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ABSTRACT 

Due to an increasing passenger demand in rail-based trans-

portation and a desire for sustainable mobility, rail infrastruc-

ture is nowadays confronted with increased loads requiring 

timely and efficient maintenance regimes (Holzfeind et al., 

2025). To improve maintenance scheduling and give rail in-

frastructure operators better insights into the state of their net-

works, a comprehensive digital twin based on open data has 

been developed. The digital twin allows to connect sensor 

data from vehicles to railway assets and enables the develop-

ment of custom algorithms for condition-based maintenance 

of railway tracks. For practical tests and validation of the dig-

ital twin, smartphones were placed in various trams and light-

rail vehicles in the city of Frankfurt (Main) to record vibra-

tion and geolocation data over a period of more than a year. 

The results demonstrate that infrastructure quality changes 

can be automatically detected and monitored through the de-

veloped digital twin framework using a low-cost measure-

ment set-up. Hereby, new capabilities for proactive mainte-

nance scheduling and resource allocation emerge, and infra-

structure operators can prioritize interventions effectively 

and ensure safe and comfortable railway operations. 

1. INTRODUCTION 

As part of worldwide efforts to make transport more sustain-

able, railway systems are currently being expanded and, in 

some cases, newly developed from the ground up. In addi-

tion, efforts are undertaken to increase existing track capacity 

by deploying technologies like Automatic Train Opera-

tion (ATO). The ascent in railway transportation, however, 

also increases infrastructure wear and hence demand for 

maintenance. Since typically 30 percent of railway operating 

cost is connected to rail infrastructure (Steer Davies Gleave, 

2015), effective maintenance regimes are necessary to keep 

operating costs at a minimum and to stay competitive to other 

modes of transportation. One promising approach to increas-

ing the efficiency of infrastructure inspection and mainte-

nance is transitioning from corrective or preventive mainte-

nance to predictive and condition-based maintenance (CBM) 

to achieve a cost optimum (Figure 1). Conducting preventive 

maintenance operations too early results in higher life-cycle 

infrastructure costs, whereas corrective maintenance results 

in high cost due to required emergency measures (Holzfeind 

et al., 2016). Early detection of defects enables infrastructure 

operators to schedule maintenance more effectively, as it pro-

vides additional time for planning, staff allocation, and the 

procurement of external services and equipment. 

 

Figure 1. Cost of preventive and predictive maintenance. 

To enable the shift to CBM and be able to predict the evolu-

tion of track and rail defects, continuous automated data col-

lection and processing is indispensable. In railways, sensors 

can be placed either alongside the infrastructure (e.g., on 
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bridges, switches or in depots) or on the vehicles themselves. 

Together they enable comprehensive monitoring possibilities 

(Frenz, 2020). A rather recent strategy is to install necessary 

sensors not on dedicated track recording vehicles (TRV), but 

on regular passenger trains that can gather data daily during 

normal operation and integrate the results into track mainte-

nance decision-making (Yan et al., 2025). Due to the com-

paratively short total track length of urban transit systems, 

owning TRVs is often not economically viable for many op-

erators in that area. As a result, track inspections are fre-

quently outsourced to external companies. A common alter-

native involves the use of hand-pushed measurement trolleys, 

which are relatively inexpensive but can only be operated at 

walking speed. Existing monitoring solutions also often lack 

direct integration with Geographic Information Sys-

tems (GIS) or the ability to link analysis results to specific 

infrastructure assets. Instead, outcomes are frequently visual-

ized as simple map overlays, which makes it more difficult 

for the infrastructure manager to draw the right conclusions. 

This limitation is partly due to the inconsistent use of stand-

ardized railway geodata formats across operators, or a lack of 

digitized infrastructure data, which necessitates custom de-

velopment efforts for individual operators. To address this 

challenge and support a scalable solution, this study investi-

gates the feasibility of utilizing OpenStreetMap (OSM) as the 

primary source of geospatial data, accessible via an Applica-

tion Programming Interface (API). OSM already contains a 

lot of crowdsourced rail-related data such as routes and the 

locations of switches, level crossings, stations, and similar as-

sets, although data accuracy varies regionally. 

