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ABSTRACT 

This study proposes a novel architecture of physics-informed 

latent ensemble deep operator network with synthetic data. 

The proposed neural network aims to predict thermal 

runaway of a lithium-ion battery through prior temperature 

responses in real-time. The proposed neural network 

introduces three key features to provide an advanced control-

enabling solution for battery thermal management systems 

(BTMS). First, the proposed neural network addresses the 

architecture of DeepONet as a surrogate model to effectively 

learn the internal temperature, chemical component 

concentration, and gas formation under supervision of 

complex and nonlinear multiphysics representing thermal 

runaway of lithium-ion batteries. This approach enables 

accurate and robust virtual sensing capability even with 

limited data by constraining the prognostic responses to 

follow the governing equation of the underlying multiphysics. 

Second, a dual-network architecture is introduced to extract 

valuable features from prior temperature responses, which 

inherently contain limited information in real-time scenarios. 

The network comprises two sub-networks; the first network 

extracts latent features from decomposed temporal domains 

across diverse local domains, and the second network 

ensembles these features to original features to mitigate 

concerns on overfitting and generalization. This approach 

ensures effective supervision by stiff governing equations in 

both local and global domains. Third, novel methods are 

employed to reduce the training complexity associated with 

integrating multiphysics equations including separate 

DeepONet, stan activation function, adaptive weights, and 

encoders. These methods enhance the expressiveness of 

temporal and spatial gradients that play an important role in 

physics-informed neural networks. Hence, this feature not 

only ensures convergence through a balanced learning but 

also improves the overall capability of the neural network. 

Extensive ablation studies validate the contribution of each 

feature, and thereby confirm the effectiveness of novel 

architecture and strategies in addressing failure issues in 

physics-informed neural networks. The proposed method 

enables real-time prognosis through prior thermal responses, 

offering a promising pathway toward artificial intelligence 

transformation in BMS to ensure the safety and efficiency of 

lithium-ion batteries. 

 

NOMENCLATURE 

Symbols  

𝐴 Frequency factor 

𝑐 Dimensionless concentration 

𝑐𝑝 Heat capacity 

𝐸𝑎 Activation energy 

𝑄̇𝑒𝑥𝑜 Volumetric heat generation rate 

𝑅𝑐 Gas constant 

𝑅𝑔 Gas constant of product 

𝑚𝑔 Mass of the gas formation 

𝑃 Pressure 

𝑇 Cell temperature 

𝑘 Thermal conductivity coefficient 

𝑉 Control volume 

Jinho Jeong et al. This is an open-access article distributed under the terms 

of the Creative Commons Attribution 3.0 United States License, which 

permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 

 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025 

 

2 

1. METHODOLOGY 

Thermal runaway (TR) in lithium-ion batteries poses a 

critical safety challenge, leading to rapid temperature 

escalation, gas formation, and potential catastrophic failure 

(Feng X et al., 2015). Accurate and timely prognosis of TR is 

essential for ensuring the safe operation of batteries in electric 

vehicles and energy storage systems. However, predicting 

TR in real time is difficult due to the coupled thermal, 

chemical, and mechanical processes involved (Guo G et al., 

2010, Kwak, E. et al., 2022), as well as the limited availability 

of internal measurements. Recent advances in physics-

informed neural networks (Guan H et al., 2023) and operator 

learning (Wang, S. et al., 2022, Jeong, J. et al., 2024) provide 

new opportunities to address these challenges by integrating 

governing equations with data for reliable state prediction. 

This study proposes PILE-DeepONet, a physics-informed 

latent ensemble DeepONet, for accurate and efficient real-

time thermal runaway prognosis in lithium-ion batteries 

under various thermal abuse conditions using prior 

temperature responses. The proposed framework enables 

virtual sensing of internal states such as temperature, 

equivalent chemical concentration, gas formation, and 

pressure after 900 seconds, based on currently monitored 

surface temperatures and environmental conditions. This 

approach provides a foundation for the proactive safety 

management of batteries.  

