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ABSTRACT

Rapid railroad inspection is vital to ensuring operational
safety, yet conventional methods remain inefficient and
inadequate in scope. This paper introduces RailNet, a
lightweight, modular transfer learning framework for real-
time rail component detection and rail surface defect
segmentation on edge devices. RailNet couples a frozen pre-
trained detection backbone with a trainable segmentation
head featuring two key innovative components: a Context
Rebalancing Module (CRM) to mitigate pretrained bias, and
Selective Channel Attention (SCA) to help select the relevant
features. With only a 5 MB trainable component (0.96
GFLOPs), RailNet achieves 93.2% pixel accuracy and 92.6%
recall for defect segmentation, while preserving high
detection performance (mMAP@0.5 of 98.7%). Evaluated on
Nvidia's AGX Orin, RailNet outperforms benchmarks such
as YOLOvI2-n and MobileSAMv2 in both accuracy and
inference speed. These results underscore RailNet's potential
as an accurate, real-time, and energy-efficient solution for
multi-task railway inspection.

1. INTRODUCTION

According to the Federal Railroad Administration (FRA)
safety database, over 400 accidents in 2024 were caused by
missing track components. These incidents resulted in losses
exceeding $120 million. Therefore, rigorous inspection
protocols are essential for detecting flaws in railroad
infrastructure and ensuring the safe operation of trains.
However, current inspection methods mainly rely on manual
procedures, which depend heavily on the expertise of
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operators. These methods tend to be costly, time-consuming,
and prone to human error. As a result, there is a critical need
for an automated, real-time, and cost-effective computer
vision-based system capable of performing accurate rail track
inspections.

Recent advances in deep learning have highlighted the
potential of large-scale multi-task frameworks and general-
purpose vision models. Advanced architectures such as GPT-
40 (Hurst et al., 2024), CLIP (Radford et al., 2021), and
SAMV2 (Ravi et al., 2024) have demonstrated strong transfer
learning abilities across diverse domains. This success
largely arises from extensive pretraining on large and varied
datasets. Such pretraining enables these models to generalize
well with limited task-specific annotations. Despite their
accuracy and versatility, these models require significant
computational resources, making deployment in edge-based
industrial environments challenging. In real-time railway
infrastructure monitoring, where resource efficiency is
crucial, it becomes a major obstacle.

Deep learning methods have also gained increasing attention
in anomaly detection and structural health monitoring (SHM).
For example, Song et al. (2023) proposed a semi-supervised
GAN-based framework for auditing energy-consumption
anomalies in robotic manipulators. Their model achieved 93%
instant-wise detection accuracy by monitoring side-channel
signals. Although this shows the potential of GANs under
low-data conditions, the approach targets a specific industrial
task and cannot be directly applied to visual rail inspection.
In the specific domain of railway infrastructure monitoring,
lightweight CNN and hybrid models have shown promising
results. Ferdousi et al. (2024) proposed an ensemble CNN
that combines MobileNetV3 (Howard et al., 2019), VGG-19
(Simonyan & Zisserman, 2014), and ResNet-50 (He et al.,
2016) to improve robustness when data is limited. Guo et al.
(2023) introduced a lightweight teacher—student model based
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on NanoDet, using an adaptively weighted loss function.
Their model has a size under 2 MB, requires only 1.52
GFLOPs, and runs inference in less than 14 ms. This model
achieves an overall mAP@0.5 of 98.7% on component
detection tasks. Similarly, Li et al. (2024) implemented CNN
on an FPGA-based edge platform. It achieved 88.9%
accuracy in real-time rail defect detection. Bai et al. (2024)
further advanced visual inspection with a CNN—Transformer
hybrid network. Their model performs pixel-wise
segmentation of rail surface defects, achieving precision and
recall between 84-87%, and mean intersection-over-union
(mloU) between 77-87%. Furthermore, Wu et al. (2023)
proposed a hybrid deep-learning framework that combines
classification and segmentation in a single pipeline. This
method effectively handles multiple track component types.
Building on semantic segmentation approaches, Min et al.
(2023) developed an enhanced UPerNet architecture
incorporating the Swin Transformer Tiny (Swin-T) as the
backbone for semantic segmentation of rail surface defects.
Their model achieved pixel accuracies of 91.39% and
93.35%, IoU scores of 83.69% and 87.58%, and Dice
coefficients of 91.12% and 93.38% across two datasets.
Additionally, Du et al. (2024) developed RSDNet, an
improved YOLOv8n-based model with multiscale feature
extraction and attention mechanisms, achieving a mAP of
95.4% on the RSDDs dataset. However, most existing
models are designed for single-task objectives, focusing
exclusively on detection, classification, or segmentation, and
seldom integrate multiple tasks—such as component
detection and defect segmentation—within a unified
framework. Moreover, the majority of these models rely on
large pretrained backbones, which limits their efficiency and
practicality for deployment on edge devices.

