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ABSTRACT 

Rapid railroad inspection is vital to ensuring operational 
safety, yet conventional methods remain inefficient and 
inadequate in scope. This paper introduces RailNet, a 
lightweight, modular transfer learning framework for real-
time rail component detection and rail surface defect 
segmentation on edge devices. RailNet couples a frozen pre-
trained detection backbone with a trainable segmentation 
head featuring two key innovative components: a Context 
Rebalancing Module (CRM) to mitigate pretrained bias, and 
Selective Channel Attention (SCA) to help select the relevant 
features. With only a 5 MB trainable component (0.96 
GFLOPs), RailNet achieves 93.2% pixel accuracy and 92.6% 
recall for defect segmentation, while preserving high 
detection performance (mAP@0.5 of 98.7%). Evaluated on 
Nvidia's AGX Orin, RailNet outperforms benchmarks such 
as YOLOv12-n and MobileSAMv2 in both accuracy and 
inference speed. These results underscore RailNet's potential 
as an accurate, real-time, and energy-efficient solution for 
multi-task railway inspection. 

1. INTRODUCTION 

According to the Federal Railroad Administration (FRA) 
safety database, over 400 accidents in 2024 were caused by 
missing track components. These incidents resulted in losses 
exceeding $120 million. Therefore, rigorous inspection 
protocols are essential for detecting flaws in railroad 
infrastructure and ensuring the safe operation of trains. 
However, current inspection methods mainly rely on manual 
procedures, which depend heavily on the expertise of 

operators. These methods tend to be costly, time-consuming, 
and prone to human error. As a result, there is a critical need 
for an automated, real-time, and cost-effective computer 
vision-based system capable of performing accurate rail track 
inspections. 

Recent advances in deep learning have highlighted the 
potential of large-scale multi-task frameworks and general-
purpose vision models. Advanced architectures such as GPT-
4o (Hurst et al., 2024), CLIP (Radford et al., 2021), and 
SAMv2 (Ravi et al., 2024) have demonstrated strong transfer 
learning abilities across diverse domains. This success 
largely arises from extensive pretraining on large and varied 
datasets. Such pretraining enables these models to generalize 
well with limited task-specific annotations. Despite their 
accuracy and versatility, these models require significant 
computational resources, making deployment in edge-based 
industrial environments challenging. In real-time railway 
infrastructure monitoring, where resource efficiency is 
crucial, it becomes a major obstacle. 

Deep learning methods have also gained increasing attention 
in anomaly detection and structural health monitoring (SHM). 
For example, Song et al. (2023) proposed a semi-supervised 
GAN-based framework for auditing energy-consumption 
anomalies in robotic manipulators. Their model achieved 93% 
instant-wise detection accuracy by monitoring side-channel 
signals. Although this shows the potential of GANs under 
low-data conditions, the approach targets a specific industrial 
task and cannot be directly applied to visual rail inspection. 
In the specific domain of railway infrastructure monitoring, 
lightweight CNN and hybrid models have shown promising 
results. Ferdousi et al. (2024) proposed an ensemble CNN 
that combines MobileNetV3 (Howard et al., 2019), VGG-19 
(Simonyan & Zisserman, 2014), and ResNet-50 (He et al., 
2016) to improve robustness when data is limited. Guo et al. 
(2023) introduced a lightweight teacher–student model based 
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on NanoDet, using an adaptively weighted loss function. 
Their model has a size under 2 MB, requires only 1.52 
GFLOPs, and runs inference in less than 14 ms. This model 
achieves an overall mAP@0.5 of 98.7% on component 
detection tasks. Similarly, Li et al. (2024) implemented CNN 
on an FPGA-based edge platform. It achieved 88.9% 
accuracy in real-time rail defect detection. Bai et al. (2024) 
further advanced visual inspection with a CNN–Transformer 
hybrid network. Their model performs pixel-wise 
segmentation of rail surface defects, achieving precision and 
recall between 84–87%, and mean intersection-over-union 
(mIoU) between 77–87%. Furthermore, Wu et al. (2023) 
proposed a hybrid deep-learning framework that combines 
classification and segmentation in a single pipeline. This 
method effectively handles multiple track component types. 
Building on semantic segmentation approaches, Min et al. 
(2023) developed an enhanced UPerNet architecture 
incorporating the Swin Transformer Tiny (Swin-T) as the 
backbone for semantic segmentation of rail surface defects. 
Their model achieved pixel accuracies of 91.39% and 
93.35%, IoU scores of 83.69% and 87.58%, and Dice 
coefficients of 91.12% and 93.38% across two datasets. 
Additionally, Du et al. (2024) developed RSDNet, an 
improved YOLOv8n-based model with multiscale feature 
extraction and attention mechanisms, achieving a mAP of 
95.4% on the RSDDs dataset. However, most existing 
models are designed for single-task objectives, focusing 
exclusively on detection, classification, or segmentation, and 
seldom integrate multiple tasks—such as component 
detection and defect segmentation—within a unified 
framework. Moreover, the majority of these models rely on 
large pretrained backbones, which limits their efficiency and 
practicality for deployment on edge devices. 

