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ABSTRACT

Autonomous inspection systems are essential for ensuring
the performance and longevity of industrial assets. Recently,
agentic frameworks have demonstrated significant potential
for automating inspection workflows but have been limited
to digital tasks. Their application to physical assets in real-
world environments, however, remains underexplored. In this
work, our contributions are two-fold: first, we propose a hi-
erarchical agentic framework for autonomous drone control,
and second, a reasoning methodology for individual function
executions which we refer to as ReActEval. Our framework
focuses on visual inspection tasks in indoor industrial set-
tings, such as interpreting industrial readouts or inspecting
equipment. It employs a multi-agent system comprising a
head agent and multiple worker agents, each controlling a sin-
gle drone. The head agent performs high-level planning and
evaluates outcomes, while the worker agents implement our
ReActEval methodology to reason over and execute low-level
actions. Operating entirely in the natural language space, Re-
ActEval follows a plan, reason, act, evaluate cycle, enabling
drones to handle tasks ranging from simple navigation (e.g.,
flying forward 10 meters and land) to complex high-level
tasks (e.g., locating and reading a pressure gauge). The evalu-
ation phase serves as a feedback and/or replanning stage, en-
suring the actions executed align with user objectives while
preventing undesirable outcomes. We evaluate the frame-
work in a simulated environment with two worker agents,
assessing performance qualitatively and quantitatively based
on task completion across varying levels of task complexity
and agentic workflow efficiency. By leveraging natural lan-
guage processing for agent communication, our approach of-
fers a novel, flexible, and user-accessible alternative to tra-
ditional drone-based solutions, enabling a more autonomous
problem-solving approach to industrial inspection tasks with-
out requiring extensive user intervention.
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of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1. INTRODUCTION

Industrial inspection systems face rising demand for au-
tonomous solutions capable of reducing safety risks and op-
erational costs while maintaining coverage of critical infras-
tructure. Manual inspection in hazardous environments, such
as chemical plants and power facilities, introduces safety con-
cerns and limits the frequency and thoroughness of assess-
ments due to human constraints (U.S. Department of Labor
& Administration, 2025).

Current drone-based inspection systems rely heavily on
skilled operators and manual intervention (Rodrı́guez,
Lozano Tafur, Melo Daza, Villalba Vidales, & Daza Rincón,
2024). They use pre-programmed flight paths that lack adapt-
ability for dynamic industrial environments. Real-time pi-
lot requirements create decision-making bottlenecks, while
multi-drone coordination presents significant cognitive load
challenges. These limitations prevent current systems from
scaling effectively across three critical dimensions: task
breadth (deployment in diverse industrial settings), task com-
plexity, and the number of concurrently deployed drones.

Agentic frameworks, systems composed of multiple coor-
dinated Large Language Models (LLMs) that operate to-
gether to achieve predefined tasks, have shown remarkable
success in digital domains, particularly in software devel-
opment with agentic Integrated Development Environments
(IDEs) and coding agents (Slasky, 2025; Wu et al., 2023) as
well as in supporting researchers in performing scientific re-
search (Gridach, Nanavati, Abidine, Mendes, & Mack, 2025;
Huang et al., 2025). These systems use natural language in-
terfaces and multi-agent coordination to achieve human-level
reasoning in complex problem-solving scenarios, suggesting
significant potential for physical applications.

However, applying multi-agent systems to physical asset in-
spection reveals critical research gaps. This work addresses
two fundamental challenges. First, how should multiple
agents, in our case drones, be managed within the system?
Second, how should each drone’s agent handle task execution
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effectively?

To address multi-agent management, we introduce a hierar-
chical agentic framework in which a single head agent gener-
ates high-level plans for individual worker agents, which are
LLMs controlling their respective drones. This architecture
centralizes communication between frontline workers such as
technicians, operators, inspectors and the broader inspection
system, reducing latency and eliminating the need for com-
plex inter-agent coordination.

Initial experimentation with the hierarchical framework re-
vealed poor performance in drone-level task execution, in-
cluding incorrect movements and incomplete task comple-
tion. These findings motivated the development of our sec-
ond contribution: the ReActEval framework. Although the
effectiveness of various reasoning methods for LLM-driven
vehicle control remains poorly understood, the foundational
ReAct framework by Yao et al. (2022) provides an estab-
lished approach that combines reasoning and acting through
interleaved generation of reasoning traces and task-specific
actions. Building on this established framework, we propose
ReActEval, which extends ReAct by adding a critical third
step—evaluate—after each action execution to enable struc-
tured self-correction in physical tasks, addressing the unique
challenges of real-world drone control.

We evaluate our ReActEval method within the hierarchical
multi-agent framework for autonomous drone visual inspec-
tion. Through systematic comparison against ReAct and a
simplified Act method across different model capabilities and
task complexities, we provide the first comprehensive analy-
sis of how reasoning method selection affects performance in
physical agentic systems.

Our contributions are: (1) a hierarchical agentic framework
for drone-based industrial vision tasks, such as inspection,
monitoring, tracking and identification, (2) the novel ReActE-
val framework for enhanced planning and evaluation in phys-
ical agentic systems, and (3) a systematic comparison of rea-
soning approaches across different model capabilities that re-
veals important performance tradeoffs.

Our findings reveal counterintuitive relationships between
reasoning methods and model capability. We demonstrate
that more complex reasoning methods are not universally su-
perior, but rather their effectiveness depends critically on the
underlying model’s capability and task complexity. This chal-
lenges the assumption that sophisticated reasoning frame-
works always improve performance. These insights offer
guidance in developing effective autonomous inspection sys-
tems and lay the groundwork for future research on agentic
frameworks for physical tasks.

2. RELATED WORK

Recent advancements in agentic frameworks have shown
potential for complex problem-solving in digital domains
(Elrefaie et al., 2025; Zou et al., 2025; Pandey, Xu, Wang,
& Chu, 2025). The application of these frameworks, par-
ticularly those driven by Large Language Models (LLMs),
to robotics and physical systems is an emerging area of re-
search (Chen, Yang, Xu, Zhang, & Mylonas, 2025; Zhang
& Lu, 2024). The intersection of Unmanned Aerial Vehicles
(UAVs) and LLMs has emerged as a particularly promising
domain, with multiple recent works exploring various aspects
of autonomous aerial intelligence.