Transfer learning has become a key technique across many
fields because it allows the reuse of pretrained models for
new tasks, thereby reducing the need for large-labeled
datasets and heavy computational resources. It is particularly
valuable in domains such as Natural Language Processing
(NLP), Computer Vision (CV), and multimodal learning,
where data annotation is costly and time-consuming. By
leveraging generalized feature representations learned from
source domains, transfer learning effectively addresses data
scarcity in target domains. Moradi & Groth (2020) provide a
detailed taxonomy of transfer learning methods, emphasizing
their relevance when failure data is limited or hard to obtain.
In the context of SHM, Furlong & Reichard (2023)
introduced a hybrid approach that combines physics-based
models and data-driven learning, improving generalization
by embedding domain knowledge. Additionally, J. Han &
Kwon (2024) showed how pretrained diagnostic models can
be efficiently adapted across different power plants, even
when operational data from new sites is scarce. These studies
demonstrate transfer learning's flexibility and robustness in
real-world SHM systems, enabling intelligent diagnostics
and decision-making in uncertain environments. Beyond

these areas, recent advances have shown the effectiveness of
transfer learning in railway infrastructure inspection. This
domain faces high costs and difficulties in collecting labeled
defect data. For example, Ye et al. (2024) proposed a
framework that uses pretrained CNNs on general image
datasets and fine-tunes them on limited railway images. This
significantly improves defect detection accuracy while
reducing annotation requirements. Moreover, Zhao et al.
(2024) proposed CBAM-SwinT-BL, a Swin Transformer
enhanced with block-level attention modules trained via
transfer learning. On small-scale rail-surface defect datasets,
the model achieves an mAP@0.50 of 0.691 on the MUET
dataset and 0.881 on the RIII dataset.

Conventional transfer learning approaches typically optimize
for a single downstream task. However, in practical
applications where both the original (upstream) and new
(downstream) tasks are equally important, such a singular
focus can lead to trade-offs that compromise performance on
the upstream task.

To meet the dual demands of component detection and defect
segmentation in railway monitoring, this paper proposes
RailNet, a compact multi-task framework designed for edge
deployment. RailNet builds on a frozen pretrained backbone
for upstream component recognition. It also introduces a
dedicated segmentation module for downstream surface
defect identification. This design allows isolated learning,
preserving upstream knowledge while enabling efficient
adaptation. To improve feature representation, RailNet
integrates a Context Refinement Module (CRM) and a
Selective Channel Attention (SCA) mechanism. These
modules enhance segmentation accuracy without increasing
computational load. Furthermore, a novel Single-step
Upsample Block speeds up decoding by combining pixel
shuffle and transposed convolution. Thanks to this design,
RailNet achieves real-time, low-latency inference with high
accuracy. It offers a practical solution for resource-
constrained railway inspection environments.