The rest of the paper is structured as follows: Section 2 pro-

vides a more detailed description of the defects to be moni-

tored and explains how smartphones can be leveraged for 

data acquisition and analysis. Section 3 then describes the ar-

chitecture of the digital twin and how the sensor data is 

mapped to it. Section 4 presents results obtained through dig-

ital twin–based data processing. Section 5 discusses the inte-

gration of the digital twin into the maintenance processes of 

a railway infrastructure operator. Finally, Section 6 summa-

rizes the main findings and contributions of the work. 

2. RAIL AND TRACK DEFECTS 

In railway operation different defects on the rail and track oc-

cur. This section focuses on defects that are relevant in the 

scope of track monitoring only. 

Track geometry defects (or track irregularities) describe the 

deviations of a track in space compared to the intended de-

sign. The four major track geometry defects are shown in Fig-

ure 2 which include the longitudinal height error, cant error, 

alignment error and gauge error. The track geometry defects 

shown are of a wavelength in the meter-range and result from 

damage to the underlying ballast. Main influence factors in 

the formation of track geometry defects are the number of 

vehicles, vehicle type, vehicle speed and vehicle load (per 

axle) as well as the type and quality of the superstructure. In 

curves the main influence factor is the track geometry (e.g. 

curve radius) and not the dynamic vehicle-track interaction. 

(Holzfeind et al., 2025)  

 

Figure 2. Track geometry defects, a) Longitudinal height er-

ror; b) Cant error; c) Alignment error; d) Gauge error 

Rail defects describe defects directly related to the rail body. 

For example, corrugations (Figure 3) and damage to the inner 

rail flange, which is especially prevalent in curves. Corruga-

tions are identifiable by short, centimeter-range wavelength 

deformations at the top of the rail. These deformations are 

often caused by acceleration and deceleration of vehicles 

around stations or in curves. The resulting vibrations cause 

noise pollution and higher stress to rail and track. 

Wear on the inner flange of the outer rail of the curve is 

caused by the wheel flange coming into contact with the outer 

rail, causing wear. This phenomenon is particularly evident 

in tram and light-rail networks, where the curve radius is 

much smaller than on mainline railway, constraining proper 

track guidance. (Rail defects, 2002) 

 

Figure 3. Rail corrugation (Rail defects, 2002). 

All described errors lead to ride comfort issues and depend-

ing on the severity of the error can pose a threat to safe rail-

way operation. Therefore, regular inspection of the infra-

structure is needed. 

2.1. Track Monitoring using Low-Cost Devices 

In recent years, low-cost measurement devices equipped with 

MEMS (micro-electromechanical systems)-based sensors 

have been becoming of increasing interest for monitoring so-

lutions in railways (Paixão et al., 2019; Tsunashima et al., 

2023). S     h              y        b  ,      b     d d  ’  

  b 

  d 
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need integration into the vehicles operating system or an al-

teration of any mechanical component of the vehicle. There-

fore, no regulatory implications emerge and the barrier to use 

smartphones in existing trains is low. Further advantage is the 

inbuilt internet connection which allows for automatic data 

transfers into a cloud environment. Disadvantages include 

sensor accuracy, limited sampling frequency, and possible in-

consistencies in the placement of the device (Leibner et al., 

2022). 

To enhance the significance of smartphone-based measure-

ments, continuous monitoring of the track conditions is im-

portant. This enables multiple measurements to be compared 

and reduces the need for each measurement to be precise at 

every point. Furthermore, trend analysis of the recorded data 

is possible because the time between measurements de-

creases compared to traditional measurements. Frequent data 

recording allows for error prediction, enabling smartphones 

to support the transition to condition-based maintenance. Fig-

ure 4 shows the development of track geometry errors over 

distance and time qualitatively. The upper graph shows this 

development in general whereas the lower graph shows the 

development in condition-based maintenance, with measure-

ment events and maintenance actions after the error exceeds 

a defined threshold. 