2.1. LLM-Driven UAV Control Frameworks

Several recent works have proposed frameworks for integrat-
ing LLMs with UAV control systems. Tian et al. (2025)
provide a comprehensive overview of LLM-UAV integra-
tion, introducing the concept of ”agentic low-altitude mobil-
ity” where UAVs make intelligent decisions in complex en-
vironments through multi-modal capabilities combining vi-
sion, language, and sensor fusion. Their analysis identifies
key challenges including computational constraints, real-time
processing requirements, and safety-critical decision making.

W. Wang, Li, Jiao, and Yuan (2025) addressed the critical
safety and reliability concerns in LLM-UAV integration by
proposing the GSCE (Goal, State, Context, Execute) prompt
framework. Their structured approach to prompt engineering
significantly improves reliability of LLM-driven drone con-
trol and demonstrates the importance of systematic reasoning
processes for safety-critical UAV operations.

2.2. Multi-Domain Applications and Reasoning
Paradigms

Sapkota, Roumeliotis, and Karkee (2025) provide a com-
prehensive multidomain survey of agentic AI applications
in UAV systems, establishing a taxonomy of autonomous
aerial intelligence capabilities across diverse domains includ-
ing agriculture, surveillance, and search and rescue. Their
analysis reveals that different domains require specialized
adaptations of core agentic capabilities, with current limita-
tions including safety assurance, regulatory compliance, and
ethical considerations.

Javaid, Saeed, and He (2024) assess the current state of LLM
applications in UAV systems and identify key technological
pathways for future development. Their technology readiness
assessment reveals that while LLM technology shows sig-
nificant promise for UAV applications, implementation chal-
lenges persist around model optimization, edge processing,
deployment, and integration with existing UAV systems.
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2.3. Research Gaps and Reasoning Frameworks

Despite these advances, several critical gaps remain in the lit-
erature. Current works primarily focus on system architecture
and domain-specific applications, but lack systematic evalu-
ation of different reasoning methods for LLM-driven robot
control in physical environments. The effectiveness of vari-
ous reasoning approaches, from simple direct action to com-
plex multi-step reasoning, remains poorly understood, partic-
ularly regarding the tradeoffs between performance, compu-
tational cost, and task complexity.

Given the emerging nature of this field, few established rea-
soning frameworks exist for physical agentic systems. The
foundational work of Yao et al. (2022) introduced the Re-
Act framework, which synergizes reasoning and acting in
language models through interleaved generation of reasoning
traces and task-specific actions. Their approach demonstrated
that reasoning traces help models induce, track, and update
action plans while handling exceptions, and actions allow in-
terfacing with external sources to gather additional informa-
tion. ReAct showed significant improvements on question
answering, fact verification, and interactive decision-making
tasks, establishing the value of combining reasoning and act-
ing in a unified framework. While alternative approaches ex-
ist, such as the GSCE prompt framework (W. Wang et al.,
2025) which focuses on structured prompt engineering rather
than reasoning-action cycles, ReAct represents the most rele-
vant framework for our domain given the limited alternatives
in physical systems. Moreover, agentic systems are inher-
ently flexible, with methods typically tailored to specific tasks
rather than following standardized approaches. This flexibil-
ity necessitates systematic evaluation across different condi-
tions to understand when and why particular methods suc-
ceed.

Prior work has explored LLM-based planning for robotic
tasks, demonstrating the ability to translate high-level natu-
ral language instructions into executable actions (J. Wang et
al., 2024). However, the question of how different reasoning
structures affect performance across varying model capabil-
ities and task complexities has not been systematically ad-
dressed. This gap is particularly important given the compu-
tational constraints and safety requirements inherent in UAV
operations.

Our work builds on these foundations by introducing the hi-
erarchical agentic framework and evaluating the ReActEval
framework in a real-world drone inspection scenario. This
approach addresses the identified gap in understanding how
reasoning method selection interacts with model capability to
affect overall system performance in physical domains.

Read 
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Agent Framework
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Figure 1. An overview of the hierarchical agentic framework.
Users define a task for the agentic framework to complete
with the drone. The Head Agent creates a plan to accom-
plish the user-defined task. The Worker Agent uses the Re-
ActEval method to execute actions that accomplish the high
level plan defined by the Head Agent. The Worker Agent
communicates directly with the drone and other tools (VLMs,
secondary task-specific models, etc.) by directly calling API
functions.

3. METHODOLOGY

3.1. Hierarchical Agentic Framework Architecture

Our framework, shown in Figure 1, uses a hierarchical, multi-
agent architecture consisting of a head agent for high-level
planning and multiple worker agents for task execution. This
structure employs one head agent controlling multiple worker
agents, with each worker agent dedicated to a single drone,
offering several appealing and practical benefits.

First, this architecture enables the framework to seamlessly
scale across an arbitrary numbers of drones without requiring
structural modifications to the control system. The number of
available drones is specified by the user during system initial-
ization, and the head agent dynamically allocates tasks across
these predefined drones based on the current request.

Second, the user-to-head-agent-to-worker-agent communica-
tion pathway enables consistent task description to worker
agents, leading to more reliable performance. Since users
naturally prompt and describe tasks in different ways, the
head agent serves as a standardization layer, translating di-
verse user inputs into consistent, structured task descriptions
that worker agents can reliably interpret and execute.

Third, this hierarchical structure helps avoid context bloat
through differentiated memory management. The framework
operates over the course of a session, defined as a series of
multiple different tasks or user interactions. During a ses-
sion, the head agent maintains a comprehensive running log
of all tasks completed across the entire conversation history.
In contrast, each worker agent’s history resets after complet-
ing its assigned task (referred to as a thread), preventing the
accumulation of irrelevant historical context that could de-
grade performance on subsequent tasks.

More specifically, we distinguish between session history and
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thread history. Session history encompasses the complete
record of user interactions, head agent planning decisions,
and high-level task outcomes maintained by the head agent
throughout the entire operational session. Thread history
refers to the task-specific execution record maintained by in-
dividual worker agents, including their reasoning steps, ac-
tions taken, and evaluations performed during the completion
of a single assigned sub-task.

