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ABSTRACT 

This study proposes a novel integrated framework of 

physics-informed machine learning for virtual sensing in 

rotating machinery systems. The proposed framework aims 

to overcome the limitations of sparse physical measurements 

and enable comprehensive system monitoring. The proposed 

framework leverages a multi-fidelity data fusion strategy and 

physics-informed surrogate networks to achieve accurate and 

physically consistent predictions of dynamic responses 

across the entire domain under diverse operational conditions. 

The proposed framework comprises three key characteristics. 

First, a physics-guided multi-agent diverse generative 

adversarial network (PG-MAD-GAN) is proposed to 

synthesize high-fidelity synthetic data. This architecture of a 

generative neural network effectively fuses extensive low-

fidelity simulations datasets from finite element model 

(FEM), which provide full-field data across the system, with 

limited high-fidelity experimental measurements obtained 

from physically accessible regions. The multi-agent structure 

and physics constraints ensure that the generated synthetic 

data is both diverse and physically plausible, bridging the 

fidelity gap between simulation and reality. Second, a 

surrogate modeling scheme is introduced in the consideration 

of an adversarial domain adaptation architecture and a 

physics-informed domain-adversarial deep operator network 

(PI-DADON). This architecture is specifically designed for 

operator learning, enabling accurate interpolation and 

extrapolation of system dynamics, including responses under 

various rotating speeds, without requiring extensive 

retraining for unseen conditions. PI-DADON is trained on 

both the high-fidelity synthetic data and the limited real 

measurement data. Third, both the PG-MAD-GAN and PI-

DADON architectures are rigorously supervised by the 

physics of rotating machinery. This strategy for physics-

informed regularization is crucial to ensure that the model's 

predictions remain physically consistent and robust, even in 

unmeasured regions or under untrained operational 

conditions. The effectiveness of the proposed framework is 

comprehensively validated using dynamic response datasets 

obtained from an induction motor, including experiments 

under diverse operating conditions. Systematic analysis on 

experiments confirms that the proposed framework with 

physics-informed strategies significantly enhances accuracy, 

robustness, and generalization capability compared to purely 

data-driven approaches. The proposed framework facilitates 

the development of AI transformation for intelligent 

mechanical systems by enabling reliable virtual sensing in 

inaccessible areas, providing rich and full-field information 

critical for advanced condition monitoring and diagnosis. 

1. METHODOLOGY 

Rotating machinery systems, such as ship propulsion 

shafts or industrial motor drives, require accurate real-time 

monitoring to ensure operational safety and efficiency. 

However, transducers cannot be installed at all critical 

structural or functional locations, and acquiring full-field, 

high-quality measurement data under every possible 

operating condition is practically infeasible. Digital-twin-

based diagnostic methodologies help bridge this sensing 

limitation but face a fundamental trade-off: deterministic 

physics-based models offer high accuracy but are 

computationally intensive, while purely data-driven 
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approaches are computationally efficient but require large 

volumes of labeled data and often fail to generalize to unseen 

conditions. To address this challenge, the present study 

proposes the integration of two complementary data 

sources—namely, low-resolution but computationally 

inexpensive finite element method (FEM) simulations and 

sparse but high-fidelity experimental sensor records—within 

a unified physics-informed learning framework capable of 

performing real-time virtual sensing. 

The primary objective of this research is to develop a 

physics-informed virtual sensing framework that can 

accurately infer full-field dynamic responses in rotating 

machinery systems across a broad range of operational 

conditions, including spatial regions where sensor 

instrumentation is infeasible due to physical or economic 

constraints. The proposed framework consists of two 

interdependent stages. Phase A involves the generation of 

physically consistent, high-fidelity synthetic data by fusing 

low-fidelity FEM simulation outputs with limited 

experimental measurements. Phase B focuses on constructing 

a surrogate model capable of generalizing across spatially 

unobserved regions and untrained operational scenarios. 

Physics-based priors are systematically embedded in both the 

data generation stage and the surrogate modeling stage to 

ensure interpretability, physical consistency, and improved 

generalization performance of the model outputs. 