Transfer learning has become a key technique across many 
fields because it allows the reuse of pretrained models for 
new tasks, thereby reducing the need for large-labeled 
datasets and heavy computational resources. It is particularly 
valuable in domains such as Natural Language Processing 
(NLP), Computer Vision (CV), and multimodal learning, 
where data annotation is costly and time-consuming. By 
leveraging generalized feature representations learned from 
source domains, transfer learning effectively addresses data 
scarcity in target domains. Moradi & Groth (2020) provide a 
detailed taxonomy of transfer learning methods, emphasizing 
their relevance when failure data is limited or hard to obtain. 
In the context of SHM, Furlong & Reichard (2023) 
introduced a hybrid approach that combines physics-based 
models and data-driven learning, improving generalization 
by embedding domain knowledge. Additionally, J. Han & 
Kwon (2024) showed how pretrained diagnostic models can 
be efficiently adapted across different power plants, even 
when operational data from new sites is scarce. These studies 
demonstrate transfer learning's flexibility and robustness in 
real-world SHM systems, enabling intelligent diagnostics 
and decision-making in uncertain environments. Beyond 

these areas, recent advances have shown the effectiveness of 
transfer learning in railway infrastructure inspection. This 
domain faces high costs and difficulties in collecting labeled 
defect data. For example,  Ye et al. (2024) proposed a 
framework that uses pretrained CNNs on general image 
datasets and fine-tunes them on limited railway images. This 
significantly improves defect detection accuracy while 
reducing annotation requirements. Moreover, Zhao et al. 
(2024) proposed CBAM-SwinT-BL, a Swin Transformer 
enhanced with block-level attention modules trained via 
transfer learning. On small-scale rail-surface defect datasets, 
the model achieves an mAP@0.50 of 0.691 on the MUET 
dataset and 0.881 on the RIII dataset.  

Conventional transfer learning approaches typically optimize 
for a single downstream task. However, in practical 
applications where both the original (upstream) and new 
(downstream) tasks are equally important, such a singular 
focus can lead to trade-offs that compromise performance on 
the upstream task. 

To meet the dual demands of component detection and defect 
segmentation in railway monitoring, this paper proposes 
RailNet, a compact multi-task framework designed for edge 
deployment. RailNet builds on a frozen pretrained backbone 
for upstream component recognition. It also introduces a 
dedicated segmentation module for downstream surface 
defect identification. This design allows isolated learning, 
preserving upstream knowledge while enabling efficient 
adaptation. To improve feature representation, RailNet 
integrates a Context Refinement Module (CRM) and a 
Selective Channel Attention (SCA) mechanism. These 
modules enhance segmentation accuracy without increasing 
computational load. Furthermore, a novel Single-step 
Upsample Block speeds up decoding by combining pixel 
shuffle and transposed convolution. Thanks to this design, 
RailNet achieves real-time, low-latency inference with high 
accuracy. It offers a practical solution for resource-
constrained railway inspection environments. 

The subsequent sections of this paper are organized as 
follows: Section 2 will present an overview of transfer 
learning and discuss the existing issue of fine-tuning-based 
transfer learning. Section 3 will show the details of the 
proposed RailNet. The results and experimental setup will be 
shown in Section 4. And Section 5 will give the conclusion. 