The Head Agent processes user input through its Plan func-
tion, which outputs a structured dictionary containing task al-
locations for specific drones. Each drone entry in this dictio-
nary includes: (1) a step-by-step plan tailored to that drone’s
capabilities and current state, (2) an expected outcome de-
scribing the desired end state upon task completion, (3) an
end flag boolean indicating whether or not to invoke a spe-
cific drone’s worker agent, and (4) a response to the user pro-
viding feedback or status information. This structured output
ensures consistent task specification and enables effective co-
ordination across multiple drones. We formally define this
process in Algorithm 1. Additionally, the prompt for the head
agent’s Plan function is shown in the Appendix.

Worker Agents are responsible for controlling their respective
drone through an iterative execution loop. This loop, with our
proposed ReActEval approach, follows a structured process
where agents first reason about the next required action, ex-
ecute the corresponding function call, and then evaluate the
result before proceeding. This iterative approach provides
agents with enhanced flexibility and autonomy when solv-
ing assigned tasks, including the ability to self-terminate the
execution loop during the evaluation phase upon task comple-
tion. Function calls are implemented through API tool calls,
with drone-specific tools including Takeoff, Land, Move, Ro-
tate and Capture Image. The tool-calling framework is agnos-
tic to specific implementations, enabling seamless integration
with arbitrary tools, e.g., vision-language models (VLM),
custom analysis tools, or specialized functions required for
given environment/task-set.

Algorithm 1 Multi Agent Drone Control
1: procedure EXECUTEHEADAGENT(user input)
2: drone tasks← PLAN(user input)
3: results← {}
4: for each agent id, task in drone tasks do
5: results[agent id]← REACTEVAL(task)
6: end for
7: response← RESPOND(user input,

drone tasks, results)
8: return response
9: end procedure

3.1.1. ReActEval

Our proposed ReActEval method, outlined in Algorithm 2,
uses a three-step ”Reason-Act-Evaluate” process that pro-
vides worker agents with structured decision-making capa-

bilities for autonomous drone control.

The Reason step serves as a planning phase for determining
the next optimal function or action to execute. In this step,
the agent reasons over the drone’s current state (including po-
sition coordinates, heading, and other relevant parameters),
the plan for the current sub-task provided by the head agent,
the intended outcome for the current task, and the thread his-
tory. The thread history, when applicable, contains previous
actions executed, evaluation outputs, and next step notes from
prior evaluation phases. The Reason step outputs a structured
dictionary with keys ’reason’ and ’intended action’, where
’reason’ contains the logical justification for the chosen ac-
tion and ’intended action’ specifies the next recommended
action to execute.

The Act step takes the drone’s current state, the intended ac-
tion from the reasoning phase, and the thread history as in-
puts. This step translates the high-level intended action into
executable function calls, directly interfacing with the drone’s
control API or the specified tool’s API to perform the speci-
fied operation.

The Evaluate step provides critical assessment and loop con-
trol functionality. The agent takes the overall plan, expected
outcome for the current task, the recently executed action, and
thread history as inputs. The Evaluate step outputs a struc-
tured dictionary containing: (1) ’evaluation’ - reasoning over
the last action executed, current drone state, and other rele-
vant information to assess task progress and completion sta-
tus; (2) ’end flag’ - a boolean value that determines whether
to terminate the execution loop (true if the task has been com-
pleted, false to continue the ReActEval loop); and (3) ’next
steps notes’ - guidance and suggestions for the subsequent
reasoning step, recommending the next optimal action based
on current progress and remaining objectives.

The prompts for the Reason, Act, and Evaluate steps can be
found in the Appendix 7.

Algorithm 2 ReActEval
1: procedure REACTEVAL(task)
2: history ← INITIALIZE(task)
3: iteration← 0
4: while ¬task.complete ∧ iteration < max iters do
5: iteration← iteration+ 1
6: reasoning ← REASON(task, history)
7: action← ACT(reasoning)
8: evaluation← EVALUATE(task, history, action)
9: task.complete← evaluation.end flag

10: history ←UPDATEHISTORY(reasoning,
action, evaluation)

11: end while
12: return history
13: end procedure
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3.1.2. ReAct

For comparison, we use the ReAct method, outlined in Al-
gorithm 3, which follows a ”Reason-Act” cycle. The Rea-
son and Act steps are similar to ReActEval, except that we
add the ’end flag’ key from ReActEval’s evaluate step to de-
termine loop termination. This end flag is updated after the
Reason step, unlike ReActEval where it updates after Evalu-
ation, avoiding unnecessary function executions. We edited
the Reason’s prompt to include examples on how to use the
’end flag’ key in its output for this added functionality; other-
wise the Reason and Act prompts are the same as those used
in the ReActEval method to maintain consistency during ex-
perimentation.

3.1.3. Act

As a second baseline, the Act method, outlined in Algorithm
4, removes both Reason and Evaluation steps. To maintain a
fair comparison of this method against the others, we made
two changes to the Act step. First, since the Act step makes
direct function calls, we created a new ’termination’ function,
which when called, breaks the current execution loop. This
has the same functionality as setting the end-flag key in other
methods to True. Second, we extended the prompt to include
the plan and expected outcome from the head agent. To main-
tain consistency across the other methods, we used the same
relevant portions from the other method’s Reason prompts.

4. EXPERIMENTS

Our experiments evaluate the performance of the proposed
ReActEval method against two baselines (ReAct and Act, as
described in the Methodology section 3) across different lev-
els of task complexity. To assess the impact of LLM model
size and reasoning capabilities, we test four different LLMs:
GPT-4.1 Nano, GPT-4.1, o4-mini, and o3. These
models span a spectrum of reasoning abilities and compu-
tational efficiency: GPT-4.1 is a state-of-the-art large lan-
guage model known for advanced reasoning and understand-
ing, while GPT-4.1 Nano is a lightweight variant opti-
mized for faster responses with lower computational cost but
somewhat reduced capacity. The o4-mini and o3 models
are smaller, more efficient architectures that balance perfor-
mance and resource use. This diverse selection allows us to
identify how each method’s performance scales with model
intelligence and pinpoint any capability thresholds required
for success.

We categorize tasks into three levels of complexity. Easy
tasks involve basic single or two-step commands, per drone,
such as takeoff, land, or movement to specified coordinates,
with clearly defined objectives requiring minimal planning or
coordination. Medium tasks consist of multi-step sequences
with explicit actions specified in the prompt, assessing each
method’s ability to execute longer sequences of coordinated

commands across multiple drones. Hard tasks involve com-
plex, realistic inspection scenarios requiring precise naviga-
tion, multi-perspective scene analysis, and visual interpreta-
tion, such as locating and reading pressure gauges in indus-
trial environments. The specific task descriptions used can be
found in Table 1.

