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ABSTRACT

This study proposes a novel architecture of physics-informed
latent ensemble deep operator network with synthetic data.
The proposed neural network aims to predict thermal
runaway of a lithium-ion battery through prior temperature
responses in real-time. The proposed neural network
introduces three key features to provide an advanced control-
enabling solution for battery thermal management systems
(BTMS). First, the proposed neural network addresses the
architecture of DeepONet as a surrogate model to effectively
learn the internal temperature, chemical component
concentration, and gas formation under supervision of
complex and nonlinear multiphysics representing thermal
runaway of lithium-ion batteries. This approach enables
accurate and robust virtual sensing capability even with
limited data by constraining the prognostic responses to

follow the governing equation of the underlying multiphysics.

Second, a dual-network architecture is introduced to extract
valuable features from prior temperature responses, which
inherently contain limited information in real-time scenarios.
The network comprises two sub-networks; the first network
extracts latent features from decomposed temporal domains
across diverse local domains, and the second network
ensembles these features to original features to mitigate
concerns on overfitting and generalization. This approach
ensures effective supervision by stiff governing equations in
both local and global domains. Third, novel methods are
employed to reduce the training complexity associated with
integrating multiphysics equations including separate
DeepONet, stan activation function, adaptive weights, and
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encoders. These methods enhance the expressiveness of
temporal and spatial gradients that play an important role in
physics-informed neural networks. Hence, this feature not
only ensures convergence through a balanced learning but
also improves the overall capability of the neural network.
Extensive ablation studies validate the contribution of each
feature, and thereby confirm the effectiveness of novel
architecture and strategies in addressing failure issues in
physics-informed neural networks. The proposed method
enables real-time prognosis through prior thermal responses,
offering a promising pathway toward artificial intelligence
transformation in BMS to ensure the safety and efficiency of
lithium-ion batteries.

NOMENCLATURE
Symbols

A Frequency factor
c Dimensionless concentration
Cp Heat capacity

E, Activation energy

Qexo Volumetric heat generation rate
R, Gas constant

R, Gas constant of product

my Mass of the gas formation
P Pressure
T Cell temperature
k Thermal conductivity coefficient
|4 Control volume
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1. METHODOLOGY

Thermal runaway (TR) in lithium-ion batteries poses a
critical safety challenge, leading to rapid temperature
escalation, gas formation, and potential catastrophic failure
(Feng X et al., 2015). Accurate and timely prognosis of TR is
essential for ensuring the safe operation of batteries in electric
vehicles and energy storage systems. However, predicting
TR in real time is difficult due to the coupled thermal,
chemical, and mechanical processes involved (Guo G et al.,
2010, Kwak, E. etal., 2022), as well as the limited availability
of internal measurements. Recent advances in physics-
informed neural networks (Guan H et al., 2023) and operator
learning (Wang, S. et al., 2022, Jeong, J. et al., 2024) provide
new opportunities to address these challenges by integrating
governing equations with data for reliable state prediction.

This study proposes PILE-DeepONet, a physics-informed
latent ensemble DeepONet, for accurate and efficient real-
time thermal runaway prognosis in lithium-ion batteries
under various thermal abuse conditions using prior
temperature responses. The proposed framework enables
virtual sensing of internal states such as temperature,
equivalent chemical concentration, gas formation, and
pressure after 900 seconds, based on currently monitored
surface temperatures and environmental conditions. This
approach provides a foundation for the proactive safety
management of batteries.
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Figure 1 The architecture of PILE-DeepONet

The framework incorporates three essential strategies to
achieve high-fidelity real-time TR prognosis. First, it
introduces a time-based segmentation method to address the
inherent challenges of learning long-term temporal responses
under physics intelligence within neural networks. PILE-
DeepONet decomposes the entire time domain into smaller
regions, enabling the capture of fast local dynamics and
preserving the global temporal evolution of the TR
phenomenon. This segmentation effectively mitigates the
stiffness issues encountered during normalization, allowing
for improved stability and learnability during training while
preserving the consistency of governing physical laws within
each local domain. Second, PILE-DeepONet employs a two-
stage neural operator architecture with embedded physics

intelligence to efficiently extract and utilize meaningful
information from limited monitoring data (Figure 1). The
first neural operator acts as a latent feature extractor,
capturing diverse information such as cooling performance,
slow thermal trends prior to TR onset, and rapid thermal
variations across different temporal windows. These latent
features from diverse information are then combined with
original input data in the second neural operator, which
functions as a predictive model to estimate internal TR states.
This sequential approach enables accurate internal state
inference, reduces overfitting risk, and improves
generalization, supporting network robustness under diverse
operational and abuse conditions. Both operators are trained
under the supervision of the governing multiphysics partial
differential and ordinary differential equations describing TR
phenomenon, with these equations directly embedded into
the loss function. The heat transfer within the lithium-ion
battery during TR is governed by the energy conservation
equation (Kwak, E. et al., 2022):