 

Figure 4. Error development in condition-based 

maintenance. 

In previous works the general capabilities of smartphone sen-

sors for measuring infrastructure defects, specifically longi-

tudinal height errors, were shown (Leibner et al., 2023). The 

presented approach was also adopted for this study. For mon-

itoring track and rail defects using smartphones, acceleration 

and Global Navigation Satellite System (GNSS) sensors are 

utilized. The sampling frequency of the vibration data record-

ing is set to 100 Hz. GNSS data is recorded with approxi-

mately 1 Hz and then resampled to 100 Hz to achieve a single 

tabular measurement structure. The GNSS localization ena-

bles the mapping of recorded acceleration data to specific lo-

cations. To achieve an estimate of the longitudinal track error 

(𝐿𝐿̂(𝑠)) the bandpass filtered vertical acceleration (𝑧𝑣𝑏,𝑏𝑝(𝑠)
′′ ) 

is integrated twice over path (𝑠) and divided by the square of 

the vehicle speed (𝑣), giving an approximation of the vehicle 

vertical movement which closely correlates to the vertical 

track irregularity (Equation 1). 

𝐿𝐿̂(𝑠) =  ∬
𝑧𝑣𝑏,𝑏𝑝(𝑠)

′′  

𝑣2
𝑑𝑠. 

Equation 1. Estimation of longitudinal track error. 

(Leibner et al., 2023) 

Comparing single measurements of smartphones placed in 

the d     ’  compartment of a light-rail vehicle show a good 

agreement between the estimated height error and the meas-

urement from a track geometry recording trolley (Figure 5). 

 

Figure 5. Longitudinal height errors measured by 

smartphones and conventional measurement system  

(Leibner et al., 2023). 

Leibner et al. state, that smartphone measurements showed 

good repeatability with absolute deviations in measured lon-

gitudinal height errors of 0.5 mm, based on tests according to 

DIN EN 13848-2. Further tests in passenger service yielded 

favorable results, with only 5% of the compared measure-

ment points deviating by more than 2-3 mm. (Leibner et al., 

2023) 

As the smartphones are placed in the d     ’  compartment 

the resulting accelerations are influenced by the first and sec-

ond stage suspension of the vehicle whereas special measure-

ment equipment is not influenced by any suspension. This 

mostly explains the difference in the measurement results. 

This effect is more dominant for mainline vehicles, but less 

distinctive for the case of tram and light-rail vehicles, which 

commonly have rather stiff suspension systems, which do not 

distort the track irregularity excitation too much. 

Other measurement systems, such as commercial on-board 

measurements systems (OBM) or special track recording ve-

hicles (TRV) were not further investigated due to their differ-
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ent application scopes. OBMs are not common in older, op-

erating tram and light-rail vehicles. Tram and light-rail net-

work operators utilize dedicated TRVs, but only every few 

years, so they d  ’  enable condition-based monitoring but 

conduct precise track measurements instead. 

To be able to store and analyze all collected data a digital twin 

platform was developed which will be explained in the fol-

lowing section. 

3. DIGITAL TWIN 

A digital twin is a second entity that describes the current and 

future behavior of a physical system. Therefore, data is trans-

ferred from the physical system to the digital twin, and vice 

versa (Grieves & Vickers, 2017). 

 

Figure 6. Digital Model, Shadow and Twin. 

Depending on their state of data flow or the complexity of 

behavior modelling, there are several definitions for digital 

twins, such as digital model or digital shadow (Figure 6) 

(Kritzinger et al., 2018). In this paper, the term “digital twin” 

is employed for the purpose of simplicity. 

3.1. Digital Twin Architecture 

The developed digital twin consists of different software lay-

ers and interfaces with data sources as shown in Figure 7. 

