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ABSTRACT

Due to an increasing passenger demand in rail-based trans-
portation and a desire for sustainable mobility, rail infrastruc-
ture is nowadays confronted with increased loads requiring
timely and efficient maintenance regimes (Holzfeind et al.,
2025). To improve maintenance scheduling and give rail in-
frastructure operators better insights into the state of their net-
works, a comprehensive digital twin based on open data has
been developed. The digital twin allows to connect sensor
data from vehicles to railway assets and enables the develop-
ment of custom algorithms for condition-based maintenance
of railway tracks. For practical tests and validation of the dig-
ital twin, smartphones were placed in various trams and light-
rail vehicles in the city of Frankfurt (Main) to record vibra-
tion and geolocation data over a period of more than a year.
The results demonstrate that infrastructure quality changes
can be automatically detected and monitored through the de-
veloped digital twin framework using a low-cost measure-
ment set-up. Hereby, new capabilities for proactive mainte-
nance scheduling and resource allocation emerge, and infra-
structure operators can prioritize interventions effectively
and ensure safe and comfortable railway operations.

1. INTRODUCTION

As part of worldwide efforts to make transport more sustain-
able, railway systems are currently being expanded and, in
some cases, newly developed from the ground up. In addi-
tion, efforts are undertaken to increase existing track capacity
by deploying technologies like Automatic Train Opera-
tion (ATO). The ascent in railway transportation, however,
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also increases infrastructure wear and hence demand for
maintenance. Since typically 30 percent of railway operating
cost is connected to rail infrastructure (Steer Davies Gleave,
2015), effective maintenance regimes are necessary to keep
operating costs at a minimum and to stay competitive to other
modes of transportation. One promising approach to increas-
ing the efficiency of infrastructure inspection and mainte-
nance is transitioning from corrective or preventive mainte-
nance to predictive and condition-based maintenance (CBM)
to achieve a cost optimum (Figure 1). Conducting preventive
maintenance operations too early results in higher life-cycle
infrastructure costs, whereas corrective maintenance results
in high cost due to required emergency measures (Holzfeind
et al., 2016). Early detection of defects enables infrastructure
operators to schedule maintenance more effectively, as it pro-
vides additional time for planning, staff allocation, and the
procurement of external services and equipment.
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Figure 1. Cost of preventive and predictive maintenance.

To enable the shift to CBM and be able to predict the evolu-
tion of track and rail defects, continuous automated data col-
lection and processing is indispensable. In railways, sensors
can be placed either alongside the infrastructure (e.g., on



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

bridges, switches or in depots) or on the vehicles themselves.
Together they enable comprehensive monitoring possibilities
(Frenz, 2020). A rather recent strategy is to install necessary
sensors not on dedicated track recording vehicles (TRV), but
on regular passenger trains that can gather data daily during
normal operation and integrate the results into track mainte-
nance decision-making (Yan et al., 2025). Due to the com-
paratively short total track length of urban transit systems,
owning TRVs is often not economically viable for many op-
erators in that area. As a result, track inspections are fre-
quently outsourced to external companies. A common alter-
native involves the use of hand-pushed measurement trolleys,
which are relatively inexpensive but can only be operated at
walking speed. Existing monitoring solutions also often lack
direct integration with Geographic Information Sys-
tems (GIS) or the ability to link analysis results to specific
infrastructure assets. Instead, outcomes are frequently visual-
ized as simple map overlays, which makes it more difficult
for the infrastructure manager to draw the right conclusions.
This limitation is partly due to the inconsistent use of stand-
ardized railway geodata formats across operators, or a lack of
digitized infrastructure data, which necessitates custom de-
velopment efforts for individual operators. To address this
challenge and support a scalable solution, this study investi-
gates the feasibility of utilizing OpenStreetMap (OSM) as the
primary source of geospatial data, accessible via an Applica-
tion Programming Interface (API). OSM already contains a
lot of crowdsourced rail-related data such as routes and the
locations of switches, level crossings, stations, and similar as-
sets, although data accuracy varies regionally.

The rest of the paper is structured as follows: Section 2 pro-
vides a more detailed description of the defects to be moni-
tored and explains how smartphones can be leveraged for
data acquisition and analysis. Section 3 then describes the ar-
chitecture of the digital twin and how the sensor data is
mapped to it. Section 4 presents results obtained through dig-
ital twin—based data processing. Section 5 discusses the inte-
gration of the digital twin into the maintenance processes of
a railway infrastructure operator. Finally, Section 6 summa-
rizes the main findings and contributions of the work.