The subsequent sections of this paper are organized as
follows: Section 2 will present an overview of transfer
learning and discuss the existing issue of fine-tuning-based
transfer learning. Section 3 will show the details of the
proposed RailNet. The results and experimental setup will be
shown in Section 4. And Section 5 will give the conclusion.

2. PRELIMINARIES

This section first provides an overview of transfer learning,
the topic of the present study. Subsequently, it discusses the
key challenges associated with fine-tuning-based transfer
learning, particularly in the context of real-world
deployment.



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

2.1. Transfer learning

Transfer learning is a powerful and efficient method,
particularly effective when annotated data in the target
domain is limited. Transfer learning methodologies can be
broadly categorized into two main groups: zero-shot learning
(Wang et al., 2019) and fine-tuning (Han et al., 2024).

Zero-shot learning enables pre-trained models to perform
downstream tasks without any additional training or fine-
tuning. It relies on the general knowledge acquired from
large-scale pretraining on diverse datasets to enable
inferences for unseen tasks or domains. This approach is
particularly useful when the downstream task aligns well
with the objectives and data distributions of the source task.
However, zero-shot methods often suffer from degraded
performance in the presence of significant domain shifts or
when handling heterogeneous task types. Their effectiveness
heavily depends on how well the pre-trained knowledge
generalizes to the new context. As such, while zero-shot
learning minimizes the need for labeled data, its applicability
is constrained by the semantic gap between source and target
domains.

Fine-tuning, by contrast, has emerged as the dominant
approach in transfer learning. It is particularly advantageous
when the target domain shares feature-level similarities with
the source domain but lacks sufficient labeled data. In this
method, a pre-trained model, typically trained on a large-

scale dataset, is used to initialize the model weights. The
model is then further trained on the target dataset with a
smaller learning rate, allowing it to retain general feature
representations while adapting to specific characteristics of
the new task. In practice, lower layers of the network, which
capture general features like edges and textures, are often
frozen, while higher layers are fine-tuned to learn task-
specific representations. In cases where the source and target
tasks are significantly different, the entire network may be
fine-tuned. Key factors affecting performance include the
choice of layers to fine-tune, the learning rate schedule, and
the size of the target dataset. Compared to zero-shot learning,
fine-tuning offers improved adaptability and often yields
superior performance, especially in domains such as fault
diagnosis, medical imaging, autonomous navigation, and
predictive maintenance. Nevertheless, it requires careful
hyperparameter tuning and regularization to mitigate
overfitting and avoid catastrophic forgetting, where
previously learned knowledge from the source task is
overwritten. Despite these challenges, fine-tuning remains a
cornerstone of modern transfer learning workflows. It serves
as a practical bridge between general-purpose pre-trained
models and domain-specific applications, balancing
accuracy, computational efficiency, and data requirements.

2.2. Issues with Fine-tuning Based Transfer Learning

Backbone trained for Taskl

Transfer and
Fine-tuning Weights

Backbone Fine-tuned for Task2

¥

Fine-tuning based Transfer Learning
Pipeline

i iBackbone Block

—>

Task Head

-_— @ T

Feature Flow Input & Output

Figure 1. Fine-tuning Based Transfer Learning Pipeline

Fine-tuning-based transfer learning has become a widely
used strategy for adapting pre-trained models to new tasks,
particularly in data scarce environments. The general
workflow is illustrated in Figure 1. Initially, a base model is
trained on a primary task, such as object detection, to
recognize key railway components, including clips and

spikes along the track. The trained model is then fine-tuned
on a secondary task, such as instance segmentation, to
identify and segment surface-level defects on the rail.

Despite its effectiveness, several critical challenges arise in
fine-tuning-based transfer learning. A primary concern is



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

catastrophic forgetting, wherein the model's performance on
the original task deteriorates significantly after fine-tuning
for the new task. This issue becomes more significant in
multi-task scenarios. For example, the model must
simultaneously perform object detection and instance
segmentation. In such cases, the model may struggle to learn
both tasks well at the same time, leading to suboptimal
performance on one or both tasks.