In Phase A, the challenge of sparsely distributed high-

fidelity measurements is addressed by generating full-field 

synthetic data that replicate the key characteristics of 

experimentally observed responses. This synthetic data 

generation process is implemented using a physics-guided 

multi-agent diverse generative adversarial network (PG-

MAD-GAN). The PG-MAD-GAN generative model is 

trained to learn a mapping from low-fidelity simulations, 

obtained from full-domain finite element model (FEM) 

outputs to high-fidelity data representations that are 

consistent with physical measurements. The generator 

receives as input a low-fidelity signal 𝑥𝑙𝑓, produced by the 

FEM, along with a latent vector 𝑧 , and produces a high-

fidelity approximation 𝑥̂ℎ𝑓, expressed as: 

 𝑥̂ℎ𝑓 = 𝐺(𝑥𝑙𝑓 , 𝑧). (1) 

The discriminator 𝐷 is simultaneously trained to differentiate 

between authentic sensor measurements and synthetically 

generated data. The adversarial training objective is 

formulated as: 

 

𝐿𝐺𝐴𝑁

= 𝐸𝑥𝑟𝑒𝑎𝑙[log 𝐷 (𝑥𝑟𝑒𝑎𝑙)]

+ 𝐸𝑧 [log (1 − 𝐷 (𝐺(𝑥𝑙𝑓 , 𝑧)))]. 
(1) 

To ensure that the generated outputs are not only statistically 

plausible but also aligned with domain-specific physical 

principles, a physics-guided loss function is incorporated. 

This additional loss term penalizes deviations from known 

physical behavior, including harmonic structure and 

amplitude characteristics, in the frequency domain. The 

physics loss is defined as: 

 

𝐿𝑝ℎ𝑦𝑠

= ∑ 𝑤𝑓 (𝑥̂ℎ𝑓(𝑓) − 𝑥𝑟𝑒𝑓(𝑓))
2

𝑓∈ℱ
, 

(1) 

where 𝐹  denotes the set of critical frequencies (e.g., rotor 

harmonics or structural resonance modes), 𝑥𝑟𝑒𝑓  represents a 

reference spectrum such as smoothed FEM outputs or 

partially observed experimental spectra, and 𝑤𝑓 is a 

frequency-dependent weighting coefficient. To further 

regularize the spectral characteristics, a soft constraint on the 

amplitude positivity is introduced as follows: 

 

𝐿𝑎𝑚𝑝

= ∑ max (0,   − 𝑥ℎ𝑓̂(𝑓))
2

𝑓
. 

(1) 

Combining the adversarial loss, physics loss, and amplitude 

constraint, the total objective for generator training is 

expressed as: 

 

𝐿𝑡𝑜𝑡𝑎𝑙

= 𝐿𝐺𝐴𝑁 + 𝜆𝑝ℎ𝑦𝑠𝐿𝑝ℎ𝑦𝑠

+ 𝜆𝑎𝑚𝑝𝐿𝑎𝑚𝑝 . 
(1) 

The resulting PG-MAD-GAN model generates synthetic 

signals that are both physically consistent and statistically 

realistic. These high-fidelity synthetic datasets, covering 

sensor-inaccessible regions, are subsequently employed to 

enhance the training process of the surrogate modeling stage 

described in Phase B. 

In Phase B, the objective is to construct a virtual sensing 

model capable of inferring full-field dynamic responses from 

sparsely distributed sensor measurements under various 

rotating speed conditions. The surrogate model must 

generalize both spatially—from discrete sensor locations to 

the entire domain—and across previously unseen operational 

scenarios. To achieve this goal, a physics-informed domain-

adversarial deep operator network (PI-DADON) is proposed. 

