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ABSTRACT

This study proposes a novel integrated framework of
physics-informed machine learning for virtual sensing in
rotating machinery systems. The proposed framework aims
to overcome the limitations of sparse physical measurements
and enable comprehensive system monitoring. The proposed
framework leverages a multi-fidelity data fusion strategy and
physics-informed surrogate networks to achieve accurate and
physically consistent predictions of dynamic responses

across the entire domain under diverse operational conditions.

The proposed framework comprises three key characteristics.
First, a physics-guided multi-agent diverse generative
adversarial network (PG-MAD-GAN) is proposed to
synthesize high-fidelity synthetic data. This architecture of a
generative neural network effectively fuses extensive low-
fidelity simulations datasets from finite element model
(FEM), which provide full-field data across the system, with
limited high-fidelity experimental measurements obtained
from physically accessible regions. The multi-agent structure
and physics constraints ensure that the generated synthetic
data is both diverse and physically plausible, bridging the
fidelity gap between simulation and reality. Second, a
surrogate modeling scheme is introduced in the consideration
of an adversarial domain adaptation architecture and a
physics-informed domain-adversarial deep operator network
(PI-DADON). This architecture is specifically designed for
operator learning, enabling accurate interpolation and
extrapolation of system dynamics, including responses under
various rotating speeds, without requiring extensive
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retraining for unseen conditions. PI-DADON is trained on
both the high-fidelity synthetic data and the limited real
measurement data. Third, both the PG-MAD-GAN and PI-
DADON architectures are rigorously supervised by the
physics of rotating machinery. This strategy for physics-
informed regularization is crucial to ensure that the model's
predictions remain physically consistent and robust, even in
unmeasured regions or under untrained operational
conditions. The effectiveness of the proposed framework is
comprehensively validated using dynamic response datasets
obtained from an induction motor, including experiments
under diverse operating conditions. Systematic analysis on
experiments confirms that the proposed framework with
physics-informed strategies significantly enhances accuracy,
robustness, and generalization capability compared to purely
data-driven approaches. The proposed framework facilitates
the development of AI transformation for intelligent
mechanical systems by enabling reliable virtual sensing in
inaccessible areas, providing rich and full-field information
critical for advanced condition monitoring and diagnosis.

1. METHODOLOGY

Rotating machinery systems, such as ship propulsion
shafts or industrial motor drives, require accurate real-time
monitoring to ensure operational safety and efficiency.
However, transducers cannot be installed at all critical
structural or functional locations, and acquiring full-field,
high-quality measurement data under every possible
operating condition is practically infeasible. Digital-twin-
based diagnostic methodologies help bridge this sensing
limitation but face a fundamental trade-off: deterministic
physics-based models offer high accuracy but are
computationally intensive, while purely data-driven
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approaches are computationally efficient but require large
volumes of labeled data and often fail to generalize to unseen
conditions. To address this challenge, the present study
proposes the integration of two complementary data
sources—namely, low-resolution but computationally
inexpensive finite element method (FEM) simulations and
sparse but high-fidelity experimental sensor records—within
a unified physics-informed learning framework capable of
performing real-time virtual sensing.

The primary objective of this research is to develop a
physics-informed virtual sensing framework that can
accurately infer full-field dynamic responses in rotating
machinery systems across a broad range of operational
conditions, including spatial regions where sensor
instrumentation is infeasible due to physical or economic
constraints. The proposed framework consists of two
interdependent stages. Phase A involves the generation of
physically consistent, high-fidelity synthetic data by fusing
low-fidelity FEM simulation outputs with limited
experimental measurements. Phase B focuses on constructing
a surrogate model capable of generalizing across spatially
unobserved regions and untrained operational scenarios.
Physics-based priors are systematically embedded in both the
data generation stage and the surrogate modeling stage to
ensure interpretability, physical consistency, and improved
generalization performance of the model outputs.

In Phase A, the challenge of sparsely distributed high-
fidelity measurements is addressed by generating full-field
synthetic data that replicate the key characteristics of
experimentally observed responses. This synthetic data
generation process is implemented using a physics-guided
multi-agent diverse generative adversarial network (PG-
MAD-GAN). The PG-MAD-GAN generative model is
trained to learn a mapping from low-fidelity simulations,
obtained from full-domain finite element model (FEM)
outputs to high-fidelity data representations that are
consistent with physical measurements. The generator
receives as input a low-fidelity signal x;¢, produced by the
FEM, along with a latent vector z, and produces a high-
fidelity approximation %5, expressed as:

Znp = G(x, 2). (1)

The discriminator D is simultaneously trained to differentiate
between authentic sensor measurements and synthetically
generated data. The adversarial training objective is
formulated as:

LGAN .
= Exreal [lOgD (xrea )]

+E, [log (1 - (6, z)))].
To ensure that the generated outputs are not only statistically

plausible but also aligned with domain-specific physical
principles, a physics-guided loss function is incorporated.