Another significant limitation is poor model efficiency in
real-time or edge-computing environments. Fine-tuned
models, especially those derived from large backbone
architectures, often require considerable computational and
memory resources. This constraint limits their deployment in
resource-constrained systems, where lightweight and

efficient architectures are desired to ensure low latency and
computation-efficient inference.

3. PROPOSED RAILNET

To address the aforementioned limitations in railway
inspection, we propose a novel lightweight architecture
named RailNet. The design integrates two key components:
a Context Rebalancing Module (CRM) to compensate spatial
bias inherited from pretrained models, and a Selective
Channel Attention (SCA) mechanism to emphasize the most
informative feature channels during decoding.

Frozen Upstream Model

Object Detection
Head (Task1)

——
\I

fmmy s

Context Rebalancing Module

4 Instance Segmentation
& Head (Task2) &

Proposed RailNet
Framework

Trainable
S . S

Task2 Flow

Frozen Part | Task Head : Task1 Flow

Figure 2. The proposed RailNet Framework

Figure 2 illustrates the proposed RailNet framework designed
for multi-task rail inspection. A frozen backbone pretrained
on Task 1 and fixed during Task 2 training is shared across
both tasks to prevent interference with the original detection
capability. Task 1's head remains unchanged, ensuring its
performance is preserved. For Task 2, features are extracted
from multiple stages of the frozen backbone. However, since
these features originate from a task-specific pretraining
process, they may not align well with the requirements of the
new task.

To address this problem, two key components are introduced:
the SCA module filters out irrelevant or less informative
channels and retains the most effective features for Task 2.
The CRM complements the frozen features by incorporating
image-level context from the original input, mitigating
potential bias introduced by the frozen backbone. Together,

SCA and CRM enhance the quality and task-specificity of the
representations used in Task 2.

Each block will be detailed in the following sections.

3.1. Frozen Upstream Model

The upstream model used in RailNet follows a YOLO-like
architecture, which is widely recognized for its efficiency and
strong multi-task capability in detection and segmentation. Its
unified design allows for fast inference and compact feature
representation, making it well-suited for real-time railroad
inspection scenarios.

Given these advantages, we adopt the YOLOv11 (Rasheed &
Zarkoosh, 2024) backbone as our frozen feature extractor.
Specifically, we use the C3k2 block proposed in YOLOv11,
an enhanced bottleneck module composed of two 3*3
convolutional layers. The C3k2 structure achieves a better
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trade-off between accuracy and speed. It enhances feature
reuse, supports efficient gradient flow, and improves
representation quality across scales, all of which are critical
for generating reliable feature maps for downstream defect
segmentation. Formally, given an input image from Task 2,
denoted as img,, € RE*W*C | the frozen backbone outputs
three feature maps at different stages:

LI TP = fop(imgez) (1)

Here, f},;, () represents the frozen backbone, and the output
fie RICWirCi | are multi-scale features extracted from
different depths. These stage-wise features are used as input
to the downstream modules (SCA and CRM) for effective
segmentation of rail surface anomalies.

3.2. Selective Channel Attention (SCA)

To identify and retain the most informative channels from the
frozen backbone, we introduce a Selective Channel Attention
(SCA) module. As shown in Figure 3, the module begins by
embedding each intermediate feature map, fi € RHi*Wi*Ci
into a vectorized format following a ViT-like (Dosovitskiy et
al., 2020) embedding strategy:

fi = ViT, (D), fi € REPAD! )

Here, B is the batch size, P} is the number of feature patches,
and D' is the embedding dimension. This embedding allows
the module to process spatial context in a patch-wise manner,
similar to ViT.