2. PRELIMINARIES 

This section first provides an overview of transfer learning, 
the topic of the present study. Subsequently, it discusses the 
key challenges associated with fine-tuning-based transfer 
learning, particularly in the context of real-world 
deployment. 
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2.1. Transfer learning 

Transfer learning is a powerful and efficient method, 
particularly effective when annotated data in the target 
domain is limited. Transfer learning methodologies can be 
broadly categorized into two main groups: zero-shot learning 
(Wang et al., 2019) and fine-tuning (Han et al., 2024). 

Zero-shot learning enables pre-trained models to perform 
downstream tasks without any additional training or fine-
tuning. It relies on the general knowledge acquired from 
large-scale pretraining on diverse datasets to enable 
inferences for unseen tasks or domains. This approach is 
particularly useful when the downstream task aligns well 
with the objectives and data distributions of the source task. 
However, zero-shot methods often suffer from degraded 
performance in the presence of significant domain shifts or 
when handling heterogeneous task types. Their effectiveness 
heavily depends on how well the pre-trained knowledge 
generalizes to the new context. As such, while zero-shot 
learning minimizes the need for labeled data, its applicability 
is constrained by the semantic gap between source and target 
domains. 

Fine-tuning, by contrast, has emerged as the dominant 
approach in transfer learning. It is particularly advantageous 
when the target domain shares feature-level similarities with 
the source domain but lacks sufficient labeled data. In this 
method, a pre-trained model, typically trained on a large-

scale dataset, is used to initialize the model weights. The 
model is then further trained on the target dataset with a 
smaller learning rate, allowing it to retain general feature 
representations while adapting to specific characteristics of 
the new task. In practice, lower layers of the network, which 
capture general features like edges and textures, are often 
frozen, while higher layers are fine-tuned to learn task-
specific representations. In cases where the source and target 
tasks are significantly different, the entire network may be 
fine-tuned. Key factors affecting performance include the 
choice of layers to fine-tune, the learning rate schedule, and 
the size of the target dataset. Compared to zero-shot learning, 
fine-tuning offers improved adaptability and often yields 
superior performance, especially in domains such as fault 
diagnosis, medical imaging, autonomous navigation, and 
predictive maintenance. Nevertheless, it requires careful 
hyperparameter tuning and regularization to mitigate 
overfitting and avoid catastrophic forgetting, where 
previously learned knowledge from the source task is 
overwritten. Despite these challenges, fine-tuning remains a 
cornerstone of modern transfer learning workflows. It serves 
as a practical bridge between general-purpose pre-trained 
models and domain-specific applications, balancing 
accuracy, computational efficiency, and data requirements. 

2.2. Issues with Fine-tuning Based Transfer Learning 

 

 

 
Figure 1. Fine-tuning Based Transfer Learning Pipeline 

 

Fine-tuning-based transfer learning has become a widely 
used strategy for adapting pre-trained models to new tasks, 
particularly in data scarce environments. The general 
workflow is illustrated in Figure 1. Initially, a base model is 
trained on a primary task, such as object detection, to 
recognize key railway components, including clips and 

spikes along the track. The trained model is then fine-tuned 
on a secondary task, such as instance segmentation, to 
identify and segment surface-level defects on the rail. 

Despite its effectiveness, several critical challenges arise in 
fine-tuning-based transfer learning. A primary concern is 
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catastrophic forgetting, wherein the model's performance on 
the original task deteriorates significantly after fine-tuning 
for the new task. This issue becomes more significant in 
multi-task scenarios. For example, the model must 
simultaneously perform object detection and instance 
segmentation. In such cases, the model may struggle to learn 
both tasks well at the same time, leading to suboptimal 
performance on one or both tasks. 

Another significant limitation is poor model efficiency in 
real-time or edge-computing environments. Fine-tuned 
models, especially those derived from large backbone 
architectures, often require considerable computational and 
memory resources. This constraint limits their deployment in 
resource-constrained systems, where lightweight and 

efficient architectures are desired to ensure low latency and 
computation-efficient inference. 