 

Figure 1 The architecture of PILE-DeepONet 

 

The framework incorporates three essential strategies to 

achieve high-fidelity real-time TR prognosis. First, it 

introduces a time-based segmentation method to address the 

inherent challenges of learning long-term temporal responses 

under physics intelligence within neural networks. PILE-

DeepONet decomposes the entire time domain into smaller 

regions, enabling the capture of fast local dynamics and 

preserving the global temporal evolution of the TR 

phenomenon. This segmentation effectively mitigates the 

stiffness issues encountered during normalization, allowing 

for improved stability and learnability during training while 

preserving the consistency of governing physical laws within 

each local domain. Second, PILE-DeepONet employs a two-

stage neural operator architecture with embedded physics 

intelligence to efficiently extract and utilize meaningful 

information from limited monitoring data (Figure 1). The 

first neural operator acts as a latent feature extractor, 

capturing diverse information such as cooling performance, 

slow thermal trends prior to TR onset, and rapid thermal 

variations across different temporal windows. These latent 

features from diverse information are then combined with 

original input data in the second neural operator, which 

functions as a predictive model to estimate internal TR states. 

This sequential approach enables accurate internal state 

inference, reduces overfitting risk, and improves 

generalization, supporting network robustness under diverse 

operational and abuse conditions. Both operators are trained 

under the supervision of the governing multiphysics partial 

differential and ordinary differential equations describing TR 

phenomenon, with these equations directly embedded into 

the loss function. The heat transfer within the lithium-ion 

battery during TR is governed by the energy conservation 

equation (Kwak, E. et al., 2022): 

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= ∇(𝑘∇𝑇) +  𝑄̇𝑒𝑥𝑜, (1) 

where 𝜌 , 𝑐𝑝 , 𝑘 , 𝑇 , and 𝑄̇𝑒𝑥𝑜  denote the cell density, heat 

capacity, thermal conductivity coefficient, cell temperature, 

and volumetric heat generation rate, respectively. This 

equation describes the temperature distribution of a lithium-

ion battery (LIB) by accounting for the propagation of heat 

throughout the LIB and the generation of heat due to several 

heat sources. The chemical decomposition  associated with 

TR is described by (Kwak, E. et al., 2022): 

−
𝑑𝑐

𝑑𝑡
= 𝐴 𝑒𝑥𝑝 [−

𝐸𝑎

𝑅𝑐𝑇
] 𝑐, (2) 

where 𝑐, 𝐴, 𝐸𝑎, and 𝑅𝑐 denote the concentration of chemical 

component, frequency factor, thermal activation energy, and 

gas constant, respectively. This equation indicates a 

significant increase in the decomposition rate of the chemical 

component with rising temperature, resulting in exponential 

heat generation in TR. Moreover, this coupling of 

thermodynamics and chemical reactions results in a pressure 

increase, originating from rising temperature and gas 

formation as follows (Hewu W et al., 2019): 

𝑃 =
𝑚𝑔𝑅𝑔𝑇

𝑉
, (3) 

𝜕𝑚𝑔

𝜕𝑡
= −(𝑚𝑔,0 − 𝑚𝑔)

𝑑𝑐

𝑑𝑡
, (4) 

where 𝑃, 𝑚𝑔, 𝑅𝑔, 𝑉, and 𝑚𝑔,0 denote the pressure, the mass 

of the gas formation, gas constant of product, control volume, 

and the available mass of gas reactant. By incorporating these 

governing equations during training, PILE-DeepONet 

ensures that its predictions remain consistent with the 

underlying conservation laws, even in regions where direct 

measurements are unavailable. Third, the proposed 

framework integrates advanced training methodologies to 
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manage the complexity associated with incorporating physics 

intelligence. The separation of trunk networks, inspired by 

the mathematical separation of variables, is employed to 

enhance the expressiveness of derivatives during the 

optimization of physics-based loss functions. The Stan 

activation function is utilized to increase the variability and 

magnitude of derivatives, allowing the network to capture 

stiff and nonlinear behaviors characteristic of TR phenomena. 

Adaptive weighting using the neural tangent kernel 

dynamically adjusts the contributions of each loss term, 

ensuring that data fitting, physics residuals, boundary 

conditions, and initial conditions are properly scaled and 

effectively influence the overall training. Additionally, the 

normalization of spatial, temporal, and physical variables 

ensures consistent scaling across different units and 

magnitudes, promoting stable convergence during training.  