2. RAIL AND TRACK DEFECTS

In railway operation different defects on the rail and track oc-
cur. This section focuses on defects that are relevant in the
scope of track monitoring only.

Track geometry defects (or track irregularities) describe the
deviations of a track in space compared to the intended de-
sign. The four major track geometry defects are shown in Fig-
ure 2 which include the longitudinal height error, cant error,
alignment error and gauge error. The track geometry defects
shown are of a wavelength in the meter-range and result from
damage to the underlying ballast. Main influence factors in
the formation of track geometry defects are the number of
vehicles, vehicle type, vehicle speed and vehicle load (per

axle) as well as the type and quality of the superstructure. In
curves the main influence factor is the track geometry (e.g.
curve radius) and not the dynamic vehicle-track interaction.
(Holzfeind et al., 2025)

Figure 2. Track geometry defects, a) Longitudinal height er-
ror; b) Cant error; ¢) Alignment error; d) Gauge error

Rail defects describe defects directly related to the rail body.
For example, corrugations (Figure 3) and damage to the inner
rail flange, which is especially prevalent in curves. Corruga-
tions are identifiable by short, centimeter-range wavelength
deformations at the top of the rail. These deformations are
often caused by acceleration and deceleration of vehicles
around stations or in curves. The resulting vibrations cause
noise pollution and higher stress to rail and track.

Wear on the inner flange of the outer rail of the curve is
caused by the wheel flange coming into contact with the outer
rail, causing wear. This phenomenon is particularly evident
in tram and light-rail networks, where the curve radius is

much smaller than on mainline railway, constraining proper
,2002)

Figure 3. Rail corrugation (Rail defects, 2002).

All described errors lead to ride comfort issues and depend-
ing on the severity of the error can pose a threat to safe rail-
way operation. Therefore, regular inspection of the infra-
structure is needed.

2.1. Track Monitoring using Low-Cost Devices

In recent years, low-cost measurement devices equipped with
MEMS (micro-electromechanical systems)-based sensors
have been becoming of increasing interest for monitoring so-
lutions in railways (Paixdo et al., 2019; Tsunashima et al.,
2023). Smartphones are easily accessible, portable and don’t
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need integration into the vehicles operating system or an al-
teration of any mechanical component of the vehicle. There-
fore, no regulatory implications emerge and the barrier to use
smartphones in existing trains is low. Further advantage is the
inbuilt internet connection which allows for automatic data
transfers into a cloud environment. Disadvantages include
sensor accuracy, limited sampling frequency, and possible in-
consistencies in the placement of the device (Leibner et al.,
2022).

To enhance the significance of smartphone-based measure-
ments, continuous monitoring of the track conditions is im-
portant. This enables multiple measurements to be compared
and reduces the need for each measurement to be precise at
every point. Furthermore, trend analysis of the recorded data
is possible because the time between measurements de-
creases compared to traditional measurements. Frequent data
recording allows for error prediction, enabling smartphones
to support the transition to condition-based maintenance. Fig-
ure 4 shows the development of track geometry errors over
distance and time qualitatively. The upper graph shows this
development in general whereas the lower graph shows the
development in condition-based maintenance, with measure-
ment events and maintenance actions after the error exceeds
a defined threshold.

4 = Track geometry
=
o
=
0

Distance "
A
Maintenance Action

—
o
=
0

Time
- Error thresholds

® Measurement

Figure 4. Error development in condition-based
maintenance.

In previous works the general capabilities of smartphone sen-
sors for measuring infrastructure defects, specifically longi-
tudinal height errors, were shown (Leibner et al., 2023). The
presented approach was also adopted for this study. For mon-
itoring track and rail defects using smartphones, acceleration
and Global Navigation Satellite System (GNSS) sensors are

utilized. The sampling frequency of the vibration data record-
ing is set to 100 Hz. GNSS data is recorded with approxi-
mately 1 Hz and then resampled to 100 Hz to achieve a single
tabular measurement structure. The GNSS localization ena-
bles the mapping of recorded acceleration data to specific lo-
cations. To achieve an estimate of the longitudinal track error
(LL(s)) the bandpass filtered vertical acceleration (zy, jps))
is integrated twice over path (s) and divided by the square of
the vehicle speed (v), giving an approximation of the vehicle
vertical movement which closely correlates to the vertical
track irregularity (Equation 1).