3. PROPOSED RAILNET 

To address the aforementioned limitations in railway 
inspection, we propose a novel lightweight architecture 
named RailNet. The design integrates two key components: 
a Context Rebalancing Module (CRM) to compensate spatial 
bias inherited from pretrained models, and a Selective 
Channel Attention (SCA) mechanism to emphasize the most 
informative feature channels during decoding.  

 

 
Figure 2. The proposed RailNet Framework 

 

Figure 2 illustrates the proposed RailNet framework designed 
for multi-task rail inspection. A frozen backbone pretrained 
on Task 1 and fixed during Task 2 training is shared across 
both tasks to prevent interference with the original detection 
capability. Task 1's head remains unchanged, ensuring its 
performance is preserved. For Task 2, features are extracted 
from multiple stages of the frozen backbone. However, since 
these features originate from a task-specific pretraining 
process, they may not align well with the requirements of the 
new task. 

To address this problem, two key components are introduced: 
the SCA module filters out irrelevant or less informative 
channels and retains the most effective features for Task 2. 
The CRM complements the frozen features by incorporating 
image-level context from the original input, mitigating 
potential bias introduced by the frozen backbone. Together, 

SCA and CRM enhance the quality and task-specificity of the 
representations used in Task 2. 

Each block will be detailed in the following sections. 

3.1. Frozen Upstream Model 

The upstream model used in RailNet follows a YOLO-like 
architecture, which is widely recognized for its efficiency and 
strong multi-task capability in detection and segmentation. Its 
unified design allows for fast inference and compact feature 
representation, making it well-suited for real-time railroad 
inspection scenarios. 

Given these advantages, we adopt the YOLOv11 (Rasheed & 
Zarkoosh, 2024) backbone as our frozen feature extractor. 
Specifically, we use the C3k2 block proposed in YOLOv11, 
an enhanced bottleneck module composed of two 3*3 
convolutional layers. The C3k2 structure achieves a better 
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trade-off between accuracy and speed. It enhances feature 
reuse, supports efficient gradient flow, and improves 
representation quality across scales, all of which are critical 
for generating reliable feature maps for downstream defect 
segmentation. Formally, given an input image from Task 2, 
denoted as 𝑖𝑚𝑔!" ∈ ℝ#∗%∗& , the frozen backbone outputs 
three feature maps at different stages:  

𝑓', 𝑓", 𝑓( = 𝑓))(𝑖𝑚𝑔!") (1) 

Here, 𝑓))(∙) represents the frozen backbone, and the output 
𝑓* ∈ ℝ#!∗%!∗&! , are multi-scale features extracted from 
different depths. These stage-wise features are used as input 
to the downstream modules (SCA and CRM) for effective 
segmentation of rail surface anomalies. 

3.2. Selective Channel Attention (SCA) 

To identify and retain the most informative channels from the 
frozen backbone, we introduce a Selective Channel Attention 
(SCA) module. As shown in Figure 3, the module begins by 
embedding each intermediate feature map, 𝑓* ∈ ℝ#!∗%!∗&! 
into a vectorized format following a ViT-like (Dosovitskiy et 
al., 2020) embedding strategy: 

𝑓+* = 𝑉𝑖𝑇+,(𝑓*), 	𝑓+* ∈ ℝ-∗."! ∗/! (2) 

Here, 𝐵 is the batch size, 𝑃0* is the number of feature patches, 
and 𝐷* is the embedding dimension. This embedding allows 
the module to process spatial context in a patch-wise manner, 
similar to ViT. 

 
Figure 3. Framework of Selective Channel Attention 

Next, the embedded features are passed through our proposed 
Score Attention mechanism, which determines the 
importance of each channel. Specifically, we compute key 
and query matrices as 

𝐾* , 𝑄* = 𝑓+* ∗ 𝑊1! , 𝑓+* ∗ 𝑊2! (3) 

where 𝑊1! , 	𝑊2! ∈ ℝ/!∗/! , are learnable weights, and 
𝐾* , 𝑄* ∈ ℝ-∗."! ∗/!  are the key and query matrices. To 
evaluate attention at the channel level, we reshape both 𝐾* 

and 𝑄*  into ℝ-∗."! ∗'3∗'3∗&! , where the spatial size 16 ∗ 16 
follows the standard patch size used in ViT, allowing the 
attention mechanism to reason over channel-wise 
information within each spatial region. Then, global average 
pooling is applied across all patches (𝑃0*) to obtain a global 
view of each channel: 