The PI-DADON architecture is composed of three essential 

components: a feature extractor 𝐺𝑓, a response regressor 𝐺𝑟 , 

and a domain discriminator 𝐷𝑑 . The feature extractor 

transforms input sensor signals into a shared latent 

representation space, and the response regressor predicts the 

full-field displacement or response vector. To encourage 

generalization across heterogeneous data sources—including 

synthetic and real data, and low-speed versus high-speed 

operating conditions—a domain-adversarial loss function is 

incorporated. This loss function enables the feature extractor 

to produce domain-invariant embeddings through the 

application of a gradient reversal layer. The overall training 

loss function for the surrogate model comprises three 

components. The first is the regression loss, which quantifies 
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the mean-squared prediction error between the model output 

and the ground-truth dynamic response: 

 

𝐿𝑟𝑒𝑔

=  ∑ || 𝐺𝑟 (𝐺𝑓(𝑠)) − 𝑢𝑡𝑎𝑟𝑔𝑒𝑡||2

 
, 

(1) 

where 𝑠  is the input sensor vector and 𝑢𝑡𝑎𝑟𝑔𝑒𝑡  denotes the 

target full-field response, either from measurement or 

synthetic generation. The second component is the domain 

classification loss, which penalizes incorrect discrimination 

between data domains: 

 
𝐿𝑑

=  𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐷𝑑 (𝐺𝑓(𝑠)) , 𝑐), 
(1) 

where 𝑐 indicates the domain label (e.g., synthetic or real). 

The third component is a physics-based regularization loss, 

which enforces consistency with known physical laws. For 

instance, the dynamic behavior of a rotating shaft system can 

be represented using a simplified frequency-domain beam 

equation: 

 

𝑅𝑝ℎ𝑦𝑠(𝑥; 𝜔)

=  𝜌𝐴 𝜔2𝑢̂(𝑥) +
𝐺𝐴𝑑2𝑢̂(𝑥)

𝑑𝑥2

−  𝑞(𝑥; 𝜔). 

(1) 

The corresponding physics-based loss function penalizes 

deviations from this governing equation: 

 𝐿𝑝ℎ𝑦𝑠 = ∑ | 𝑅𝑝ℎ𝑦𝑠(𝑥; 𝜔)|
2

 
. (1) 

The total surrogate loss function used for training PI-

DADON is given by: 

 𝐿𝑡𝑜𝑡 =  𝐿𝑟 +  𝜆𝑑𝐿𝑑 +  𝜆𝑝ℎ𝑦𝑠𝐿𝑝ℎ𝑦𝑠. (1) 

The proposed formulation ensures that the surrogate model 

not only minimizes prediction errors but also adheres to 

fundamental physical principles and remains robust across 

different domains and operational regimes. 

By explicitly integrating the PG-MAD-GAN generative 

network and the PI-DADON surrogate model, the proposed 

two-phase framework establishes a cohesive and synergistic 

architecture for virtual sensing. The PG-MAD-GAN module 

generates physically consistent, high-fidelity synthetic 

training data by fusing low-fidelity simulation inputs with 

sparse experimental measurements. This synthetic data 

significantly enriches the diversity and distribution of 

training samples, especially in regions where sensor 

measurements are unavailable. The PI-DADON surrogate 

model, in turn, leverages both data-driven latent feature 

representations and embedded physical priors to achieve 

accurate and generalizable full-field dynamic response 

prediction. This includes robust performance in spatially 

unobserved regions and under extrapolated operating 

conditions. Together, the integrated generative and surrogate 

modeling modules provide a scalable, interpretable, and real-

time applicable solution for virtual sensing in complex 

rotating machinery systems, particularly where 

comprehensive sensor instrumentation is infeasible. 

2. EXPERIMENTS 

To evaluate the performance of the proposed virtual 

sensing framework, a comprehensive experimental testbed 

was developed to emulate the dynamic behavior of a 

representative rotating shaft system encountered in practical 

applications. The testbed configuration includes an induction 

motor, a flexible steel shaft, two steel disks mounted at mid-

span and end positions, and a set of supporting bearings. A 

rigid coupling is employed to connect the motor and the shaft, 

ensuring stable torque transmission during rotation. System 

responses were measured using six non-contact gap sensors, 

which were installed at three axial positions along the shaft. 

At each location, two sensors were orthogonally arranged to 

capture lateral displacements in both horizontal and vertical 

directions, providing partial yet spatially distributed 

trajectory measurements of shaft motion. 