. ZII
IL(s) = f f —"”i’;’“) ds.

Equation 1. Estimation of longitudinal track error.
(Leibner et al., 2023)

Comparing single measurements of smartphones placed in
the driver’s compartment of a light-rail vehicle show a good
agreement between the estimated height error and the meas-
urement from a track geometry recording trolley (Figure 5).
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Figure 5. Longitudinal height errors measured by
smartphones and conventional measurement system
(Leibner et al., 2023).

Leibner et al. state, that smartphone measurements showed
good repeatability with absolute deviations in measured lon-
gitudinal height errors of 0.5 mm, based on tests according to
DIN EN 13848-2. Further tests in passenger service yielded
favorable results, with only 5% of the compared measure-
ment points deviating by more than 2-3 mm. (Leibner et al.,
2023)

As the smartphones are placed in the driver’s compartment
the resulting accelerations are influenced by the first and sec-
ond stage suspension of the vehicle whereas special measure-
ment equipment is not influenced by any suspension. This
mostly explains the difference in the measurement results.
This effect is more dominant for mainline vehicles, but less
distinctive for the case of tram and light-rail vehicles, which
commonly have rather stiff suspension systems, which do not
distort the track irregularity excitation too much.

Other measurement systems, such as commercial on-board
measurements systems (OBM) or special track recording ve-
hicles (TRV) were not further investigated due to their differ-
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ent application scopes. OBMs are not common in older, op-
erating tram and light-rail vehicles. Tram and light-rail net-
work operators utilize dedicated TRVs, but only every few
years, so they don’t enable condition-based monitoring but
conduct precise track measurements instead.

To be able to store and analyze all collected data a digital twin
platform was developed which will be explained in the fol-
lowing section.

3. DIGITAL TWIN

A digital twin is a second entity that describes the current and
future behavior of a physical system. Therefore, data is trans-
ferred from the physical system to the digital twin, and vice
versa (Grieves & Vickers, 2017).

Digital Model Digital Shadow Digital Twin
Physical ' Physical Physical
System | ¢ System System
A Y A
__ Virtual i Virtual Virtual
System System System
P> Manual data flow ~ — Automatic data flow

Figure 6. Digital Model, Shadow and Twin.

Depending on their state of data flow or the complexity of
behavior modelling, there are several definitions for digital
twins, such as digital model or digital shadow (Figure 6)
(Kritzinger et al., 2018). In this paper, the term “digital twin”
is employed for the purpose of simplicity.

3.1. Digital Twin Architecture

The developed digital twin consists of different software lay-
ers and interfaces with data sources as shown in Figure 7.
Measurement data, consisting of GNSS, acceleration and
timestamps, is recorded using a dedicated smartphone app,
which uploads data to a cloud database automatically at the
end of the recording process. Data handling checks for new
measurements daily and starts data processing on new da-
tasets. Datasets are checked for completeness, filtered and
matched to the associated track segments as described in de-
tail in Section 3.2. Data checks include verifying that the
smartphone was placed correctly, the measurement was suf-
ficiently long, and that all necessary data was uploaded.

For infrastructure data a combined approach of Open-
StreetMap and operator specific data is used. Tram and light-
rail networks used in this study, such as the network in Frank-
furt (Main), Germany, are mapped to a high level of detail,
including railway assets, such as switches, crossings, signals,
and stops. In addition, operator specific data is mapped on the
OSM data. This includes information on track sections and
their identification and information on switches and cross-
ings. Discrete point data, such as switches and crossings are
mapped per route utilizing PostGIS closest point function.
Track sections are matched per route as well, further work to
improve accuracy by adapting the matching algorithm de-
scribed in Section 3.2 is currently performed. Operator spe-
cific information enhances the quality of OSM data and en-
sures that employees of the operator can subsequently iden-
tify infrastructure elements in the notation they are accus-
tomed to. At the same time the data of OSM ensures that the
system is also usable for smaller operators that don’t have
digital information about their infrastructure.
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The user interaction layer completes the architecture of the
digital twin. Currently under development is a web-dash-
board with detailed views of track sections and analysis of
measurements, as well as an overview with performance in-
dicators for user interaction. The dashboard will serve as a
central hub to the operator to identify hotspots in the network,
on certain lines or line sections. Further details on the inte-
gration in the operator’s processes are described in section 5.