)

This additional loss term penalizes deviations from known
physical behavior, including harmonic structure and
amplitude characteristics, in the frequency domain. The
physics loss is defined as:

Lphys

= Zf ws (fhf(f) — xref(f))z‘ €]
eF

where F denotes the set of critical frequencies (e.g., rotor
harmonics or structural resonance modes), X,..r represents a
reference spectrum such as smoothed FEM outputs or
partially observed experimental spectra, and wyis a
frequency-dependent weighting coefficient. To further
regularize the spectral characteristics, a soft constraint on the
amplitude positivity is introduced as follows:

imi max(O —x/\"f(f))2 (1)
; , .

Combining the adversarial loss, physics loss, and amplitude
constraint, the total objective for generator training is
expressed as:

Ltotal
= Lgan + Aphysthys )

+ AampLamp-

The resulting PG-MAD-GAN model generates synthetic
signals that are both physically consistent and statistically
realistic. These high-fidelity synthetic datasets, covering
sensor-inaccessible regions, are subsequently employed to
enhance the training process of the surrogate modeling stage
described in Phase B.

In Phase B, the objective is to construct a virtual sensing
model capable of inferring full-field dynamic responses from
sparsely distributed sensor measurements under various
rotating speed conditions. The surrogate model must
generalize both spatially—from discrete sensor locations to
the entire domain—and across previously unseen operational
scenarios. To achieve this goal, a physics-informed domain-
adversarial deep operator network (PI-DADON) is proposed.
The PI-DADON architecture is composed of three essential
components: a feature extractor Gy, a response regressor Gy,
and a domain discriminator D; . The feature extractor
transforms input sensor signals into a shared latent
representation space, and the response regressor predicts the
full-field displacement or response vector. To encourage
generalization across heterogeneous data sources—including
synthetic and real data, and low-speed versus high-speed
operating conditions—a domain-adversarial loss function is
incorporated. This loss function enables the feature extractor
to produce domain-invariant embeddings through the
application of a gradient reversal layer. The overall training
loss function for the surrogate model comprises three
components. The first is the regression loss, which quantifies
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the mean-squared prediction error between the model output
and the ground-truth dynamic response:

Lreg
= Y16 (66) = wargeel?, P

where s is the input sensor vector and U;g,ger denotes the
target full-field response, either from measurement or
synthetic generation. The second component is the domain
classification loss, which penalizes incorrect discrimination
between data domains:

Lq

= (CrossEntropy (Da (Gf(s)) _ c), (1

where ¢ indicates the domain label (e.g., synthetic or real).
The third component is a physics-based regularization loss,
which enforces consistency with known physical laws. For
instance, the dynamic behavior of a rotating shaft system can
be represented using a simplified frequency-domain beam
equation:

Rphys(X; w)
GAd?*0(x)
dx?

= pA w?i(x) + (1)

- q(x; w).

The corresponding physics-based loss function penalizes
deviations from this governing equation:

2
Lphys = z | Rphys(X; (U)| . (D

The total surrogate loss function used for training PI-
DADON is given by:

Liot = Ly + Aglgq + Aphysthys- (D

The proposed formulation ensures that the surrogate model
not only minimizes prediction errors but also adheres to
fundamental physical principles and remains robust across
different domains and operational regimes.

By explicitly integrating the PG-MAD-GAN generative
network and the PI-DADON surrogate model, the proposed
two-phase framework establishes a cohesive and synergistic
architecture for virtual sensing. The PG-MAD-GAN module
generates physically consistent, high-fidelity synthetic
training data by fusing low-fidelity simulation inputs with
sparse experimental measurements. This synthetic data
significantly enriches the diversity and distribution of
training samples, especially in regions where sensor
measurements are unavailable. The PI-DADON surrogate
model, in turn, leverages both data-driven latent feature
representations and embedded physical priors to achieve
accurate and generalizable full-field dynamic response
prediction. This includes robust performance in spatially
unobserved regions and under extrapolated operating
conditions. Together, the integrated generative and surrogate
modeling modules provide a scalable, interpretable, and real-

time applicable solution for virtual sensing in complex
rotating  machinery  systems, particularly = where
comprehensive sensor instrumentation is infeasible.