Measurement data, consisting of GNSS, acceleration and 

timestamps, is recorded using a dedicated smartphone app, 

which uploads data to a cloud database automatically at the 

end of the recording process. Data handling checks for new 

measurements daily and starts data processing on new da-

tasets. Datasets are checked for completeness, filtered and 

matched to the associated track segments as described in de-

tail in Section 3.2. Data checks include verifying that the 

smartphone was placed correctly, the measurement was suf-

ficiently long, and that all necessary data was uploaded. 

For infrastructure data a combined approach of Open-

StreetMap and operator specific data is used. Tram and light-

rail networks used in this study, such as the network in Frank-

furt (Main), Germany, are mapped to a high level of detail, 

including railway assets, such as switches, crossings, signals, 

and stops. In addition, operator specific data is mapped on the 

OSM data. This includes information on track sections and 

their identification and information on switches and cross-

ings. Discrete point data, such as switches and crossings are 

mapped per route utilizing PostGIS closest point function. 

Track sections are matched per route as well, further work to 

improve accuracy by adapting the matching algorithm de-

scribed in Section 3.2 is currently performed. Operator spe-

cific information enhances the quality of OSM data and en-

sures that employees of the operator can subsequently iden-

tify infrastructure elements in the notation they are accus-

tomed to. At the same time the data of OSM ensures that the 

system is also usable for smaller operators that d  ’  h    

digital information about their infrastructure. 

          d  

 hy      

Sy    

        

Sy    

        Sh d  

 hy      

Sy    

        

Sy    

            

 hy      

Sy    

        

Sy    

       d                  d        

   hb   d

    h 

 S                 

  

    h                 

        

      h    

          

       S     

      

  d  

    

                 b   

 

              b   

            

        
 

    y       b   

                 y         

  d         
 

                

    y          d  

        h           

d        y            

 

Figure 7. Digital Twin Architecture. 
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The user interaction layer completes the architecture of the 

digital twin. Currently under development is a web-dash-

board with detailed views of track sections and analysis of 

measurements, as well as an overview with performance in-

dicators for user interaction. The dashboard will serve as a 

central hub to the operator to identify hotspots in the network, 

on certain lines or line sections. Further details on the inte-

gration     h          ’                d     b d            5. 

OSM is using a system of geographical points (nodes), com-

bined into linear elements (ways). Multiple ways are com-

bined to describe a track or railway line (relation) (N.N., 

2025). Metadata, e.g. line names, are saved as key-value 

pairs. The OSM data structure is modified and simplified for 

the digital twin, utilizing only nodes and relations with the 

corresponding metadata. All data is stored in a PostgreSQL 

database with the PostGIS extension enabled. Infrastructure 

data is therefore saved as spatial data in the form of points 

and lines that resemble the nodes and relations of OSM, re-

spectively. OSM data is downloaded into  h  d           ’  

database via the Overpass API considering geographical 

boundaries for an         ’  local area. Since mapping meas-

urement data requires a high density of geographical points 

to accurately represent data, points between the infrequent 

distanced OSM nodes are interpolated at approximately 

every meter to achieve a balance between data accuracy and 

data volume. All metadata from OSM is saved, though cur-

rently, primarily information about switches, crossings and 

stops is used. The diverse meta information mapped in OSM 

may be utilized further in the future. 

This approach presents challenges in the form of data incon-

sistencies between OSM and operator data. OSM data may 

have metadata mapping inconsistencies where certain ele-

ments, such as crossings or switches, are not mapped or are 

defined with different meta-information as expected. For in-

stance, a switch and a pedestrian crossing that are mapped by 

the same node in OSM may only have the pedestrian crossing 

mapped as metadata. Therefore, further data processing is 

needed. In our case an algorithm to find missing crossings 

and switches in OSM data was implemented. 

Measurement data recorded via a smartphone app is sent to 

the cloud platform and integrated into the database daily. 