OSM is using a system of geographical points (nodes), com-
bined into linear elements (ways). Multiple ways are com-
bined to describe a track or railway line (relation) (N.N.,
2025). Metadata, e.g. line names, are saved as key-value
pairs. The OSM data structure is modified and simplified for
the digital twin, utilizing only nodes and relations with the
corresponding metadata. All data is stored in a PostgreSQL
database with the PostGIS extension enabled. Infrastructure
data is therefore saved as spatial data in the form of points
and lines that resemble the nodes and relations of OSM, re-
spectively. OSM data is downloaded into the digital twin’s
database via the Overpass API considering geographical
boundaries for an operator’s local area. Since mapping meas-
urement data requires a high density of geographical points
to accurately represent data, points between the infrequent
distanced OSM nodes are interpolated at approximately
every meter to achieve a balance between data accuracy and
data volume. All metadata from OSM is saved, though cur-
rently, primarily information about switches, crossings and
stops is used. The diverse meta information mapped in OSM
may be utilized further in the future.

This approach presents challenges in the form of data incon-
sistencies between OSM and operator data. OSM data may
have metadata mapping inconsistencies where certain ele-
ments, such as crossings or switches, are not mapped or are
defined with different meta-information as expected. For in-
stance, a switch and a pedestrian crossing that are mapped by
the same node in OSM may only have the pedestrian crossing
mapped as metadata. Therefore, further data processing is
needed. In our case an algorithm to find missing crossings
and switches in OSM data was implemented.

Measurement data recorded via a smartphone app is sent to
the cloud platform and integrated into the database daily.
Currently only acceleration and GNSS data is processed but
the digital twin’s architecture and database structure allow
the implementation of different data types such as images or
videos. Incoming data is matched by geolocation as described
in the following section.

3.2. Map Matching

To connect the recorded sensor data with the operator’s rail-
way assets, the integration of a map-matching algorithm into
the digital twin architecture is necessary. The algorithm con-
nects the recorded GNSS locations to the meter spaced nodes
in the database. Existing algorithms often rely on Hidden
Markov Models (HMMs) (Paul Newson & John Krumm,

2009), which come with high computational costs. Since
smartphones are deployed in regular in-service trams and
light-rail vehicles, the vehicles operate exclusively on prede-
fined and known routes. Consequently, it is not necessary to
employ an algorithm capable of mapping recorded GNSS co-
ordinates to arbitrary paths through the entire rail network.
Instead, the task reduces to identifying the most likely route
from a finite set of known trajectories. Once the correct route
is determined, the GNSS coordinates can be matched to the
closest corresponding nodes along that path. The downside of
this approach is, however, that railway depot tracks and other
track sections not part of a tram or light-rail line are not being
considered. Typically, these tracks however only make up a
very small portion of the entire network. Pseudocode for the
developed map matching algorithm is listed in Algorithm 1.

Algorithm 1. Pseudo code for the simplified map matching
algorithm.

kd_tree_osm « KDTree(x_osm, y_osm) # OSM node coordinates projected to x/y [m]

(x_sm, y_sm) « utm_proj(sm_lon, sm_lat) # Smartphone coords projected to x/y [m]

sm_start « (x_sm[@], y_sm[0])

sm_end <« (x_sm[-1], y_sm[-1])

# Vector pointing from start to end of measurement
sm_vec « (sm_lon[-1] - sm_lon[@], sm_lat[-1] - sm_lat[0])

(dd, ii) « kd_tree_osm.query((x_sm, y_sm), k=1, distance_upper_bound=10)
unique_indices « unique(ii)

candidate_relations « [osm_nodes[i].relations i unique_indices]
most_common_relations « most_common(3) candidate_relations
relation most_common_relations:

r_nodes « relation.nodes

(r_x, r_y) < utm_proj(r_nodes.lon, r_nodes.lat)

kd_tree_rel « KDTree(r_x, r_y)

(d1, il) « kd_tree_rel.query(sm_start)