Rotational speed was incrementally controlled from 150 

RPM to 3000 RPM at intervals of 150 RPM, resulting in a 

total of 20 discrete operating conditions. Sensor signals were 

sampled at 25.6 kHz for 5-second durations, enabling the 

construction of dense time-domain datasets and high-

resolution frequency-domain representations. For low-

fidelity modeling, a finite element model (FEM) of the 

coupled motor–shaft–disk assembly was constructed. The 

FEM incorporated electromagnetic excitation forces induced 

by stator–rotor magnetic interactions, and structural 

dynamics were captured using a beam formulation that 

accounts for rotor asymmetry and attached disk masses. The 

output of the simulation model consisted of full-field 

displacement spectra across the entire shaft domain in the 

frequency domain. 

To configure the training and evaluation datasets, 16 out of 

the 20 available operating conditions were selected for model 

training. The test set was specifically designed to include 

both interpolation cases (e.g., 1050 RPM, 1650 RPM), which 

lie within the range of training conditions, and extrapolation 

cases (e.g., 150 RPM, 3000 RPM), which extend beyond the 

training domain. This configuration enables a comprehensive 

evaluation of the surrogate model’s generalization 

capabilities under both seen and unseen operating conditions. 

All datasets—whether derived from simulation or 

experimental measurement—were spatially and spectrally 

aligned to facilitate consistent comparisons. Coordinate 

points and frequency bins were matched to ensure that 

training and testing inputs shared a unified data structure. 

To assess the effectiveness of the generative module, real 

sensor measurements were compared with synthetic high-

fidelity responses generated from low-fidelity FEM inputs. 

For evaluating the surrogate modeling component, predicted 

full-field responses were validated against ground truth 
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responses (either from experiments or high-fidelity synthesis), 

with particular attention to interpolation and extrapolation 

scenarios. Quantitative performance evaluation was 

conducted using two standard metrics: the Pearson 

correlation coefficient (PCC) and cosine similarity (CS). 

These metrics were computed pointwise and averaged over 

the spatial dimensions to provide a comprehensive measure 

of prediction fidelity. 

3. RESULTS AND DISCUSSION 

The performance of the proposed two-phase virtual 

sensing framework was quantitatively evaluated using vibra-

tion response data acquired from a rotating shaft 

experimental testbed operating across 20 rotational speed 

condi-tions ranging from 150 to 3000 RPM. The two main 

components of the framework—PG-MAD-GAN for 

generating high-fidelity synthetic responses and PI-DADON 

for full-field surrogate prediction—were validated under both 

in-terpolation (e.g., 1050, 1650 RPM) and extrapolation (e.g., 

150, 3000 RPM) scenarios. 

In Phase A, the PG-MAD-GAN model successfully 

generated realistic, full-domain response spectra at 

representa-tive speeds including 600 RPM, 1500 RPM, and 

2400 RPM. Two training configurations were compared: one 

with only adversarial loss and another with additional 

physics-based loss terms. The integration of physical 

constraints into the generative training yielded substantial 

improvements in prediction fidelity. Specifically, the average 

Pearson correlation coefficient (PCC) increased from 0.876 

to 0.914, and the cosine similarity (CS) improved from 0.880 

to 0.915 with the application of physics-guided regularization. 

Table 1 summarizes these improvements, providing results 

for three fault scenarios (normal condition, middle disk 

imbalance, and end disk imbalance), thereby con-firming that 

the benefit of physics-based losses generalizes across 

different mechanical configurations. 

 

 

In addition to statistical metrics, training convergence 

patterns further validate the effectiveness of physics-

informed learning. As visualized in Figure 1, the PG-MAD-

GAN model trained with physics constraints consistently 

achieved higher PCC scores than the baseline MAD-GAN 

across various operating speeds (e.g., 300, 1800, and 3000 

RPM). The physics-guided model also converged more 

rapidly, indicating increased training stability. These 

observations reinforce the role of domain knowledge in 

guiding generative processes toward physically valid 

solutions, particularly in spectral regions influenced by 

harmonics and resonance modes. These results demonstrate 

that the proposed generative network, when regularized by 

domain knowledge, is capable of producing realistic, full-

domain response data that can serve as effective training 

targets for surrogate learning, especially in regions where 

physical sensors are unavailable. 