Currently only acceleration and GNSS data is processed but 

the digital twin’s architecture and database structure allow 

the implementation of different data types such as images or 

videos. Incoming data is matched by geolocation as described 

in the following section. 

3.2. Map Matching 

To connect the recorded sensor data with the         ’  rail-

way assets, the integration of a map-matching algorithm into 

the digital twin architecture is necessary. The algorithm con-

nects the recorded GNSS locations to the meter spaced nodes 

in the database. Existing algorithms often rely on Hidden 

Markov Models (HMMs) (Paul Newson & John Krumm, 

2009), which come with high computational costs. Since 

smartphones are deployed in regular in-service trams and 

light-rail vehicles, the vehicles operate exclusively on prede-

fined and known routes. Consequently, it is not necessary to 

employ an algorithm capable of mapping recorded GNSS co-

ordinates to arbitrary paths through the entire rail network. 

Instead, the task reduces to identifying the most likely route 

from a finite set of known trajectories. Once the correct route 

is determined, the GNSS coordinates can be matched to the 

closest corresponding nodes along that path. The downside of 

this approach is, however, that railway depot tracks and other 

track sections not part of a tram or light-rail line are not being 

considered. Typically, these tracks however only make up a 

very small portion of the entire network. Pseudocode for the 

developed map matching algorithm is listed in Algorithm 1. 

Algorithm 1. Pseudo code for the simplified map matching 

algorithm. 

kd_tree_osm ← KDTree(x_osm, y_osm) # OSM node coordinates projected to x/y [m] 

(x_sm, y_sm) ← utm_proj(sm_lon, sm_lat) # Smartphone coords projected to x/y [m] 

 

sm_start ← (x_sm[0], y_sm[0]) 

sm_end   ← (x_sm[-1], y_sm[-1]) 

# Vector pointing from start to end of measurement 

sm_vec ← (sm_lon[-1] - sm_lon[0], sm_lat[-1] - sm_lat[0]) 

 

(dd, ii) ← kd_tree_osm.query((x_sm, y_sm), k=1, distance_upper_bound=10) 

unique_indices ← unique(ii) 

candidate_relations ← [osm_nodes[i].relations for i in unique_indices] 

most_common_relations ← most_common(3) over all items in candidate_relations 

 

for relation in most_common_relations: 

    r_nodes ← relation.nodes 

    (r_x, r_y) ← utm_proj(r_nodes.lon, r_nodes.lat) 

    kd_tree_rel ← KDTree(r_x, r_y) 

 

    (d1, i1) ← kd_tree_rel.query(sm_start) 

    (d2, i2) ← kd_tree_rel.query(sm_end) 

 

    rel_start ← r_nodes[min(i1, i2)] (as longitude, latitude) 

    rel_end   ← r_nodes[max(i1, i2)] (as longitude, latitude) 

    # Vector pointing from start to end of relation 

    rel_vec ← rel_end - rel_start 

    if dot_product(sm_vec, rel_vec) > 0: 

        break # Vectors pointing in the same direction 

else: 

    continue 

# Final mapping of Smartphone to location to closest nodes 

(dd, ii) ← kd_tree_rel.query((x_sm, y_sm), k=1, distance_upper_bound=15) 
 

First, potential OSM relation candidates are identified by 

querying a k-dimensional tree (k-d tree) constructed from all 

OSM nodes, projected into a meter-based coordinate system 

(e.g. Gauss-Krueger). This tree is queried using the 

smartphone-recorded locations. K-d-trees were selected due 

to their significantly lower computational complexity com-

pared to pairwise nearest-neighbor searches. A maximum 

distance threshold of 10 meters is applied to ensure that only 
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nearby nodes are considered. Next, all OSM relations associ-

ated with the identified nodes are extracted. Among these, the 

three most frequently occurring relations are evaluated to de-

termine which one aligns with the direction of travel. This 

step mitigates incorrect associations with rail lines traveling 

in the opposite direction. Directional consistency is assessed 

by constructing vectors from the start to the end point of both 

the smartphone trajectory and the relation geometry. The dot 

product of these vectors is used to determine alignment; a 

positive dot product indicates an angle less than 90°, suggest-

ing similar directionality and a likely correct match. Once the 

correct relation is identified, a new k-d tree is built for the 

matched line, consisting of nodes spaced at 1-meter intervals. 