Pipeline of Proposed
. 9 Selective Channel
{@@ 0 m— c @@ @ Attention

99 @ Select Channel
\_v_/

c

Figure 3. Framework of Selective Channel Attention
Next, the embedded features are passed through our proposed
Score Attention mechanism, which determines the
importance of each channel. Specifically, we compute key
and query matrices as

KLQ' = flawk, flawe 3)
where WKi, we' g rpHD! , are learnable weights, and
K% Q' € RE*Pa*D" are the key and query matrices. To

evaluate attention at the channel level, we reshape both K*

and Q! into RB*Pr*16+16:C" \where the spatial size 16 * 16
follows the standard patch size used in ViT, allowing the
attention mechanism to reason over channel-wise
information within each spatial region. Then, global average
pooling is applied across all patches (P}) to obtain a global
view of each channel:

Ki,Ql e RE*256+C" 4)
This pooling step effectively increases the receptive field and
allows each channel to be evaluated in the context of the full
image. We then compute channel-wise attention scores using
a sigmoid activation:

S=g¢ (()il?iT) ,S € RE™C! (5)

Unlike softmax, sigmoid is used here because the goal is not
multi-class weighting but binary-like importance estimation,
i.e., whether each channel is useful or not. From the resulting
score matrix, the top C' channels with the highest aggregated
scores are selected, forming a selective score matrix SS €
RE™C,

Finally, the output feature is reconstructed by projecting the
SS matrix
fi =SS x fifi € RAUwhE! ©)

This operation ensures that only the most informative
channels are retained for downstream processing, while
irrelevant or noisy channels are suppressed. The SCA module
thus enhances the signal-to-noise ratio of the frozen features
and helps the decoder focus on the most relevant information.

3.3. Context Rebalancing Module (CRM)

The CRM is introduced to address potential misalignment
between the frozen upstream backbone and the downstream
instance segmentation task. Since the backbone is pretrained
on a different task (Task 1) and kept frozen during Task 2
training, the extracted features may not fully reflect the
semantics required for accurate defect segmentation. CRM
serves to inject task-specific spatial cues and adapt the frozen
features without modifying the upstream model.

The CRM consists of three sequential C3k2 blocks. The
Task 2 input image is first processed by the initial C3k2 block
to extract shallow visual features. These features are then
concatenated with the first-stage output (f!) from the SCA
module. The combined features f;} are passed through a
second C3k2 block, followed by another concatenation with
the second-stage SCA output f;2, yielding f;2. And then it is
passed through the third C3k2 block, which integrates the
final SCA output f;3, and generates the final output f, of
CRM.

Through this progressive fusion, CRM gradually rebalances
the frozen features with fresh, task-specific information
extracted from the original image. The final output f. of
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CRM is then fed directly into the segmentation head. Such
enriched representation improves spatial awareness and
context alignment, allowing the model to perform accurate
instance segmentation while keeping the backbone intact.

3.4. Instance Segmentation Head

For Task 2, we adopt a decoder-based instance segmentation
head to convert the refined feature map into a pixel-wise
binary mask. The decoder consists of a series of
deconvolution (Deconv) blocks that progressively upsample
the feature resolution, enabling accurate reconstruction of
spatial details.

Compared to native interpolation, the learnable Deconv
layers enhance boundary sharpness and segmentation
precision, especially in identifying fine-grained surface
defects. This head operates on the fused feature map f, from
CRM. The final segmentation output is computed as

Mask = De(f.), Mask € RH*W~1 @)

where De(*) denotes the deconvolution-based decoder that
projects the latent features into the mask space.

4. EXPERIMENTAL SETUP AND RESULTS

All training procedures were executed using PyTorch 2.1.0
on a high-performance workstation equipped with an
NVIDIA RTX A6000 GPU (10,752 CUDA cores, 48 GB
GDDR6). The batch size was fixed at 16 throughout all
experiments. During training, the loss function used was
mean squared error (MSE) with the Adam optimizer, which
directly measures the pixel-wise discrepancy between
predicted and ground truth masks. The learning rate was set
to 0.0015. For deployment evaluation, inference was
performed on an NVIDIA Jetson AGX Orin module to
simulate real-world edge scenarios, with all latency
measurements (Task1 + Task2) reported under this hardware
setting.