Table 1. Tasks by Complexity Level

Complexity Tasks

Easy

• What are your responsibilities?
• Can you take off both drones?
• Can you move drone 1 forward 2m?
• Can you take a picture with drone 2?
• Can you analyze the image with drone 2?
• Takeoff and then land both drones safely.
• What is the current state of both drones?
• Rotate both drones 180 degrees.

Medium

• Fly both drones in a trajectory of a square
with length 3m.

• Drone 2, can you turn around and take a pic-
ture, and then land safely?

• Drone 1, fly forward 4m, take a picture and
describe what you see.

• Drone 1, move right 5m and then up 5m, turn
around and land. Drone 2, move left 5m and
then up 2m, rotate 90◦ and then land.

• Fly both drones in the trajectory of a triangle
with length 5m, drone 1 should move left first
and drone 2 should move right first.

Hard

• The drones are located in the middle of a 10m
x 2m room. Use both drones to capture im-
ages of each corner of the room. Each drone
should assess 2 corners.

• Drone 2, navigate to the pressure gauge lo-
cated at (4m, 18m, 6m) and return its status.

• There is an object located at (3, 4, 5). Drone 1,
describe the object from the left side. Drone
2, describe the object from the right side.

4.1. System and Environment

All experiments are conducted within a simulated environ-
ment that maintains each drone’s state through a command-
execution-based state management system. We track the 3D
Cartesian coordinates, heading, gimbal angle (camera orien-
tation), and last executed command for each drone. This set
of values constitutes the Drone State, which is updated after
every function execution based on the specific command type
and its parameters.

The state update rules are defined as follows: takeoff com-
mands set the drone’s flight status to True and altitude to
1.0m; land commands set flight status to False and altitude
to 0.0m; move commands calculate new coordinates using
trigonometric functions based on the drone’s current head-
ing and the specified direction (forward, backward, left, right,
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up, down) and distance; rotate commands update the head-
ing by adding the rotation angle to the current heading; and
move gimbal commands directly update the gimbal angle
within the constrained range of 0-90 degrees.

The framework supports both simulated and real drone op-
erations. For simulated drones, state changes are calculated
based on the command parameters and current state. For real
drones, the system polls the actual drone’s API to retrieve
current flight status, altitude, heading, and gimbal angle af-
ter command execution, ensuring state consistency with the
physical drone.

We utilize two drones in our experiments to simplify experi-
mentation while demonstrating multi-drone coordination ca-
pabilities, although our framework is designed to scale to ar-
bitrary numbers of drones. The first drone initializes at the
origin (0,0,0), and the second drone starts at (0,2,0), posi-
tioned 2 meters apart in the y-direction.

The Worker Agents are equipped with additional tools in-
cluding VLMs and YOLO (Redmon, Divvala, Girshick, &
Farhadi, 2016) models for visual analysis and object detec-
tion during inspection tasks. These tools enable the drones to
perform complex visual interpretation required for industrial
inspection scenarios.

4.2. Evaluation Metrics

We evaluate performance using two primary metrics: task
completion rate and execution time.

For task completion, we use different scoring approaches
based on complexity level due to the nature of the tasks. For
easy and medium tasks, we manually analyze each prompt to
identify the required sequence of function calls, as these tasks
have deterministic action sequences with clearly specified ob-
jectives. The 8 easy tasks require 14 total actions, while the 5
medium tasks require 36 total actions. We score each task by
counting successful function call executions, awarding one
point per correctly executed function. For example, the task
”Can you take off both drones?” requires two takeoff func-
tion calls and scores a maximum of two points—one point
for each successful takeoff execution.

Hard tasks involve complex, open-ended scenarios that can
be accomplished through multiple valid approaches, mak-
ing function-level scoring impractical. Instead, we manually
decompose these tasks into higher-level subtasks and award
points based on subtask completion. For instance, ”Use both
drones to capture images of each corner of the room. Each
drone should assess 2 corners” scores four points total, one
for each corner successfully imaged, regardless of the spe-
cific function sequence used to achieve the imaging. Note
that in this type of the tasks, the instructions given by the user
are also not necessarily explicit function calls and requires
the LLM to decompose, delegate and/or convert a possibly

Table 2. Performance Comparison Across Models and Diffi-
culty Levels. Overall column shows accuracy across all com-
plexity levels.

Method Model Easy Medium Hard Overall

ReActEval
GPT 4.1-nano 14/14 13/36 2/13 0.460
GPT 4.1 13/14 34/36 4/13 0.810
o4-mini 14/14 34/36 6/13 0.857
o3 13/14 34/36 10/13 0.905

ReAct
GPT 4.1-nano 14/14 18/36 2/13 0.540
GPT 4.1 13/14 30/36 2/13 0.714
o4-mini 14/14 29/36 4/13 0.746
o3 14/14 32/36 6/13 0.825

Act
GPT 4.1-nano 14/14 21/36 1/13 0.571
GPT 4.1 13/14 30/36 4/13 0.746
o4-mini 14/14 33/36 3/13 0.794
o3 13/14 32/36 5/13 0.794

ambiguous user instruction into a series of executable drone
operations.

In all cases, scoring follows a strict sequential evaluation
where points are awarded only for correct function calls exe-
cuted in the proper context. If an incorrect function is called,
scoring stops at that point, and subsequent actions receive no
credit even if executed correctly. In our simulated environ-
ment, correctly specified function calls always succeed, en-
suring that failures result from incorrect function selection
rather than execution errors.

We measure execution time as the end-to-end latency from
when a user request is received until the final response is gen-
erated. This captures the complete pipeline including head
agent planning, worker agent execution cycles using the re-
spective method (ReActEval, ReAct, or Act), and final re-
sponse generation across all assigned drones.

5. RESULTS

5.1. Performance Reversal with Model Capability

The most striking finding from our experiments is a complete
performance reversal between methods as model capability
increases (Table 2). For medium-difficulty tasks, ReActEval
achieves the lowest performance of any method-model com-
bination when paired with GPT-4.1 Nano (13/36 correct ac-
tions), yet becomes the highest-performing method with more
capable models (34/36 with GPT-4.1, o4-mini, and o3).