Each recorded location is then associated with its nearest 

node within a 15-meter threshold, preventing incorrect 

matches in cases where a vehicle deviates from its expected 

route. These associations are stored in the database for each 

recorded measurement. The algorithm has proven to be both 

efficient and accurate, successfully matching measurements 

to a corresponding line in the current dataset. However, in 

rare cases where two lines share most of their track but di-

verge only at the beginning or end, mismatches may occur. 

In such cases, some measurements may fall outside the spec-

ified distance threshold and thus remain unassociated. Since 

queries are typically made by track section rather than by line 

- and track sections are associated with the same nodes - this 

has not been considered a significant limitation. Nonetheless, 

some measurements are not matched possibly due to too short 

trip length or GNSS positions exceeding the 10-meter bound-

ary mentioned above. Of the 1,015 trips analyzed, the algo-

rithm successfully matched 74.6% to a tram or light-rail line, 

while no corresponding match could be identified for the re-

maining 25.4%, due to the reasons mentioned above. 

4. RESULTS 

As outlined in Section 2.1, smartphones show good perfor-

mance in monitoring track defects in comparison to reference 

measurement systems. In the tests conducted for this research 

paper Samsung Galaxy S24 smartphone devices were placed 

by d                     h  d     ’                  h        

of their shift. The correct placement was explained in a 

handout, and the importance of consistent placement and ori-

entation of the device is emphasized. The tests show good 

results, with 86% of 1,175 measurements been placed cor-

rectly and usable data uploaded. Correct placement and data 

usability are verified in the digital twin (Section 3.1). 

By employing a monitoring approach based on periodic 

measurements at short intervals, changes in track quality can 

be effectively detected over time. So far, several hundred 

measurements using smartphones have been recorded span-

ning a period of at least one year on most of the lines in the 

city of Frankfurt. In addition, some measurements from 2023 

of earlier tests were available. 

Plotting the resulting data with color-coded indicators that re-

flect variations regarding the longitudinal track irregularity 

enables the visualization of temporal changes in infrastruc-

ture condition. This method provides a clear representation of 

how track quality evolves, supporting the identification of po-

tential degradation or anomalies. An example of such a visu-

alization based on smartphone measurements is shown in 

Figure 8. The plot shows the changes in track quality over a 

five-kilometer-long track section over a period of approxi-

mately one and a half years. Significant changes were ob-

served at around 6,900 meters, where degradation was ob-

served in the winter of 2024/2025. Figure 9 shows the evalu-

ation over time of this location including the individual track 

quality estimates. Between December 2024 and February 

2025, the city experienced multiple days with sub-zero tem-

peratures. Similar to the formation of potholes, these condi-

tions likely initiated track degradation through repeated 

freezing and thawing of the track bed, which was subse-

quently exacerbated in the following months by dynamic 

loads from tram traffic. 

Track sections with an identified alteration in quality were 

visited and inspected. In contrast to the identified quality deg-

radation shown in Figure 8 and Figure 9, peaks in track deg-

radation at level crossings and switches were identified. 

Figure 8. Development of a five-kilometer-long track section in terms of longitudinal track quality  

over a period of more than a year. The red arrows point to the location shown in Fig. 9. 
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These peaks did not result from a decrease in quality, but ra-

ther from the transition from conventional rails to grooved 

rails embedded in concrete at level crossings. In case of 

switches the resulting peak is attributable to the passage of 

the switches crossing. With the connection between measure-

ments and infrastructure elements, these false positive read-

ings can be automatically identified in the future. 