The proposed neural network minimizes a composite loss 

function that integrates data fitting, residuals of the governing 

physics equations calculated via automatic differentiation, 

and relevant boundary and initial conditions during the 

training phase. The adaptive weighting mechanism updates 

these contributions at each iteration, allowing the network to 

learn physically consistent and accurate solutions while 

maintaining computational efficiency. 

 

2. EXPERIMENTS 

Comprehensive synthetic data were generated to support the 

training of PILE-DeepONet under a range of thermal abuse 

conditions through the multiphysics finite element model 

(FEM) using COMSOL Multiphysics 6.1 (COMSOL Inc., 

USA). These data allow PILE-DeepONet to capture key 

aspects of the TR phenomenon such as internal temperature 

distribution, concentration of chemical component, gas 

formation, and pressure. 

The multiphysics FEM addressed a simple 1D radial 

geometry comprising 31 nodes from center to the surface. 

This geometry was rotated 360 degrees to form the cross-

section of a cylinder cell, effectively illustrating radial 

thermal variations. The outer edge of the node representing 

the LIB surface was exposed to a heating curve to replicate 

thermal abuse from external temperature conditions. The 

thermal abuse condition induces thermal runaway, resulting 

in complex and nonlinear changes in temperature, 

concentration of chemical component, gas formation, and 

pressure. Note that these results reflect the behavior of the 

LIB cell, with key parameters adjusted based on experimental 

data, particularly the measured surface temperature and 

pressure. 

The various heating curves used to generate the synthetic data 

are summarized in Table 1. These thermal conditions were 

defined by differences in the heating ramp-up time of the 

heating curve and cooling performance of the surrounding 

system. These modifications represent various scenarios in 

which LIBs may be exposed to extreme thermal abuse 

conditions. Specifically, the heating ramp-up time reflects 

both slow and rapid temperature increases, while the cooling 

performance indicates the ability of the thermal management 

system to dissipate heat. These synthetic data were randomly  

divided into training, validation, and test sets. The training set 

comprised 84 TR scenarios, designed for improved accuracy 

and robustness. The validation set included 10 scenarios from 

the same distribution of training set to assess generalization 

and prevent overfitting. The test data were categorized into 

three different groups. Test Set 1 comprised 11 scenarios 

similar to the training conditions to evaluate the in-

distribution performance of PILE-DeepONet. Test Set 2 is an 

actual TR experiment scenario, aligning with the distribution 

of Test Set 1 but offering measured values for surface 

temperature and pressure. This dataset enables a feasibility 

analysis of TR prognosis using actual measured surface 

temperature as input. Test Set 3 comprised 36 unseen 

synthetic scenarios representing out-of-distribution 

conditions, where the classification of out-of-distribution was 

determined based on gradient criteria, aimed at validating the 

capability of PILE-DeepONet. 

 

Table 1. Heating conditions for generating synthetic data. 

 

Initial 

temperature 

[ºC] 

Target 

temperature 

[ºC] 

Ramp-up time 

[s] 

cooling 

performance 

[W/(m2·K)] 

Training 

set / 

Validation 

set / 

Test set 1 

[35] [270] [2100 : 45 : 3000] 
[7 10 13 16 

19] 

Test set 2 [35] [270] [2600] [7] 

Test set 3 [35] [270] 
[1800 : 40 : 2000] 

[3100 : 40 : 3300] 
[7 13 19] 

 

PILE-DeepONet was implemented using JAX and trained on 

a server equipped with an AMD EPYC 7542 CPU, 512 GB 

of memory, a Tesla A100 GPU, and Ubuntu 18.04.6 LTS. 

The proposed neural network was trained for up to 300,000 

iterations using the Adam optimizer, starting with an initial 

learning rate of 0.001, which decayed exponentially by a 

factor of 10 every 2,000 iterations. The loss function was 

computed with adaptive weights, updated at each iteration 

using the neural tangent kernel to balance the contributions 

of each loss term. Additionally, training was terminated early 

if the root mean squared error on the validation set failed to 

improve over 40,000 consecutive iterations. 