Conversely, the simplest method, Act, shows the opposite pat-
tern: it performs best with the smallest model (21/36 with
GPT-4.1 Nano) but plateaus with larger models (32-33/36).
This demonstrates that method effectiveness is fundamentally
tied to model capability rather than method complexity alone.
The additional reasoning and evaluation steps in ReActEval
become beneficial only when the underlying model has suffi-
cient capability to leverage them effectively.

This pattern suggests that no single reasoning method is uni-
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versally optimal and that the best method depends critically
on the available model capability and task complexity.

This performance inversion is illustrated in Figure 5 and Fig-
ure 6, which show ReActEval outputs for identical tasks. The
GPT-4.1 Nano example reveals how reasoning complexity
can become counterproductive with limited model capabil-
ity: the model correctly identifies the task requirement to
move forward 4m but incorrectly translates this to coordi-
nates (4,0,0) instead of (0,4,0). This initial error propagates
through subsequent Reason and Evaluate steps, leading to in-
correct corrective actions and premature task termination. In
contrast, o4-mini successfully maintains coordinate accuracy
throughout the reasoning chain, demonstrating how sufficient
model capability enables the structured approach to function
as intended.

5.2. Task Complexity Determines Method Relevance

Easy tasks with 1-2 commands per drone achieved nearly
perfect performance across all method-model combinations,
with most achieving 13-14 out of 14 possible points. This
demonstrates that for simple tasks, method choice is largely
irrelevant—all approaches succeed regardless of their reason-
ing complexity.

The differentiation between methods emerges only at
medium and hard complexity levels. For medium tasks re-
quiring longer action sequences, the performance gaps be-
come substantial. ReActEval with capable models achieves
34/36 while the same method with GPT-4.1 Nano manages
only 13/36. Hard tasks show similar patterns, with Re-
ActEval reaching 10/13 when paired with o3, the highest
score achieved across all method-model combinations. Note
that, Hard tasks have fewer number of required actions than
Medium tasks because we perceive the difficulty in Hard task
comes not just from the number of action, but also the com-
plexity in trying to translate the user’s complex task specifi-
cation into a series of explicit drone operations.

This complexity-dependent performance reveals why struc-
tured reasoning approaches like ReActEval show their value.
They provide systematic frameworks for managing multi-step
decision making that become crucial as task difficulty in-
creases.

5.3. ReActEval Mitigates Specific Failure Modes

Analysis of failure modes reveals that ReActEval signifi-
cantly reduces incorrect and unnecessarily repeated function
calls compared to other methods (Figure 2). The evaluation
step provides systematic action assessment that helps prevent
errors like executing functions in wrong order or failing to
recover from mistakes.

However, early stopping, where models terminate before task
completion, remains consistent across all methods. This pat-

Figure 2. Distribution of failure modes across the different
methods. The analysis of ReActEval, ReAct, and Act meth-
ods revealed three primary failure modes: incorrect function
calls, early stopping, and head agent failure. The proposed
ReActEval method reduces the amount of incorrect func-
tion calls. Early stopping is consistent across all three meth-
ods and hints at a larger problem with the underlying LLMs.
Head Agent failures, i.e., incorrect drone indexing or poor
planning, is minimal and consistent across each method.

tern indicates a limitation inherent to the underlying LLMs
rather than method-specific issues. Similarly, Head Agent
failures involving incorrect drone indexing or poor planning
occur minimally and consistently across methods, suggest-
ing these stem from high-level planning rather than worker
agent execution approaches. Specifically, throughout all ex-
periments only four tasks failed due to the Head Agent, one
each with ReActEval and Act and two cases for ReAct. All
of which were related to incorrect or absent drone indexing.

The anecdotal examples provided in Figure 3 illustrate these
failure modes in concrete terms. The first example demon-
strates incorrect function ordering and unnecessary repetition,
where the model captures an image before rotating and then
redundantly executes additional rotations and captures. The
second example shows early stopping, where despite success-
fully navigating to the target location and capturing an image,
the model fails to complete the analysis step. The third exam-
ple illustrates Head Agent failure, where the agent incorrectly
determines drone availability despite the drone being func-
tional.

5.4. Execution Time is Driven by Model, Not Method

Despite ReActEval making two additional reasoning calls
compared to Act, execution time differences between meth-
ods are surprisingly minimal (Table 3). In our implemen-
tation, worker agents execute sequentially, so the recorded
times reflect cumulative processing rather than true parallel
execution, but this limitation affects all methods equally. In-
stead, we observe that execution time is driven far more by
model type and size than by method complexity. Importantly,
in this context, we define execution time as covering only the
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Failed Task Examples

Task: Drone 2, can you turn around and take a picture, and
then land safely?
Actions Executed:
Drone 2:

• Action: capture image
• Action: land
• Action: rotate
• Action: capture image
• Action: rotate

Failure Mode: Incorrect/repeated function calls.

Task: Drone 2, navigate to the pressure gauge located at
(4m, 18m, 6m) and return its status.
Actions Executed:
Drone 2:

• Action: takeoff
• Action: move up 5m
• Action: move forward 16m
• Action: move right 4m
• Action: capture image

Failure Mode: Early stopping.

Task: Can you take a picture with drone 2?
Actions Executed:
Drone 2:

• No Actions Executed
Head Agent Output:
Drone 2 is not available, so a picture could not be taken. Task
not completed.
Failure Mode: Head Agent Failure.

Figure 3. Examples of the three primary failure modes ob-
served across all methods. The first example demonstrates
incorrect/repeated function calls where the drone executes ac-
tions out of sequence and performs unnecessary operations.
The second shows early stopping where the drone reaches the
target location but fails to complete the full task requirements.
The third illustrates head agent failure where incorrect drone
availability assessment prevents any task execution.

plan generation and function-calling steps and not the physi-
cal execution of drone actions. Since tasks are simulated, we
treat physical actions as instantaneous to enable a fairer com-
parison. In real-world deployments, physical execution time
would of course vary with task type and drone behavior.

5.5. Summary of Findings

Our results deliver two key insights. First, method effec-
tiveness is not absolute but is instead dictated by a clear in-
teraction between method and model capability; structured
reasoning like ReActEval is only beneficial when the un-
derlying model is powerful enough to leverage it. Second,
this distinction only becomes relevant as task complexity in-
creases, with method choice being largely immaterial for sim-
ple tasks. These findings suggest that deploying advanced
agentic frameworks requires a careful co-design of method,

Table 3. Execution time (in seconds) of different methods and
models across varying task complexities.