(d2, i2) « kd_tree_rel.query(sm_end)

rel_start « r_nodes[min(il, i2)] (as longitude, latitude)
rel_end <« r_nodes[max(il, i2)] (as longitude, latitude)
# Vector pointing from start to end of relation

rel_vec « rel_end - rel_start

if dot_product(sm_vec, rel_vec) > 0:

break # Vectors pointing in the same direction

# Final mapping of Smartphone to location to closest nodes

(dd, ii) « kd_tree_rel.query((x_sm, y_sm), k=1, distance_upper_bound=15)

First, potential OSM relation candidates are identified by
querying a k-dimensional tree (k-d tree) constructed from all
OSM nodes, projected into a meter-based coordinate system
(e.g. Gauss-Krueger). This tree is queried using the
smartphone-recorded locations. K-d-trees were selected due
to their significantly lower computational complexity com-
pared to pairwise nearest-neighbor searches. A maximum
distance threshold of 10 meters is applied to ensure that only
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Figure 8. Development of a five-kilometer-long track section in terms of longitudinal track quality
over a period of more than a year. The red arrows point to the location shown in Fig. 9.

nearby nodes are considered. Next, all OSM relations associ-
ated with the identified nodes are extracted. Among these, the
three most frequently occurring relations are evaluated to de-
termine which one aligns with the direction of travel. This
step mitigates incorrect associations with rail lines traveling
in the opposite direction. Directional consistency is assessed
by constructing vectors from the start to the end point of both
the smartphone trajectory and the relation geometry. The dot
product of these vectors is used to determine alignment; a
positive dot product indicates an angle less than 90°, suggest-
ing similar directionality and a likely correct match. Once the
correct relation is identified, a new k-d tree is built for the
matched line, consisting of nodes spaced at 1-meter intervals.
Each recorded location is then associated with its nearest
node within a 15-meter threshold, preventing incorrect
matches in cases where a vehicle deviates from its expected
route. These associations are stored in the database for each
recorded measurement. The algorithm has proven to be both
efficient and accurate, successfully matching measurements
to a corresponding line in the current dataset. However, in
rare cases where two lines share most of their track but di-
verge only at the beginning or end, mismatches may occur.
In such cases, some measurements may fall outside the spec-
ified distance threshold and thus remain unassociated. Since
queries are typically made by track section rather than by line
- and track sections are associated with the same nodes - this
has not been considered a significant limitation. Nonetheless,
some measurements are not matched possibly due to too short
trip length or GNSS positions exceeding the 10-meter bound-
ary mentioned above. Of the 1,015 trips analyzed, the algo-
rithm successfully matched 74.6% to a tram or light-rail line,
while no corresponding match could be identified for the re-
maining 25.4%, due to the reasons mentioned above.

4. RESULTS

As outlined in Section 2.1, smartphones show good perfor-
mance in monitoring track defects in comparison to reference
measurement systems. In the tests conducted for this research
paper Samsung Galaxy S24 smartphone devices were placed

by driving personnel in the driver’s compartment at the start
of their shift. The correct placement was explained in a
handout, and the importance of consistent placement and ori-
entation of the device is emphasized. The tests show good
results, with 86% of 1,175 measurements been placed cor-
rectly and usable data uploaded. Correct placement and data
usability are verified in the digital twin (Section 3.1).

By employing a monitoring approach based on periodic
measurements at short intervals, changes in track quality can
be effectively detected over time. So far, several hundred
measurements using smartphones have been recorded span-
ning a period of at least one year on most of the lines in the
city of Frankfurt. In addition, some measurements from 2023
of earlier tests were available.

Plotting the resulting data with color-coded indicators that re-
flect variations regarding the longitudinal track irregularity
enables the visualization of temporal changes in infrastruc-
ture condition. This method provides a clear representation of
how track quality evolves, supporting the identification of po-
tential degradation or anomalies. An example of such a visu-
alization based on smartphone measurements is shown in
Figure 8. The plot shows the changes in track quality over a
five-kilometer-long track section over a period of approxi-
mately one and a half years. Significant changes were ob-
served at around 6,900 meters, where degradation was ob-
served in the winter of 2024/2025. Figure 9 shows the evalu-
ation over time of this location including the individual track
quality estimates. Between December 2024 and February
2025, the city experienced multiple days with sub-zero tem-
peratures. Similar to the formation of potholes, these condi-
tions likely initiated track degradation through repeated
freezing and thawing of the track bed, which was subse-
quently exacerbated in the following months by dynamic
loads from tram traffic.