9 .
PCpoe = VIVT) + Qexo. (1)

where p, ¢, k, T, and Qexo denote the cell density, heat
capacity, thermal conductivity coefficient, cell temperature,
and volumetric heat generation rate, respectively. This
equation describes the temperature distribution of a lithium-
ion battery (LIB) by accounting for the propagation of heat
throughout the LIB and the generation of heat due to several
heat sources. The chemical decomposition associated with
TR is described by (Kwak, E. et al., 2022):

dc

—E=Aexp [—:C—“T] c, 2)

where c, A, E,, and R, denote the concentration of chemical
component, frequency factor, thermal activation energy, and
gas constant, respectively. This equation indicates a
significant increase in the decomposition rate of the chemical
component with rising temperature, resulting in exponential
heat generation in TR. Moreover, this coupling of
thermodynamics and chemical reactions results in a pressure
increase, originating from rising temperature and gas
formation as follows (Hewu W et al., 2019):
p= nggT’
v

3)

omg dc
e = —(mgo —mg) 3. )

where P, mg, Ry, V, and mgy o denote the pressure, the mass
of the gas formation, gas constant of product, control volume,
and the available mass of gas reactant. By incorporating these
governing equations during training, PILE-DeepONet
ensures that its predictions remain consistent with the
underlying conservation laws, even in regions where direct
measurements are unavailable. Third, the proposed
framework integrates advanced training methodologies to
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manage the complexity associated with incorporating physics
intelligence. The separation of trunk networks, inspired by
the mathematical separation of variables, is employed to
enhance the expressiveness of derivatives during the
optimization of physics-based loss functions. The Stan
activation function is utilized to increase the variability and
magnitude of derivatives, allowing the network to capture

stiff and nonlinear behaviors characteristic of TR phenomena.

Adaptive weighting using the neural tangent kernel
dynamically adjusts the contributions of each loss term,
ensuring that data fitting, physics residuals, boundary
conditions, and initial conditions are properly scaled and
effectively influence the overall training. Additionally, the
normalization of spatial, temporal, and physical variables
ensures consistent scaling across different units and
magnitudes, promoting stable convergence during training.
The proposed neural network minimizes a composite loss
function that integrates data fitting, residuals of the governing
physics equations calculated via automatic differentiation,
and relevant boundary and initial conditions during the
training phase. The adaptive weighting mechanism updates
these contributions at each iteration, allowing the network to
learn physically consistent and accurate solutions while
maintaining computational efficiency.

2. EXPERIMENTS

Comprehensive synthetic data were generated to support the
training of PILE-DeepONet under a range of thermal abuse
conditions through the multiphysics finite element model
(FEM) using COMSOL Multiphysics 6.1 (COMSOL Inc.,
USA). These data allow PILE-DeepONet to capture key
aspects of the TR phenomenon such as internal temperature
distribution, concentration of chemical component, gas
formation, and pressure.

The multiphysics FEM addressed a simple 1D radial
geometry comprising 31 nodes from center to the surface.
This geometry was rotated 360 degrees to form the cross-
section of a cylinder cell, effectively illustrating radial
thermal variations. The outer edge of the node representing
the LIB surface was exposed to a heating curve to replicate
thermal abuse from external temperature conditions. The
thermal abuse condition induces thermal runaway, resulting
in complex and nonlinear changes in temperature,
concentration of chemical component, gas formation, and
pressure. Note that these results reflect the behavior of the
LIB cell, with key parameters adjusted based on experimental
data, particularly the measured surface temperature and
pressure.

The various heating curves used to generate the synthetic data
are summarized in Table 1. These thermal conditions were
defined by differences in the heating ramp-up time of the
heating curve and cooling performance of the surrounding
system. These modifications represent various scenarios in

which LIBs may be exposed to extreme thermal abuse
conditions. Specifically, the heating ramp-up time reflects
both slow and rapid temperature increases, while the cooling
performance indicates the ability of the thermal management
system to dissipate heat. These synthetic data were randomly
divided into training, validation, and test sets. The training set
comprised 84 TR scenarios, designed for improved accuracy
and robustness. The validation set included 10 scenarios from
the same distribution of training set to assess generalization
and prevent overfitting. The test data were categorized into
three different groups. Test Set 1 comprised 11 scenarios
similar to the training conditions to evaluate the in-
distribution performance of PILE-DeepONet. Test Set 2 is an
actual TR experiment scenario, aligning with the distribution
of Test Set 1 but offering measured values for surface
temperature and pressure. This dataset enables a feasibility
analysis of TR prognosis using actual measured surface
temperature as input. Test Set 3 comprised 36 unseen
synthetic ~ scenarios  representing  out-of-distribution
conditions, where the classification of out-of-distribution was
determined based on gradient criteria, aimed at validating the
capability of PILE-DeepONet.

Table 1. Heating conditions for generating synthetic data.