3. RESULT AND DISCUSSION 

A comprehensive comparative analysis was performed 

against experimental measurements and multiphysics FEM 

simulation results to evaluate the effectiveness and practical 

applicability of PILE-DeepONet for TR prognosis under 

thermal abuse conditions. 
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Figure 2 illustrates the temporal evolution of the surface 

temperature in a lithium-ion battery under thermal abuse 

conditions, comparing experimental measurements, 

multiphysics FEM simulation results, and predictions 

obtained from PILE-DeepONet. The proposed neural 

network accurately captures TR phenomenon, aligning well 

with the experimental measurements despite the presence of 

noise in the monitored data. The shaded yellow region 

highlights the period during which the input temperature, 

shown in the inset, increases and serves as the monitored 

input for predicting the TR peak. PILE-DeepONet 

successfully predicts the timing and magnitude of the rapid 

temperature escalation, demonstrating excellent agreement 

with the experimental and FEM results even in the highly 

nonlinear TR regime. 

 

Figure 2. Comparative analysis with actual temperature 

measurements during TR of multiphysics FEM and PILE-

DeepONet. 

 

Figure 3 presents the pressure evolution, where PILE-

DeepONet accurately predicts the onset and peak of the 

pressure rise associated with gas generation during TR. The 

proposed neural network aligns well with FEM predictions 

and captures the timing and magnitude of the experimental 

peak pressure with high fidelity. The effective encoding of 

multiphysics laws governing the TR phenomenon enables 

reliable prediction of dynamic pressure behavior under 

thermal abuse conditions. 

 

Figure 3. Comparative analysis with actual pressure during 

TR of multiphysics FEM and PILE-DeepONet. 

 

Figure 4 verifies the feasibility of using PILE-DeepONet for 

real-time safety management by comparing a cooling 

simulation with active cooling applied at the precisely 

predicted TR peak against the uncontrolled scenario. The 

predicted peak point, indicated by the vertical dashed yellow 

line around 1750 s, was identified in advance using PILE-

DeepONet. This approach reduces the rapid temperature 

increase and pressure increase by initiating cooling at the 

predicted critical point, which prevents the system from 

reaching the TR peak seen in the uncontrolled experimental 

scenario. This result demonstrates the practical utility of 

predictive TR prognosis using PILE-DeepONet for real-time 

safety management. Accurate identification of the 

intervention point enables active cooling to be applied 

proactively to suppress the progression into thermal runaway, 

thereby enhancing battery safety under thermal abuse 

conditions. 

 

Figure 4 Feasibility of PILE-DeepONet for mitigating TR 

under thermal abuse 

 

These results collectively demonstrate that PILE-DeepONet 

enables reliable, accurate, and computationally efficient TR 

prognosis under various thermal abuse conditions. The ability 

to utilize noisy monitored data while maintaining prediction 

accuracy further underscores the robustness of PILE-

DeepONet for deployment in real-world battery management 
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systems, supporting proactive TR prevention and enhancing 

the operational safety of lithium-ion batteries under 

challenging conditions. 

 

4. CONCLUSIONS 

This study introduced PILE-DeepONet as an effective 

framework for real-time TR prognosis in lithium-ion 

batteries subjected to various thermal abuse conditions. 

Extensive analysis confirmed that PILE-DeepONet reliably 

captures the spatiotemporal progression of TR events, 

accurately predicting the timing and magnitude of rapid 

temperature and pressure increases under nonlinear thermal 

conditions. In addition, the framework successfully identified 

critical intervention points, enabling timely application of 

cooling strategies to suppress rapid temperature rise and 

prevent the system from entering TR. These outcomes 

underscore the practical viability of PILE-DeepONet for 

enhancing the safety of lithium-ion batteries through real-

time monitoring and proactive intervention. PILE-DeepONet 

provides a reliable and computationally efficient solution for 

early TR prediction, delivering valuable insights to support 

advanced thermal management and safety strategies in 

electric vehicles and energy storage applications. The 

demonstrated capability of the framework to maintain 

accurate performance under practical monitoring conditions 

highlights potential for seamless integration into battery 

management systems, advancing the safe and stable 

operation of lithium-ion batteries across a range of 

demanding scenarios. 
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