2. EXPERIMENTS

To evaluate the performance of the proposed virtual
sensing framework, a comprehensive experimental testbed
was developed to emulate the dynamic behavior of a
representative rotating shaft system encountered in practical
applications. The testbed configuration includes an induction
motor, a flexible steel shaft, two steel disks mounted at mid-
span and end positions, and a set of supporting bearings. A
rigid coupling is employed to connect the motor and the shaft,
ensuring stable torque transmission during rotation. System
responses were measured using six non-contact gap sensors,
which were installed at three axial positions along the shaft.
At each location, two sensors were orthogonally arranged to
capture lateral displacements in both horizontal and vertical
directions, providing partial yet spatially distributed
trajectory measurements of shaft motion.

Rotational speed was incrementally controlled from 150
RPM to 3000 RPM at intervals of 150 RPM, resulting in a
total of 20 discrete operating conditions. Sensor signals were
sampled at 25.6 kHz for 5-second durations, enabling the
construction of dense time-domain datasets and high-
resolution frequency-domain representations. For low-
fidelity modeling, a finite element model (FEM) of the
coupled motor—shaft—disk assembly was constructed. The
FEM incorporated electromagnetic excitation forces induced
by stator—rotor magnetic interactions, and structural
dynamics were captured using a beam formulation that
accounts for rotor asymmetry and attached disk masses. The
output of the simulation model consisted of full-field
displacement spectra across the entire shaft domain in the
frequency domain.

To configure the training and evaluation datasets, 16 out of
the 20 available operating conditions were selected for model
training. The test set was specifically designed to include
both interpolation cases (e.g., 1050 RPM, 1650 RPM), which
lie within the range of training conditions, and extrapolation
cases (e.g., 150 RPM, 3000 RPM), which extend beyond the
training domain. This configuration enables a comprehensive
evaluation of the surrogate model’s generalization
capabilities under both seen and unseen operating conditions.
All  datasets—whether derived from simulation or
experimental measurement—were spatially and spectrally
aligned to facilitate consistent comparisons. Coordinate
points and frequency bins were matched to ensure that
training and testing inputs shared a unified data structure.

To assess the effectiveness of the generative module, real
sensor measurements were compared with synthetic high-
fidelity responses generated from low-fidelity FEM inputs.
For evaluating the surrogate modeling component, predicted
full-field responses were validated against ground truth
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responses (either from experiments or high-fidelity synthesis),
with particular attention to interpolation and extrapolation
scenarios. Quantitative performance evaluation was
conducted using two standard metrics: the Pearson
correlation coefficient (PCC) and cosine similarity (CS).
These metrics were computed pointwise and averaged over
the spatial dimensions to provide a comprehensive measure
of prediction fidelity.

3. RESULTS AND DISCUSSION

The performance of the proposed two-phase virtual
sensing framework was quantitatively evaluated using vibra-
tion response data acquired from a rotating shaft
experimental testbed operating across 20 rotational speed
condi-tions ranging from 150 to 3000 RPM. The two main
components of the framework—PG-MAD-GAN for
generating high-fidelity synthetic responses and PI-DADON
for full-field surrogate prediction—were validated under both
in-terpolation (e.g., 1050, 1650 RPM) and extrapolation (e.g.,
150, 3000 RPM) scenarios.

In Phase A, the PG-MAD-GAN model successfully
generated realistic, full-domain response spectra at
representa-tive speeds including 600 RPM, 1500 RPM, and
2400 RPM. Two training configurations were compared: one
with only adversarial loss and another with additional
physics-based loss terms. The integration of physical
constraints into the generative training yielded substantial
improvements in prediction fidelity. Specifically, the average
Pearson correlation coefficient (PCC) increased from 0.876
to 0.914, and the cosine similarity (CS) improved from 0.880
to 0.915 with the application of physics-guided regularization.
Table 1 summarizes these improvements, providing results
for three fault scenarios (normal condition, middle disk
imbalance, and end disk imbalance), thereby con-firming that
the benefit of physics-based losses generalizes across
different mechanical configurations.

Table 1 Quantitative comparison of PG-MAD-GAN
results under different training conditions across normal
and faulty configurations.