 

 

Figure 1 PCC comparison between PG-MAD-GAN and 

baseline MAD-GAN at three representative speeds. 

 

In Phase B, the performance of the PI-DADON surrogate 

model was quantitatively assessed by comparing prediction 

accuracy before and after the integration of physics-informed 

constraints and synthetic high-fidelity data. At an 

extrapolated speed condition of 3000 RPM, the model trained 

without any physics guidance or synthetic augmentation 

showed poor agreement with ground truth, achieving a PCC 

of 0.078 and CS of 0.105. In contrast, the model trained with 

both PG-MAD-GAN-generated synthetic data and physics-

Table 1 Quantitative comparison of PG-MAD-GAN 

results under different training conditions across normal 

and faulty configurations. 

 

Metric Condition FEM 
w/o 

physics 

w/ 

physics 

PCC 

Normal 0.281 0.808 0.861 

Middle disk 0.330 0.938 0.946 

End disk 0.278 0.881 0.937 

Average 0.296 0.876 0.914 

CS 

Normal 0.334 0.819 0.866 

Middle disk 0.346 0.939 0.945 

End disk 0.305 0.882 0.935 

Average 0.328 0.880 0.915 
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based loss terms demonstrated near-perfect accuracy, 

reaching a PCC of 0.995 and CS of 0.999, as summarized in 

Table 2. These results underscore the necessity of both 

synthetic data augmentation and physics-informed 

regularization for achieving generalizable and accurate 

predictions in virtual sensing tasks, especially under 

extrapolation conditions. The synthetic data generated by 

PG-MAD-GAN effectively broadens the representational 

coverage of the training dataset, while the incorporation of 

domain knowledge via physics-based loss functions 

improves the model’s robustness against data sparsity and 

distribution shifts. 

 

 

The evaluation results demonstrate that the proposed two-

phase physics-informed framework effectively addresses the 

limitations of sparse sensor measurements and varying 

operational conditions in rotating machinery systems. 

Integration of simulation-informed generative modeling with 

physics-guided surrogate learning enables accurate and 

robust virtual sensing performance. The resulting 

methodology provides a practical foundation for achieving 

real-time, full-field monitoring and diagnostics in industrial 

environments where direct measurement is difficult or 

infeasible. 

4. CONCLUSION 

This study presented and rigorously validated a novel two-

phase, physics-informed machine learning framework for 

virtual sensing in rotating machinery systems. The proposed 

methodology addresses the challenge of sparse and localized 

measurements by combining simulation-driven data 

generation and physics-aware surrogate modeling. In the first 

phase, low-fidelity finite element simulations were fused 

with limited high-fidelity experimental measurements via a 

physics-guided generative adversarial network. This 

approach enabled the synthesis of high-fidelity virtual data 

that preserve essential harmonic structures and dynamic 

characteristics across a broad spectrum of operating speeds. 

Building upon this enriched data, the second phase 

introduced a physics-informed, domain-adversarial deep 

operator network that enables accurate full-field response 

prediction. The surrogate model, trained with both synthetic 

and real data, successfully generalized across spatially 

unobserved regions and extrapolated operational conditions, 

even in high-speed regimes where sensor access is limited. 

The integration of physics-based loss terms further ensured 

physical consistency and improved robustness, confirming 

the value of embedding domain knowledge into both 

generative and predictive components. Overall, the proposed 

framework demonstrates strong generalization capability and 

high predictive accuracy under practical constraints, with 

only sparse sensor instrumentation. To further enhance the 

practical applicability of the framework, future work will 

incorporate mass imbalance fault conditions into both the 

data generation and model training processes. By embedding 

fault-specific physics and incorporating imbalance-induced 

spectral features, the framework can be extended to support 

robust condition monitoring and early-stage fault detection in 

real-world rotating systems. These extensions will enable the 

virtual sensing architecture to not only reconstruct 

unmeasured system states but also contribute to intelligent 

diagnostics and preventive maintenance strategies. 

  

Table 2 Surrogate model performance at 3000 RPM 

under various training conditions. 

 

Model Configuration PCC CS 

No synthetic data,  

no physics loss 
0.078 0.105 

With synthetic data, 

with physics 
0.995 0.999 
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