Track sections with an identified alteration in quality were
visited and inspected. In contrast to the identified quality deg-
radation shown in Figure 8 and Figure 9, peaks in track deg-
radation at level crossings and switches were identified.
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These peaks did not result from a decrease in quality, but ra-
ther from the transition from conventional rails to grooved
rails embedded in concrete at level crossings. In case of
switches the resulting peak is attributable to the passage of
the switches crossing. With the connection between measure-
ments and infrastructure elements, these false positive read-
ings can be automatically identified in the future.
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Figure 9. Change in infrastructure quality
over time at s = 6,900 m.

5. PROCESS INTEGRATION

For many operators, current maintenance operations are con-
ducted via yearly manual visual inspection of the tracks. A
foot patrol walks through the entire network to assess and
document issues. In parallel, switches are inspected in detail.
More expensive measurement equipment, such as TRVs, is
only used every five years, which corresponds to mandatory
inspections by German law (BOStrab, 1987). Maintenance
task planning is based on the documented issues.

The digital twin aims to integrate into the interface between
the visual inspection and task planning stages (Figure 10).
With the possibility to continuously monitor track conditions,
defects are identified by the digital twin’s algorithms and task
planning can then be executed based on the information from
the digital twin. Therefore, visual inspections by walking the
entire network aren’t necessary anymore; however, some de-
tected issues may require further examination.

This offers the opportunity for more current and frequent in-
formation on track conditions and better allocation of re-
sources. At the same time, with changing working environ-
ments, workplaces like the visual inspection team lack attrac-
tivity and operators face issues with finding qualified em-
ployees. A digital twin with onboard measuring devices such
as smartphones integrates condition-based monitoring and its
advantages into the processes of tram and light-rail operators.
Therefore, limited staff can be allocated more efficiently and
due to enabling better resource planning operational disrup-
tions can be minimized.

Full commercial implementation with the goal of replacing
current measurement systems, such as measurement trolleys,
requires approval of authorities and proof of equivalent safety

to reference systems in use. Without approval of authorities
the digital twin presented in this paper provides advantages
in staff allocation and better planning of measurement equip-
ment deployment in detected hot spots.
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Figure 10. Integration into the maintenance process.

6. CONCLUSION

This research paper focused on a digital twin for tram and
light-rail networks enabling condition-based monitoring of
the network’s infrastructure. The approach of using
smartphones in combination with a cloud-based, open-data
digital twin can enable time-dependent condition-based infra-
structure monitoring. Data mapping to discrete infrastructure
elements, in particular, has the potential to identify track and
rail defects specific to local areas. Challenges with data in-
consistencies between different GIS data sources were re-
solved and a custom map matching algorithm to map meas-
urement data to single geographical points was highlighted.

This approach enables continuous observation and compari-
son of the development of infrastructure conditions over time.
Integrating the proposed approach into current maintenance
processes would allow operators to utilize advantages of con-
dition-based maintenance such as improved staff and re-
source planning. However, further research on identifying
more defects is advised.

Further research will be conducted into using smartphone
cameras for detecting rail defects such as corrugations or
worn rail flanges in combination with the acceleration data.
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Local tests with operators using different camera placements,
angles, shutter speeds, and lighting conditions need to be car-
ied out. In addition, the digital twin must be expanded to han-
dle image data, and new algorithms utilizing current object-
detection capabilities. Camera data also offers the possibility
of detecting other objects within the clearance zone of the ve-
hicle. Intruding vegetation, potholes or unexpected events
such as flooded tracks are suitable candidates for detection
which influence daily operation of tram and light-rail net-
works.

In the context of light-rail networks, often characterized by a
greater proportion of tunnels, the development of effective
methods for tunnel localization is currently underway. This
challenge arises due to limited availability of GNSS signals
in tunnels which hinders precise localization with the current
approach.

Additionally, user interaction and information displayed con-
cerning operator specific data must be further investigated in
direct contact with operators. Research areas include ease of
use, integration into an operator’s existing software infra-
structure and training requirements needed. Furthermore, the
quantification of financial advantages in the utilization of the
proposed approach in comparison to existing maintenance
processes constitutes a consequential step in the direction of
product development.
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