𝐾8* , 𝑄9 * ∈ ℝ-∗"43∗&! (4) 

This pooling step effectively increases the receptive field and 
allows each channel to be evaluated in the context of the full 
image. We then compute channel-wise attention scores using 
a sigmoid activation: 

𝑆 = 𝜎 <𝑄9*𝐾8*5= , 𝑆 ∈ ℝ&!∗&! 	 (5) 

Unlike softmax, sigmoid is used here because the goal is not 
multi-class weighting but binary-like importance estimation, 
i.e., whether each channel is useful or not. From the resulting 
score matrix, the top 𝐶?* channels with the highest aggregated 
scores are selected, forming a selective score matrix 𝑆𝑆 ∈
ℝ&!∗&6!. 

Finally, the output feature is reconstructed by projecting the 
𝑆𝑆 matrix 

𝑓7* = 𝑆𝑆 ∗ 𝑓* , 𝑓7* ∈ ℝ8!∗9!∗&6! 	 (6) 

This operation ensures that only the most informative 
channels are retained for downstream processing, while 
irrelevant or noisy channels are suppressed. The SCA module 
thus enhances the signal-to-noise ratio of the frozen features 
and helps the decoder focus on the most relevant information. 

3.3. Context Rebalancing Module (CRM) 

The CRM is introduced to address potential misalignment 
between the frozen upstream backbone and the downstream 
instance segmentation task. Since the backbone is pretrained 
on a different task (Task 1) and kept frozen during Task 2 
training, the extracted features may not fully reflect the 
semantics required for accurate defect segmentation. CRM 
serves to inject task-specific spatial cues and adapt the frozen 
features without modifying the upstream model. 

The CRM consists of three sequential C3k2 blocks. The 
Task 2 input image is first processed by the initial C3k2 block 
to extract shallow visual features. These features are then 
concatenated with the first-stage output (𝑓7') from the SCA 
module. The combined features 𝑓:'  are passed through a 
second C3k2 block, followed by another concatenation with 
the second-stage SCA output 𝑓7", yielding 𝑓:". And then it is 
passed through the third C3k2 block, which integrates the 
final SCA output 𝑓7( , and generates the final output 𝑓:  of 
CRM. 

Through this progressive fusion, CRM gradually rebalances 
the frozen features with fresh, task-specific information 
extracted from the original image. The final output 𝑓:  of 
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CRM is then fed directly into the segmentation head. Such 
enriched representation improves spatial awareness and 
context alignment, allowing the model to perform accurate 
instance segmentation while keeping the backbone intact. 

3.4. Instance Segmentation Head 

For Task 2, we adopt a decoder-based instance segmentation 
head to convert the refined feature map into a pixel-wise 
binary mask. The decoder consists of a series of 
deconvolution (Deconv) blocks that progressively upsample 
the feature resolution, enabling accurate reconstruction of 
spatial details. 

Compared to native interpolation, the learnable Deconv 
layers enhance boundary sharpness and segmentation 
precision, especially in identifying fine-grained surface 
defects. This head operates on the fused feature map 𝑓: from 
CRM. The final segmentation output is computed as 

𝑀𝑎𝑠𝑘 = 𝐷𝑒(𝑓:),𝑀𝑎𝑠𝑘 ∈ ℝ#∗%∗'	 (7) 

where 𝐷𝑒(∙) denotes the deconvolution-based decoder that 
projects the latent features into the mask space. 

4. EXPERIMENTAL SETUP AND RESULTS 

All training procedures were executed using PyTorch 2.1.0 
on a high-performance workstation equipped with an 
NVIDIA RTX A6000 GPU (10,752 CUDA cores, 48 GB 
GDDR6). The batch size was fixed at 16 throughout all 
experiments. During training, the loss function used was 
mean squared error (MSE) with the Adam optimizer, which 
directly measures the pixel-wise discrepancy between 
predicted and ground truth masks. The learning rate was set 
to 0.0015. For deployment evaluation, inference was 
performed on an NVIDIA Jetson AGX Orin module to 
simulate real-world edge scenarios, with all latency 
measurements (Task1 + Task2) reported under this hardware 
setting. 