Method Model Easy Medium Hard

ReActEval
GPT-4.1-Nano 4.24 5.79 5.63
GPT-4.1 5.16 7.22 8.22
O4-Mini 15.15 21.38 20.79
O3 18.35 30.60 36.39

ReAct
GPT-4.1-Nano 3.77 5.97 6.03
GPT-4.1 4.99 7.45 7.91
O4-Mini 15.76 21.61 22.68
O3 21.72 40.08 34.16

Act
GPT-4.1-Nano 3.61 5.78 7.19
GPT-4.1 4.94 7.32 7.77
O4-Mini 15.30 19.83 23.57
O3 20.13 27.90 30.64

model, and task.

6. DISCUSSION

Our findings reveal that the relationship between reasoning
methods, model capability, and task performance exhibits
greater complexity than previous work might suggest. The
optimal approach requires matching the reasoning method to
both task complexity and available computational resources
rather than defaulting to more elaborate frameworks.

6.1. Method-Model Capability Interactions

Our central finding challenges the assumption that more com-
plex reasoning methods, e.g., ReActEval, are inherently su-
perior. The effectiveness of a method like ReActEval is
not absolute but is instead a direct function of the underly-
ing model’s capability. Deploying a sophisticated framework
with an underpowered model can be counterproductive, in-
troducing cognitive overhead without providing discernible
benefits. This interaction becomes particularly clear when
analyzing performance across task complexities.

For simple tasks, ReActEval’s evaluation step proved to
be unnecessary overhead, especially for powerful models.
This suggests that capable models may over-process sim-
ple problems when constrained by complex reasoning struc-
tures. Conversely, for hard tasks, ReActEval was essential for
success, but only when paired with highly capable models.
This highlights a critical threshold effect: advanced reason-
ing methods only provide value when supported by models
with sufficient intelligence to execute them effectively.

Despite ReActEval’s additional LLM calls, we observed that
model choice, not method complexity, was the overwhelm-
ing driver of execution time. This finding suggests that for
latency-critical applications, the selection of an appropriately
sized model is far more consequential than the choice be-
tween these reasoning methods.
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Image Analysis:
“The image depicts a close-up view of a pressure gauge mounted on a piece of industrial equipment, likely 

involved in fluid or gas regulation. The gauge has a large circular dial with a glass cover, showing measurements in 
pounds per square inch (psi) on the outer scale and in bars or another unit on the inner scale. The needle 

indicates a pressure slightly above 1000 psi. The surrounding parts of the equipment are painted red and include 
various bolts, pipes, and fittings, suggesting an industrial or mechanical setting, possibly in a factory, plant, or 

infrastructure like a water or gas supply system. The background appears slightly blurred but shows an outdoor 
environment, indicating the equipment might be part of an outdoor installation.”

Figure 4. Demonstration of the Hierarchical Agentic Framework deployed with two drones in a mock industrial setting. There
are two drones operating in the upper left image. The rightmost drone is oriented towards a picture of a pressure gauge attached
to a red pipe assembly. The image in the top right is a cropped version of the image taken by the drone. The ’Image Analysis’
is the output description of the captured image from the Agentic Framework’s Vision Language Model.

6.2. Limitations and Future Work

Our findings point to several limitations that define clear di-
rections for future research. A primary limitation is our re-
liance on a simulated environment. Future work must rig-
orously evaluate these frameworks on physical hardware to
account for real-world complexities like sensor noise and
communication delays. Preliminary real-world tests (Fig-
ure 4) suggest these factors significantly increase task diffi-
culty, highlighting a gap between simulated and physical per-
formance. This gap appears to stem from the models’ diffi-
culty translating high-level goals into the precise, low-level
command sequences required for physical navigation.

This insight motivates two research directions. First, to ad-
dress the poor spatial reasoning and control precision, future
work should explore hybrid systems that integrate the high-
level planning of LLMs with the reliability of traditional, low-
level control systems. Second, to mitigate the performance
bottleneck of using a single large model like o3 for all tasks, a
key direction is the development of hybrid-capability agents.
Here, the complex ‘Reason‘ and ‘Evaluate‘ steps could be
handled by a powerful model, while a smaller, faster model
executes the simpler ‘Act‘ step.

Building on these ideas, future work should also investigate
adaptive agentic systems that can dynamically select the rea-
soning method (e.g., Act vs. ReActEval) based on the Head

Agent’s assessment of task complexity. This would allow the
system to leverage the efficiency of simple methods for sim-
ple tasks, while reserving complex frameworks for problems
that require them. Such an approach, combined with fine-
tuning smaller models on domain-specific drone control data,
could yield significant performance improvements while re-
ducing dependency on large models. Additionally, we would
also extend the framework to expose the agents to a larger
suite of tools that are tailored towards tasks in safety-critical
and dynamic environments.

These directions collectively point toward a future of adap-
tive, hybrid systems where LLM-based reasoning comple-
ments traditional control, and where the agent’s complexity
is matched dynamically to the task at hand.

7. CONCLUSION

In this paper, we introduced a hierarchical agentic framework
and ReActEval, a novel reasoning framework for agentic sys-
tems in physical domains, and evaluated it against simpler
ReAct and Act methods. Our work demonstrates that we
observed a complete performance reversal where ReActEval
transitioned from worst-performing with the lowest capabil-
ity model to best-performing with more capable models.

We found that for simple tasks with small non-reasoning
models, the overhead of the ReActEval framework’s evalua-
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tion step can be detrimental to performance, making direct ac-
tion methods like Act more suitable. However, for complex,
multi-step tasks that emulate real-world inspection scenarios,
ReActEval proved essential for achieving high success rates,
provided it was paired with a sufficiently capable LLM.

This work addresses critical challenges in autonomous indus-
trial inspection, demonstrating how multi-drone coordination
can be achieved through our hierarchical architecture while
maintaining effective task execution through appropriate rea-
soning method selection. Our analysis revealed that ReActE-
val significantly reduces incorrect function calls compared to
simpler methods, while early stopping remained consistent
across all approaches.