Metric Condition FEM W/(.) W/.
physics | physics

Normal 0.281 | 0.808 0.861

PCC Middle disk | 0.330 | 0.938 0.946
End disk 0.278 | 0.881 0.937

Average 0.296 | 0.876 0.914

Normal 0.334 | 0.819 0.866

cs Middle disk | 0.346 | 0.939 0.945
End disk 0.305 | 0.882 0.935

Average 0.328 0.880 0.915

In addition to statistical metrics, training convergence
patterns further validate the effectiveness of physics-
informed learning. As visualized in Figure 1, the PG-MAD-
GAN model trained with physics constraints consistently
achieved higher PCC scores than the baseline MAD-GAN
across various operating speeds (e.g., 300, 1800, and 3000
RPM). The physics-guided model also converged more
rapidly, indicating increased training stability. These
observations reinforce the role of domain knowledge in
guiding generative processes toward physically valid
solutions, particularly in spectral regions influenced by
harmonics and resonance modes. These results demonstrate
that the proposed generative network, when regularized by
domain knowledge, is capable of producing realistic, full-
domain response data that can serve as effective training
targets for surrogate learning, especially in regions where
physical sensors are unavailable.
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Figure 1 PCC comparison between PG-MAD-GAN and
baseline MAD-GAN at three representative speeds.

In Phase B, the performance of the PI-DADON surrogate
model was quantitatively assessed by comparing prediction
accuracy before and after the integration of physics-informed
constraints and synthetic high-fidelity data. At an
extrapolated speed condition of 3000 RPM, the model trained
without any physics guidance or synthetic augmentation
showed poor agreement with ground truth, achieving a PCC
0f 0.078 and CS of 0.105. In contrast, the model trained with
both PG-MAD-GAN-generated synthetic data and physics-
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based loss terms demonstrated near-perfect accuracy,
reaching a PCC of 0.995 and CS of 0.999, as summarized in
Table 2. These results underscore the necessity of both
synthetic data augmentation and physics-informed
regularization for achieving generalizable and accurate
predictions in virtual sensing tasks, especially under
extrapolation conditions. The synthetic data generated by
PG-MAD-GAN effectively broadens the representational
coverage of the training dataset, while the incorporation of
domain knowledge via physics-based loss functions
improves the model’s robustness against data sparsity and
distribution shifts.

Table 2 Surrogate model performance at 3000 RPM
under various training conditions.

Model Configuration | PCC CS
No synthelztlc data, 0.078 | 0105
no physics loss
With .synthetlf: data, 0.995 | 0999
with physics

The evaluation results demonstrate that the proposed two-
phase physics-informed framework effectively addresses the
limitations of sparse sensor measurements and varying
operational conditions in rotating machinery systems.
Integration of simulation-informed generative modeling with
physics-guided surrogate learning enables accurate and
robust virtual sensing performance. The resulting
methodology provides a practical foundation for achieving
real-time, full-field monitoring and diagnostics in industrial
environments where direct measurement is difficult or
infeasible.

4. CONCLUSION

This study presented and rigorously validated a novel two-
phase, physics-informed machine learning framework for
virtual sensing in rotating machinery systems. The proposed
methodology addresses the challenge of sparse and localized
measurements by combining simulation-driven data
generation and physics-aware surrogate modeling. In the first
phase, low-fidelity finite element simulations were fused
with limited high-fidelity experimental measurements via a
physics-guided generative adversarial network. This
approach enabled the synthesis of high-fidelity virtual data
that preserve essential harmonic structures and dynamic
characteristics across a broad spectrum of operating speeds.
Building upon this enriched data, the second phase
introduced a physics-informed, domain-adversarial deep
operator network that enables accurate full-field response
prediction. The surrogate model, trained with both synthetic
and real data, successfully generalized across spatially
unobserved regions and extrapolated operational conditions,
even in high-speed regimes where sensor access is limited.

The integration of physics-based loss terms further ensured
physical consistency and improved robustness, confirming
the value of embedding domain knowledge into both
generative and predictive components. Overall, the proposed
framework demonstrates strong generalization capability and
high predictive accuracy under practical constraints, with
only sparse sensor instrumentation. To further enhance the
practical applicability of the framework, future work will
incorporate mass imbalance fault conditions into both the
data generation and model training processes. By embedding
fault-specific physics and incorporating imbalance-induced
spectral features, the framework can be extended to support
robust condition monitoring and early-stage fault detection in
real-world rotating systems. These extensions will enable the
virtual sensing architecture to not only reconstruct
unmeasured system states but also contribute to intelligent
diagnostics and preventive maintenance strategies.
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