4.1. Dataset Collection  

The dataset used in this study was collected using the Track 
Component Imaging System (TCIS)  ("TCIS," [Online]. 
Available: Https://www.Ensco.Com/Rail/Track-Component-
Imaging-System-Tcis., n.d.), a platform designed for rapid 
railroad safety inspection. The TCIS camera was securely 
mounted beneath a geometry inspection vehicle to ensure 
stable and consistent image acquisition during operation. The 
downward-facing camera maintained a fixed height relative 
to the rail surface, allowing for uniform coverage of the track 
bed and component areas. All images were captured at a 
resolution of 512 × 512 pixels, providing sufficient spatial 
detail for defect detection and segmentation tasks. A total of 
400 images were used in the experiments, with 280 images 
for training and 120 images set aside for testing, which is 
sufficient in our study since transfer learning was employed, 
and therefore, a large-scale dataset was not required. 

4.2. Performance Metrics 

To evaluate the segmentation performance of the proposed 
model, several representative performance metrics are 
employed, including Dice Coefficient, Pixel-wise Precision, 
Pixel-wise Recall, and Inference Time. These metrics 
provide a comprehensive view of the model's behavior from 
both accuracy and efficiency perspectives. The Dice 
Coefficient is utilized to measure the spatial agreement 
between the predicted segmentation mask and the ground 
truth. It is defined as  

𝐷𝑖𝑐𝑒	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 	
2J𝑌 ∩ 𝑌MJ
|𝑌| + J𝑌MJ

		 (8) 

where J𝑌 ∩ 𝑌MJ represents the number of true positive pixels, 
|𝑌| is the number of positive pixels in the ground truth, and 
J𝑌MJ is the number of positive pixels in the predicted mask. 
This coefficient ranges from 0 to 1, where higher values 
indicate a better overlap and more accurate segmentation. 

To further assess classification performance at the pixel level, 
Pixel-wise Precision and Pixel-wise Recall are also computed. 
They are given by Eq. (9) and Eq. (10):  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃	
(9) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	
(10) 

Here, 𝑇𝑃 denotes the number of true positive pixels, 𝐹𝑃 is 
the number of false positives, and 𝐹𝑁 is the number of false 
negatives. Pixel-wise Precision reflects how accurate the 
model's positive predictions are, while Pixel-wise Recall 
evaluates its ability to capture all actual positive regions. 

In addition to accuracy-related metrics, we report Inference 
Time to evaluate the model's operational efficiency. 
Specifically, the total inference time is measured as the sum 
of durations for both Task 1 and Task 2 on the Jetson AGX 
Orin platform. This metric reflects the model's suitability for 
deployment in real-time or embedded systems where 
computational resources are limited. 

4.3. Result 

This section presents the experimental results of the proposed 
RailNet model. We first compare its performance with 
several state-of-the-art (SOTA) baselines to assess its 
effectiveness in rail component segmentation. An ablation 
study is also conducted to analyze the individual 
contributions of key modules within the RailNet architecture. 

4.3.1. Comparison with SOTA 

We compare RailNet against several recent segmentation 
baselines, including YOLOv12-n(Tian et al., 2025), 
MobileSAMv2(Zhang et al., 2023), DINOv2-S(Oquab et al., 
2023), UNet(Ronneberger et al., 2015), and SegFormer(Xie 
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et al., 2021). These methods represent diverse segmentation 
paradigms, ranging from lightweight real-time detectors to 
large-scale transformer-based models. The performance is 
measured using Dice Coefficient (DC), Precision (P), Recall 
(R), and Inference Time (IT) (the IT includes both detection 
and segmentation stages: Task1 + Task2), the Task1 
performances for all models is consistent (mAP@ 0.5 of 
98.7%).  

As shown in Table 1, RailNet achieves the highest DC (0.78), 
P (66.8%), and R (92.6%), while maintaining a low inference 
latency of 6.9 ms. These results demonstrate RailNet's 
superior ability to preserve segmentation shape integrity, 
accurately localize defects, and operate efficiently in real-
time scenarios. 