4.1. Dataset Collection

The dataset used in this study was collected using the Track
Component Imaging System (TCIS) ("TCIS,"” [Online].
Available: Https://www.Ensco.Com/Rail/Track-Component-
Imaging-System-Tcis., n.d.), a platform designed for rapid
railroad safety inspection. The TCIS camera was securely
mounted beneath a geometry inspection vehicle to ensure
stable and consistent image acquisition during operation. The
downward-facing camera maintained a fixed height relative
to the rail surface, allowing for uniform coverage of the track
bed and component areas. All images were captured at a
resolution of 512 x 512 pixels, providing sufficient spatial
detail for defect detection and segmentation tasks. A total of
400 images were used in the experiments, with 280 images
for training and 120 images set aside for testing, which is
sufficient in our study since transfer learning was employed,
and therefore, a large-scale dataset was not required.

4.2. Performance Metrics

To evaluate the segmentation performance of the proposed
model, several representative performance metrics are
employed, including Dice Coefficient, Pixel-wise Precision,
Pixel-wise Recall, and Inference Time. These metrics
provide a comprehensive view of the model's behavior from
both accuracy and efficiency perspectives. The Dice
Coefficient is utilized to measure the spatial agreement
between the predicted segmentation mask and the ground
truth. It is defined as

2y nyl|

Dice Coefficient = ————
Y|+ 7]

®)
where |Y n 17| represents the number of true positive pixels,
|Y] is the number of positive pixels in the ground truth, and
|17| is the number of positive pixels in the predicted mask.
This coefficient ranges from 0 to 1, where higher values
indicate a better overlap and more accurate segmentation.

To further assess classification performance at the pixel level,
Pixel-wise Precision and Pixel-wise Recall are also computed.
They are given by Eq. (9) and Eq. (10):

. TP
Precision = m (9)
Recall = —TP (10)
TP+ FN

Here, TP denotes the number of true positive pixels, FP is
the number of false positives, and FN is the number of false
negatives. Pixel-wise Precision reflects how accurate the
model's positive predictions are, while Pixel-wise Recall
evaluates its ability to capture all actual positive regions.

In addition to accuracy-related metrics, we report Inference
Time to ecvaluate the model's operational efficiency.
Specifically, the total inference time is measured as the sum
of durations for both Task 1 and Task 2 on the Jetson AGX
Orin platform. This metric reflects the model's suitability for
deployment in real-time or embedded systems where
computational resources are limited.

4.3. Result

This section presents the experimental results of the proposed
RailNet model. We first compare its performance with
several state-of-the-art (SOTA) baselines to assess its
effectiveness in rail component segmentation. An ablation
study is also conducted to analyze the individual
contributions of key modules within the RailNet architecture.

4.3.1. Comparison with SOTA

We compare RailNet against several recent segmentation
baselines, including YOLOv12-n(Tian et al., 2025),
MobileSAMv2(Zhang et al., 2023), DINOv2-S(Oquab et al.,
2023), UNet(Ronneberger et al., 2015), and SegFormer(Xie
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et al., 2021). These methods represent diverse segmentation
paradigms, ranging from lightweight real-time detectors to
large-scale transformer-based models. The performance is
measured using Dice Coefficient (DC), Precision (P), Recall
(R), and Inference Time (IT) (the IT includes both detection
and segmentation stages: Taskl + Task2), the Taskl
performances for all models is consistent (mAP@ 0.5 of
98.7%).

As shown in Table 1, RailNet achieves the highest DC (0.78),
P (66.8%), and R (92.6%), while maintaining a low inference
latency of 6.9ms. These results demonstrate RailNet's
superior ability to preserve segmentation shape integrity,
accurately localize defects, and operate efficiently in real-
time scenarios.