 

Figure 9. Change in infrastructure quality  

over time at 𝑠 = 6,900 𝑚. 

5. PROCESS INTEGRATION 

For many operators, current maintenance operations are con-

ducted via yearly manual visual inspection of the tracks. A 

foot patrol walks through the entire network to assess and 

document issues. In parallel, switches are inspected in detail. 

More expensive measurement equipment, such as TRVs, is 

only used every five years, which corresponds to mandatory 

inspections by German law (BOStrab, 1987). Maintenance 

task planning is based on the documented issues. 

The digital twin aims to integrate into the interface between 

the visual inspection and task planning stages (Figure 10). 

With the possibility to continuously monitor track conditions, 

defects are identified by the digital twin’         h   and task 

planning can then be executed based on the information from 

the digital twin. Therefore, visual inspections by walking the 

                   ’  necessary anymore; however, some de-

tected issues may require further examination. 

This offers the opportunity for more current and frequent in-

formation on track conditions and better allocation of re-

sources. At the same time, with changing working environ-

ments, workplaces like the visual inspection team lack attrac-

tivity and operators face issues with finding qualified em-

ployees. A digital twin with onboard measuring devices such 

as smartphones integrates condition-based monitoring and its 

advantages into the processes of tram and light-rail operators. 

Therefore, limited staff can be allocated more efficiently and 

due to enabling better resource planning operational disrup-

tions can be minimized. 

Full commercial implementation with the goal of replacing 

current measurement systems, such as measurement trolleys, 

requires approval of authorities and proof of equivalent safety 

to reference systems in use. Without approval of authorities 

the digital twin presented in this paper provides advantages 

in staff allocation and better planning of measurement equip-

ment deployment in detected hot spots. 

 

Figure 10. Integration into the maintenance process. 

6. CONCLUSION 

This research paper focused on a digital twin for tram and 

light-rail networks enabling condition-based monitoring of 

the        ’  infrastructure. The approach of using 

smartphones in combination with a cloud-based, open-data 

digital twin can enable time-dependent condition-based infra-

structure monitoring. Data mapping to discrete infrastructure 

elements, in particular, has the potential to identify track and 

rail defects specific to local areas. Challenges with data in-

consistencies between different GIS data sources were re-

solved and a custom map matching algorithm to map meas-

urement data to single geographical points was highlighted. 

This approach enables continuous observation and compari-

son of the development of infrastructure conditions over time. 

Integrating the proposed approach into current maintenance 

processes would allow operators to utilize advantages of con-

dition-based maintenance such as improved staff and re-

source planning. However, further research on identifying 

more defects is advised. 

Further research will be conducted into using smartphone 

cameras for detecting rail defects such as corrugations or 

worn rail flanges in combination with the acceleration data. 
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Local tests with operators using different camera placements, 

angles, shutter speeds, and lighting conditions need to be car-

ied out. In addition, the digital twin must be expanded to han-

dle image data, and new algorithms utilizing current object-

detection capabilities. Camera data also offers the possibility 

of detecting other objects within the clearance zone of the ve-

hicle. Intruding vegetation, potholes or unexpected events 

such as flooded tracks are suitable candidates for detection 

which influence daily operation of tram and light-rail net-

works. 

In the context of light-rail networks, often characterized by a 

greater proportion of tunnels, the development of effective 

methods for tunnel localization is currently underway. This 

challenge arises due to limited availability of GNSS signals 

in tunnels which hinders precise localization with the current 

approach. 

Additionally, user interaction and information displayed con-

cerning operator specific data must be further investigated in 

direct contact with operators. Research areas include ease of 

use, integration into an         ’  existing software infra-

structure and training requirements needed. Furthermore, the 

quantification of financial advantages in the utilization of the 

proposed approach in comparison to existing maintenance 

processes constitutes a consequential step in the direction of 

product development. 
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