These findings highlight a critical tradeoff in the design of
agentic systems for physical interaction. Simply selecting
the most elaborate reasoning framework or the most power-
ful model does not guarantee the best performance. Instead,
practitioners must carefully consider the specific demands of
the task and the available computational resources. Through
systematic evaluation across four model types and three com-
plexity levels, our work demonstrates these tradeoffs and pro-
vides insights for future research into developing more adap-
tive agentic systems that can dynamically adjust their reason-
ing strategies.

APPENDIX

Algorithm 3 ReAct
1: procedure REACT(task)
2: history ← INITIALIZE(task)
3: iteration← 0
4: while ¬task.complete ∧ iteration < max iters do
5: iteration← iteration+ 1
6: reasoning ← REASON(task, history)
7: task.complete← reasoning.end flag
8: action result← ACT(reasoning)
9: history ←UPDATEHISTORY(reasoning,

action result)
10: end while
11: return history
12: end procedure

Algorithm 4 Act
1: procedure ACT(task)
2: history ← INITIALIZE(task)
3: iteration← 0
4: while ¬task.complete ∧ iteration < max iters do
5: iteration← iteration+ 1
6: action result, end flag ← ACT(history)
7: task.complete← end flag
8: history ← UPDATEHISTORY(action result)
9: end while

10: return history
11: end procedure
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ReActEval example with GPT-4.1 nano

Prompt: Drone 1, fly forward 4m, take a picture and describe what you see.
Head Response: Drone 1 moved forward 4 meters and took a picture.
Thread History:
Step 1
Reasoning: The drone is currently at the initial position (0, 0, 0) and has not yet moved forward 4 meters as specified
in the plan. To proceed, the next logical step is to move the drone forward by 4 meters along the y-axis, which will
position it at (4, 0, 0). After reaching this position, capturing an image as planned will allow progress toward the overall
task completion.
Action Result: Action: takeoff, Success: True, Message: Takeoff successful (simulated)
Evaluation: The last action was a successful takeoff, elevating the drone from ground level to an altitude of 1 meter.
This is a necessary first step before executing planned movements. Since the overall plan involves moving forward 4
meters next, the drone is now correctly positioned and ready to proceed.
Step 2
Reasoning: The drone has successfully taken off and is currently at position (0, 0, 1). To follow the plan, the next step
is to move forward 4 meters along the y-axis, which will position it at (4, 0, 1). This movement aligns with the plan’s
sequence, setting up for the subsequent image capture at the correct location. Moving now will bring the drone closer
to the target position for the planned photograph.
Action Result: Action: move, Success: True, Message: Moved forward by 4m
Evaluation: The drone successfully performed the move forward 4 meters along the y-axis, positioning itself at (0, 4,
1). This step aligns with the overall plan’s sequence to reach (4, 0, 0); however, the drone is still at x=0 instead of x=4.
The last action was a move, bringing it closer but not yet at the target, indicating the next step should be to move right
4 meters along the x-axis to reach (4, 4, 1). The current plan involves moving forward 4 meters followed by capturing
an image. The move was successful and contributes toward the goal; the plan is partially complete but not finished yet.
Step 3
Reasoning: The drone has successfully moved forward 4 meters to position (0, 4, 1) but the plan specifies moving to (4,
0, 0), indicating it needs to move laterally along the x-axis. To align with the overall plan and reach the target position
before capturing an image, the next logical step is to move right 4 meters along the x-axis, which will place the drone
at (4, 4, 1). Once there, it can proceed with the image capture. Since the move forward was successful, executing this
lateral move will bring the drone closer to the desired final position.
Action Result: Action: move, Success: True, Message: Moved right by 4m
Evaluation: The drone successfully completed the takeoff, reaching an altitude of 1 meter, which is essential as the
initial step. It has also moved forward 4 meters along the y-axis and then moved right 4 meters along the x-axis,
effectively progressing toward the planned final position at (4, 0, 0). The drone is now positioned at (4, 4, 1), which
is aligned with the plan’s steps to reach (4, 0, 0) and capture an image. Since the core movements have been executed
correctly and the drone is now at the targeted location for the next step, the plan is progressing well.
Step 4
Reasoning: The drone has successfully completed the previous movement steps — moving forward 4 meters and then
right 4 meters — and is now positioned at (4, 4, 1). According to the overall plan, the next step is to capture an image
from this position. Capturing the image is essential to progress the task, and no further movement is needed now since
the target location is reached. Therefore, the next logical action is to capture an image from the current position.
Action Result: Action: capture image, Success: True, Message: Image captured successfully
Evaluation: The drone successfully completed the takeoff and the subsequent movements: moving forward 4 meters
along y-axis and right 4 meters along x-axis, reaching position (4, 4, 1). It has now arrived at the target location for
capturing the image, which aligns with the overall plan sequence. The capture image action was successful, completing
the core tasks of the plan. Therefore, the drone has fulfilled the planned steps to reach the capture point. The overall
task plan is now complete.

Figure 5. Example transcript from the ReActEval method with GPT-4.1 nano on a medium level task. In this example,
ReActEval with a small model fails to accomplish the task. The failure is originally induced by an incorrect target coordinate
(4,0,0) instead of (0,4,0) which propagates through the remaining steps.
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ReActEval example with o4-mini

