
ant across different operating conditions. Without such align-
ment, features extracted from the target domain may deviate
significantly from those in the source, leading to degraded
generalization performance.

L. is computed using labeled source/target domain samples,
which is defined as:

N

D RUE

=1 k=1

k] log pt (k) (1)

S
where ng is the number of samples, K is the number of
classes, pi (k) is the predicted probability of class k for sam-
ple 7, and 1[-] is the indicator function. Lynp measures the
distance between the feature distributions of source and t(fg—
get domain samples (from the healthy class). Let {fi}"*
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(H)

A2
and { fi } " denote the features extracted after the second
j=1

dense layer for healthy samples from the source and target
domains, respectively. Then, the MMD loss is computed as:

2

n(H) n(H)
1 i 1 < ;
Lo = || =5 D 00 =~y 2_ o) @
Ns = =1 Ny " =1 )

where ¢(-) maps features to a reproducing kernel Hilbert
space (RKHS), and || - || denotes the RKHS norm. Here,
RKHS is important because it could measure differences be-
tween probability distributions in a richer feature space than
the raw input. By using kernel functions to map features into
RKHS, the model can capture not only mean shifts but also
higher-order discrepancies between source and target distri-
butions. This means that even when the two domains ap-
pear similar in the original feature space, small differences
may still be revealed in RKHS and minimized through MMD,
leading to more robust domain alignment.

Finally, the total loss function is defined as:
Liot = aLc + BLymvp (3

where a > 0 and 8 > 0 are weighting coefficients that
balance the contribution of the two loss components. This
ensures the model to learn domain-invariant features while
maintaining classification performance on labeled data.

3.3. Benchmark machine learning models

To evaluate the effectiveness of the proposed PDA-DLM
model, several benchmark machine learning models are im-

plemented for comparison. These include classical models
such as decision tree, random forest, K-nearest neighbors
(KNN), and a standard 1D-CNN model sharing a similar ar-
chitecture to PDA-DLM but excludes MMD loss. All models
are trained only using the labeled source domain data. On the
one hand, the normalized frequency-domain representations
are used as input for 1D-CNN model. On the other hand, for
other classical models, principal component analysis (PCA)
is applied to the input features, where top 100 principal com-
ponents are kept.

4. RESULT AND DISCUSSION
4.1. Experimental tasks and hyperparameter settings

In order to evaluate model performance under the partial do-
main adaptation setting, four domain adaptation tasks are de-
signed using different source and target domains defined by
rotational speed (RPM) differences. The tasks are summa-
rized in Table 1. Specifically, tasks T1 and T3 reverse the
source and target domains. Differences in performance be-
tween these tasks reflect the asymmetric nature of domain
adaptation, where transferring knowledge from one domain
to another may not be equally effective in reverse. Addition-
ally, tasks T1 and T2 share the same source domain (500 rpm)
but target different domains (1000 rpm and 3000 rpm), which
helps to analyze adaptation performance under increasing do-
main discrepancy.

Moreover, the hyperparameter settings for the proposed PDA-
DLM model are shown below. The model is trained using
a batch size of 128. Early stopping is used with a patience
of 8 epochs, and if the validation loss does not improve, the
training process will be terminated. In addition, the initial
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Figure 4. Confusion matrices of PDA-DLM evaluated on the test data on different domain adaptation tasks (best accuracy).

learning rate is set to 0.0008 and optimized using the Adam
optimizer. A learning rate scheduler is applied using a step
decay strategy, where the learning rate is multiplied by a fac-
tor of 0.96 every 5 epochs. Finally, the weighting coefficients
for the loss function in PDA-DLM are set as « = 1.0 for
the cross-entropy loss and § = 0.1 for the MMD loss. In
this study, source and target domains each contain a total of
17,280 samples, including 6000 healthy samples, 6000 gear-
box fault (wear) samples, and 5280 bearing corrosion sam-
ples. In all experiments, 5% of the healthy samples from the
target domain are merged into the source domain during train-
ing to simulate the partial domain adaptation setting. The re-
maining target domain samples are used for final testing. For
the training set, 90% of the data is used for training and 10%
for validation. This division is under random sampling with a
fixed random seed to ensure reproducibility.