Table 1. Comparison Result 

Model Dice Coefficient 
Precision 

(%)↑ 

Recall 

(%)↑ 

Inference Time 

(ms)↓ 

RailNet (Proposed) 0.78 66.8 92.6 6.9 

YOLOv12-n 0.77 66.2 90.2 7.9 

MobileSAMv2 0.73 64.3 87.2 322.6 

DINOv2-S 0.69 56.8 86.2 121.9 

UNet 0.61 52.7 74.3 9.4 

SegFormer 0.62 57.4 76.0 11.4 

 

Although YOLOv12-n performs competitively in shape 
preservation (DC: 0.77) and R (90.2%), its slightly lower P 
(66.2%) indicates a higher false-positive rate. This 
performance gap can be attributed to its backbone being 
pretrained on general datasets, which lack the spatial 
structures and defect patterns specific to railway imagery. 

Transformer-based models such as MobileSAMv2 (DC: 
0.73,P: 64.3%) and DINOv2-S (Dice: 0.69, P: 56.8%) show 
further degradation in segmentation quality while incurring 
significant inference overhead (322.6 ms and 121.9 ms, 
respectively). These models, although effective for generic 
vision tasks, fail to generalize well to structural irregularities 
commonly seen on rail surfaces due to their lack of domain-
specific adaptation. 

Traditional encoder–decoder baselines like UNet and 
SegFormer score lowest across all metrics, further 
confirming the limitations of solely convolutional designs in 
modeling complex rail textures and shapes. 

 
Figure 4. Result Example 

Figure 4 presents the visual results of RailNet's segmentation 
performance on rail surface. The first row shows input 

images containing various defects on the rail surface. Some 
of these defects are visually subtle and difficult to distinguish 
by eye, including small scratch or corrosion spots. The 
second row displays the corresponding predicted binary 
masks generated by RailNet. Yellow regions indicate the 
model's prediction of defect areas. The results show that 
RailNet is highly sensitive to defects and capable of detecting 
even very faint or narrow patterns. The third row overlays the 
predicted masks onto the input images, providing a more 
intuitive visualization of the model's detection effectiveness. 
This composite view highlights RailNet's ability to localize 
surface anomalies while maintaining alignment with the rail 
geometry. 

4.3.2. Ablation Study 

To better understand the contribution of each core component 
in RailNet, we conduct an ablation study by selectively 
disabling the SCA and CRM. Table 2 reports the performance 
under four different conditions. 

When both SCA and CRM are active, RailNet achieves the 
best results, with a DC of 0.78, P of 66.8%, and R of 92.6%. 
Removing CRM leads to a noticeable drop in accuracy, i.e., 
DC of 0.64, as the model can no longer rebalance frozen 
features with spatial bias. In this case, the SCA module must 
merge upstream features through simple interpolation, which 
limits its effectiveness. Eliminating SCA results in significant 
performance degradation, since the model receives no 
explicit guidance from upstream model. Without SCA, the 
frozen Task 1 backbone cannot meaningfully transfer useful 
knowledge to Task 2. 
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When both modules are removed, the model degenerates into 
a standalone segmentation head trained from scratch, 
yielding the weakest results (DC of 0.58 and P of 50.4%). 
This confirms that the feature refinement and task transfer 
enabled by CRM and SCA are both essential for accurate and 
robust rail defect segmentation. 

Table 2. Ablation Study 
Component Dice 

Coefficient 
(%)↑ 

Precision 
(%)↑ 

Recall 
(%)↑ SCA CRM 

✓ ✓ 0.78 66.8 92.6 

✓ ✗ 0.64 59.2 86.3 

✗ ✓ 0.75 63.9 89.7 

✗ ✗ 0.58 50.4 74.8 

5. CONCLUSION 

This work presents RailNet, a lightweight and modular 
framework for real-time rail component detection and defect 
segmentation on edge devices. By combining a frozen 
detection backbone with a compact segmentation head 
incorporating CRM and SCA, RailNet achieves accurate 
multi-task performance with minimal computational 
overhead. Experimental results on an edge-computing 
platform demonstrate high accuracy and low-latency 
inference, validating the model's suitability for on-device 
railway inspection. Future work will focus on improving 
robustness under varying operational conditions, extending 
to additional railway detection tasks. 
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