Prompt: Drone 1, fly forward 4m, take a picture and describe what you see.
Head Response: Drone 1 successfully took off, flew forward 4 m, captured and analyzed the image, and then landed. The photo
showed a close-up of a pressure gauge mounted on a red industrial pipe or valve, with its needle at approximately 120 psi against a
blurred outdoor industrial background.
Thread History:
Step 1
Reasoning: The drone is currently on the ground (is flying=false) and the first step of the plan is to take off to an altitude of 1 meter.
Action Result: Action: takeoff, Success: True, Message: Takeoff successful (simulated)
Evaluation: The takeoff action succeeded, transitioning the drone from on-ground to flying at (0, 0, 1). This completed the first step
of the overall plan. The drone is now positioned correctly at the initial altitude, ready to proceed forward 4 meters.
Step 2
Reasoning: The drone has completed takeoff and is flying at (0, 0, 1). The next step in the plan is to fly forward 4 meters while
maintaining altitude and heading.
Action Result: Action: move, Success: True, Message: Moved forward by 4m
Evaluation: The drone successfully completed the move forward 4 meters, reaching position (0, 4, 1) while maintaining altitude
and heading, which accurately aligns with the second step of the overall plan. The act of moving forward indicates progress towards
capturing the photo as intended in subsequent steps.
Step 3
Reasoning: The drone has completed the move forward 4 m and is now at the required position and altitude; the next step per the
plan is to capture a photo.
Action Result: Action: capture image, Success: True, Message: Image captured successfully
Evaluation: The drone successfully completed the move forward 4 meters, reaching position (0, 4, 1) as planned. It has executed
the third step of the overall plan (capturing an image). The drone is currently at the intended waypoint, aligned with the mission’s
progress. The plan is not yet complete, as the final step—analyzing the captured photo—is pending.
Step 4
Reasoning: The drone has successfully captured the required image at (0, 4, 1). According to the plan, the next step is to analyze
the captured image to describe the scene.
Action Result: Action: analyze image, Raw Result: The scene shows a close-up view of a pressure gauge attached to a red industrial
valve or pipeline. The gauge’s needle points to approximately 120 psi, indicating the current pressure in the system. The background
appears to be an outdoor setting with some blurred structures or landscape, suggesting an industrial or construction site environment.
The focus is primarily on the gauge and the red mechanical component it is connected to.
Evaluation: The drone successfully completed the third step by capturing the image at position (0, 4, 1). All previous actions,
including takeoff and forward movement, were successful, and the current state confirms the drone is correctly at the designated
waypoint. Therefore, the third step is complete, and the plan is on track to finish all remaining steps.
Step 5
Reasoning: All steps in the plan have been completed: takeoff, forward movement, image capture, and image analysis. The drone
is at the designated waypoint and has provided the scene description. No further actions are required.
Action Result: Action: land, Success: True, Message: Landing successful (simulated)
Evaluation: The drone successfully completed the third step by capturing an image at position (0, 4, 1). All prior steps—takeoff
and forward movement—have been successful, and the final image analysis confirms the scene description has been obtained. The
drone is now at the correct waypoint, indicating the overall plan is nearly complete.

Figure 6. Example transcript from the ReActEval method with o4-mini on a medium level task. In this example, the method
successfully completes the task.
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Head Agent Planning Prompt

Role: Head Agent – Multi-Drone Task Planning
Number of Drones: 2
User Request: user input
Session History: session history
Instructions:

• Based on the user’s request, session history, and current drone states, provide a JSON object with:
– Keys ”1”, ”2”, etc., representing drone IDs.
– Each drone’s value is a JSON object with:

* plan: A string with a step-by-step plan for that drone. Steps must be logical and respect drone capabilities. Exclude steps checking
success/failure of prior steps.

* expected outcome: A string describing the state signifying that drone’s plan completion.
* end flag: Boolean (true for simple/informational tasks, false for action sequences).

– response to user: A string for user feedback or drone state information.
Example 1: (User Input: “Drone 1, take off and move forward 5 meters. Drone 2, takeoff and move backward 2m.”)

{"1": {
"plan": "1. Takeoff.\n2. Move to (5, 0, 1).",
"expected_outcome": "Drone 1 is located at (5, 0, 1).",
"end_flag": false

},
"2": {

"plan": "1. Takeoff.\n2. Move to (0, -2, 1).",
"expected_outcome": "Drone 2 is located at (0, -2, 1).",
"end_flag": false

},
"response_to_user": ""}

Worker Agent Reasoning Prompt

Role: Worker Agent – Task Reasoning
Goal: Determine the single best next action to complete the plan using the current context.
Inputs:

• Overall Plan: The high-level plan from the Head Agent.
• Expected Final Outcome: The desired end state from the Head Agent.
• Current Drone State: The drone’s current telemetry and status.
• History of Actions/Evaluations: Log of actions taken in the current task thread.

Available Capabilities:
• Drone Functions: Takeoff, Land, Move, Rotate, Move gimbal, Capture image.
• Model Functions: Analyze image, Analyze gauges.

Output Format: A JSON object with the following keys:
• reasoning: A concise explanation for the chosen action.
• intended action: A concise description of the single action to be taken.

Example: (Plan: “1. Takeoff. 2. Navigate to (5, 2, 3).” Current Position: (2, 0, 1))

{"reasoning": "The drone has completed takeoff and is at (2, 0, 1). To reach target (5, 2, 3), I
need to move: right 3m (2 to 5 on x-axis), forward 2m (0 to 2 on y-axis), and up 2m (1 to 3 on
z-axis). I’ll start with the x-axis movement since it’s the largest distance.",

"intended_action": "Move right 3 meters."}
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Worker Agent Action Prompt

Role: Worker Agent – Action Formulation
Goal: Select the correct function call and parameters to execute the intended action.
Inputs:

• Intended Action: The action decided upon in the reasoning step.
• Reasoning: The justification for the intended action.
• Current Drone State: The drone’s current telemetry.
• Available Tools: The set of functions available for the agent to call.

Instructions:
• Based only on the Intended Action and Available Tools, formulate the precise function call(s).
• Ensure parameters are correct based on the action and current state.
• You MUST use a function call.

Output: A JSON object representing the function call.
Example: (Intended Action: “Move forward 10 meters.”)

{"function_call": "move",
"parameters": {

"direction": "forward",
"distance": 10}}

Worker Agent Evaluation Prompt

Role: Worker Agent – Evaluation
Goal: Evaluate the outcome of the last action and determine if the overall task is complete.
Inputs:

• Overall Plan: The high-level plan from the Head Agent.
• Thread History: The log of actions and outcomes for the current task.
• Drone State After Action: The drone’s telemetry after the last action.

Instructions:
• Assess if the most recent action was successful in progressing the plan.
• Use the drone state to confirm the action’s outcome.
• Set end flag to true if and only if all steps in the plan are finished.
• Provide guidance for the next reasoning step in next steps notes.

Output Format: A JSON object with the following keys:
• evaluation summary: A concise summary of the action’s success.
• end flag: A boolean indicating if the entire plan is complete.
• next steps notes: Brief notes to guide the next reasoning step.

Example: (Plan: “Move right 3m, then forward 3m, then up 2m.” Last Action: Move right 3m. New Position: (3, 0, 1))

{"evaluation_summary": "Right 3m movement succeeded. Drone progressed from (0, 0, 1) to (3, 0, 1),
completing the first part of the navigation.",

"end_flag": false,
"next_steps_notes": "From current position (3, 0, 1), the next logical step is to move forward

3m."}
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