Table 1. Comparison Result

Model Dice Coefficient Precision Recall Inference Time
(%) (%) (ms){
RailNet (Proposed) 0.78 66.8 92.6 6.9
YOLOv12-n 0.77 66.2 90.2 7.9
MobileSAMvV2 0.73 64.3 87.2 322.6
DINOv2-S 0.69 56.8 86.2 121.9
UNet 0.61 52.7 74.3 9.4
SegFormer 0.62 57.4 76.0 11.4

Although YOLOvV12-n performs competitively in shape
preservation (DC: 0.77) and R (90.2%), its slightly lower P
(66.2%) indicates a higher false-positive rate. This
performance gap can be attributed to its backbone being
pretrained on general datasets, which lack the spatial
structures and defect patterns specific to railway imagery.

Transformer-based models such as MobileSAMv2 (DC:
0.73,P: 64.3%) and DINOv2-S (Dice: 0.69, P: 56.8%) show
further degradation in segmentation quality while incurring
significant inference overhead (322.6ms and 121.9 ms,
respectively). These models, although effective for generic
vision tasks, fail to generalize well to structural irregularities
commonly seen on rail surfaces due to their lack of domain-
specific adaptation.

Traditional encoder—decoder baselines like UNet and
SegFormer score lowest across all metrics, further
confirming the limitations of solely convolutional designs in
modeling complex rail textures and shapes.

Image } ; J
(Input); B !
Mask
(Output)
Image &
Mask

Figure 4. Result Example
Figure 4 presents the visual results of RailNet's segmentation
performance on rail surface. The first row shows input

images containing various defects on the rail surface. Some
of these defects are visually subtle and difficult to distinguish
by eye, including small scratch or corrosion spots. The
second row displays the corresponding predicted binary
masks generated by RailNet. Yellow regions indicate the
model's prediction of defect areas. The results show that
RailNet is highly sensitive to defects and capable of detecting
even very faint or narrow patterns. The third row overlays the
predicted masks onto the input images, providing a more
intuitive visualization of the model's detection effectiveness.
This composite view highlights RailNet's ability to localize
surface anomalies while maintaining alignment with the rail
geometry.

4.3.2. Ablation Study

To better understand the contribution of each core component
in RailNet, we conduct an ablation study by selectively
disabling the SCA and CRM. Table 2 reports the performance
under four different conditions.

When both SCA and CRM are active, RailNet achieves the
best results, with a DC of 0.78, P of 66.8%, and R of 92.6%.
Removing CRM leads to a noticeable drop in accuracy, i.e.,
DC of 0.64, as the model can no longer rebalance frozen
features with spatial bias. In this case, the SCA module must
merge upstream features through simple interpolation, which
limits its effectiveness. Eliminating SCA results in significant
performance degradation, since the model receives no
explicit guidance from upstream model. Without SCA, the
frozen Task 1 backbone cannot meaningfully transfer useful
knowledge to Task 2.
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When both modules are removed, the model degenerates into
a standalone segmentation head trained from scratch,
yielding the weakest results (DC of 0.58 and P of 50.4%).
This confirms that the feature refinement and task transfer
enabled by CRM and SCA are both essential for accurate and
robust rail defect segmentation.

Table 2. Ablation Study

mponent Di ..
n o Ol P
v v 0.78 66.8 92.6
v X 0.64 59.2 86.3
X v 0.75 63.9 89.7
X X 0.58 50.4 74.8

5. CONCLUSION

This work presents RailNet, a lightweight and modular
framework for real-time rail component detection and defect
segmentation on edge devices. By combining a frozen
detection backbone with a compact segmentation head
incorporating CRM and SCA, RailNet achieves accurate
multi-task performance with minimal computational
overhead. Experimental results on an edge-computing
platform demonstrate high accuracy and low-latency
inference, validating the model's suitability for on-device
railway inspection. Future work will focus on improving
robustness under varying operational conditions, extending
to additional railway detection tasks.
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