Initial Target . cooling
Ramp-up time
temperature temperature [s] performance
[°Cl] [°Cl] [W/(m*K)]
Training
set /
Validation 35] [270] [2100:45:3000] L 101316
19]
set /
Test set 1
Test set 2 [35] [270] [2600] [7]
[1800 : 40 : 2000]
Test set 3 [35] [270] [3100 : 40 - 3300] [71319]

PILE-DeepONet was implemented using JAX and trained on
a server equipped with an AMD EPYC 7542 CPU, 512 GB
of memory, a Tesla A100 GPU, and Ubuntu 18.04.6 LTS.
The proposed neural network was trained for up to 300,000
iterations using the Adam optimizer, starting with an initial
learning rate of 0.001, which decayed exponentially by a
factor of 10 every 2,000 iterations. The loss function was
computed with adaptive weights, updated at each iteration
using the neural tangent kernel to balance the contributions
of each loss term. Additionally, training was terminated early
if the root mean squared error on the validation set failed to
improve over 40,000 consecutive iterations.

3. RESULT AND DISCUSSION

A comprehensive comparative analysis was performed
against experimental measurements and multiphysics FEM
simulation results to evaluate the effectiveness and practical
applicability of PILE-DeepONet for TR prognosis under
thermal abuse conditions.
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Figure 2 illustrates the temporal evolution of the surface
temperature in a lithium-ion battery under thermal abuse
conditions, comparing experimental = measurements,
multiphysics FEM simulation results, and predictions
obtained from PILE-DeepONet. The proposed neural
network accurately captures TR phenomenon, aligning well
with the experimental measurements despite the presence of
noise in the monitored data. The shaded yellow region
highlights the period during which the input temperature,
shown in the inset, increases and serves as the monitored
input for predicting the TR peak. PILE-DeepONet
successfully predicts the timing and magnitude of the rapid
temperature escalation, demonstrating excellent agreement
with the experimental and FEM results even in the highly
nonlinear TR regime.
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Figure 2. Comparative analysis with actual temperature
measurements during TR of multiphysics FEM and PILE-
DeepONet.

Figure 3 presents the pressure evolution, where PILE-
DeepONet accurately predicts the onset and peak of the
pressure rise associated with gas generation during TR. The
proposed neural network aligns well with FEM predictions
and captures the timing and magnitude of the experimental
peak pressure with high fidelity. The effective encoding of
multiphysics laws governing the TR phenomenon enables
reliable prediction of dynamic pressure behavior under
thermal abuse conditions.
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Figure 3. Comparative analysis with actual pressure during
TR of multiphysics FEM and PILE-DeepONet.

Figure 4 verifies the feasibility of using PILE-DeepONet for
real-time safety management by comparing a cooling
simulation with active cooling applied at the precisely
predicted TR peak against the uncontrolled scenario. The
predicted peak point, indicated by the vertical dashed yellow
line around 1750 s, was identified in advance using PILE-
DeepONet. This approach reduces the rapid temperature
increase and pressure increase by initiating cooling at the
predicted critical point, which prevents the system from
reaching the TR peak seen in the uncontrolled experimental
scenario. This result demonstrates the practical utility of
predictive TR prognosis using PILE-DeepONet for real-time
safety management. Accurate identification of the
intervention point enables active cooling to be applied
proactively to suppress the progression into thermal runaway,
thereby enhancing battery safety under thermal abuse
conditions.
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Figure 4 Feasibility of PILE-DeepONet for mitigating TR
under thermal abuse

These results collectively demonstrate that PILE-DeepONet
enables reliable, accurate, and computationally efficient TR
prognosis under various thermal abuse conditions. The ability
to utilize noisy monitored data while maintaining prediction
accuracy further underscores the robustness of PILE-
DeepONet for deployment in real-world battery management



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

systems, supporting proactive TR prevention and enhancing
the operational safety of lithium-ion batteries under
challenging conditions.

4. CONCLUSIONS

This study introduced PILE-DeepONet as an effective
framework for real-time TR prognosis in lithium-ion
batteries subjected to various thermal abuse conditions.
Extensive analysis confirmed that PILE-DeepONet reliably
captures the spatiotemporal progression of TR events,
accurately predicting the timing and magnitude of rapid
temperature and pressure increases under nonlinear thermal
conditions. In addition, the framework successfully identified
critical intervention points, enabling timely application of
cooling strategies to suppress rapid temperature rise and
prevent the system from entering TR. These outcomes
underscore the practical viability of PILE-DeepONet for
enhancing the safety of lithium-ion batteries through real-
time monitoring and proactive intervention. PILE-DeepONet
provides a reliable and computationally efficient solution for
early TR prediction, delivering valuable insights to support
advanced thermal management and safety strategies in
electric vehicles and energy storage applications. The
demonstrated capability of the framework to maintain
accurate performance under practical monitoring conditions
highlights potential for seamless integration into battery
management systems, advancing the safe and stable
operation of lithium-ion batteries across a range of
demanding scenarios.
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