Table 1. Description of the Designed Experiments.

tial domain adaptation settings. In contrast, the classical and
1D-CNN models trained solely on the source domain without
domain adaptation show lower and more variable accuracy.
For instance, in T3, the accuracy of KNN drops to 54.57%,
while PDA-DLM still remains high accuracy. This perfor-
mance gap highlights the benefit of incorporating MMD loss
to address domain adaptation problems.

Table 2. Domain adaptation task result.

Method Domain Adaptation Task (Accuracy)

Tl T2 T3 T4
KNN 0.7027 | 0.6703 | 0.5457 | 0.7269
Decision Tree | 0.6942 | 0.6813 | 0.6895 | 0.6281
Random Forest | 0.6944 | 0.6799 | 0.6818 | 0.6586
1D-CNN 0.7284 | 0.6958 | 0.6554 | 0.5763
PDA-DLM 0.8809 | 0.9068 | 0.9542 | 0.8776

Domain Adaptation Task | Source Domain | Target Domain
T1 500 rpm 1000 rpm
T2 500 rpm 3000 rpm
T3 1000 rpm 500 rpm
T4 1000 rpm 3000 rpm

4.2. Model performance

The classification accuracy results for all compared models
are summarized in Table 2 and visualized in Figure 3. The
proposed PDA-DLM consistently outperforms all baselines
(KNN, Decision Tree, Random Forest, and 1D-CNN) across
all domain adaptation tasks, achieving improvements of more
than 20% in accuracy in every task. Specifically, in T3 (1000
— 500 rpm), PDA-DLM achieves the highest overall accu-
racy of 95.42%, showing that the model can transfer knowl-
edge effectively even when adapting from high-speed to low-
speed conditions. Moreover, in T2 (500 — 3000 rpm), where
the target domain shifts to a much higher working regime,
PDA-DLM still maintains a high accuracy of 90.68%. These
results demonstrate that the proposed approach can effec-
tively learn robust and transferable representations under par-

To further understand class-level prediction behavior, confu-
sion matrices for PDA-DLM are shown in Figure 4. Across
all tasks, the model demonstrates strong classification perfor-
mance for the gearbox fault (wear) class, with nearly perfect
prediction. Misclassification mainly occurs between healthy
samples and corrosion samples. The possible reason lies in
their similar frequency-domain patterns within certain speed
ranges. For instance, in T1, 1,906 corrosion samples are
wrongly classified as healthy samples. In T2 and T4, due
to the greater rotational speed difference between the source
domain and the target, it might lead to more separable repre-
sentations, thus reducing confusion.

Beyond technical performance, the proposed PDA-DLM
framework has direct implications for industrial PHM. First,
robust transferability across different speeds and working
regimes reduces the need for extensive fault data collection
in every new environment, lowering both cost and effort in
model deployment. Second, higher diagnostic accuracy trans-
lates into fewer false alarms and missed detections, which can
significantly reduce unscheduled downtime. Third, the ability
to adapt with only healthy target data aligns well with realis-
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tic industrial scenarios, where faulty data are rarely available
in advance. Together, these benefits highlight the potential of
PDA-DLM to support more reliable, cost-effective, and scal-
able PHM solutions in practice.

5. CONCLUSION

In this study, we address the PDA problem for gearbox fault
diagnosis under different operating conditions. Specifically,
we focus on scenarios in which the target domain contains
only a limited number of healthy samples during training.
The proposed approach integrates deep learning models and
domain adaptation learning using MMD, effectively align-
ing the feature distributions of source and target domains.
From a practical perspective, this framework reduces the re-
liance on labeled fault data in new domains and enables more
efficient transfer of diagnostic models to diverse industrial
conditions. Experimental results demonstrate that the pro-
posed PDA-DLM significantly outperformed traditional ma-
chine learning models and standard CNN baselines, achiev-
ing over 20% improvement in classification accuracy across
multiple domain adaptation tasks. Despite its strong overall
performance, misclassifications between healthy and corro-
sion classes in some conditions indicate potential areas for
further improvement. Future work may explore attention-
based mechanisms or transformer-based approaches, adap-
tive weighting strategies, or the integration of large language
models (Lee & Su, 2024).
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