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ABSTRACT 

Lamb wave-based Structural Health Monitoring (SHM) is a 
promising technique for detecting defects in materials and 
structures. However, traditional methods often rely on 
computationally intensive signal processing and struggle to 
detect subtle anomalies wave patterns. In this work, we 
propose a novel transformer-based framework, called Dual-
Contrastive-Attention Transformer (DCAT), for 
unsupervised anomaly detection in Lamb wave data. DCAT 
uses two attention branches during training: a Global-Context 
Attention (GCA) branch that captures long-range patterns, 
and a Local-Context Attention (LCA) branch that serves as a 
constraint. A contrastive loss is used to prevent the global 
branch from over-learning local features, encouraging it to 
focus on the overall structure. Both branches are trained to 
reconstruct the input, using a structural similarity (SSIM) loss 
that better reflects waveform patterns than traditional mean 
squared error. After training, only the global branch is 
retained for inference. Anomalies are detected by comparing 
the input and reconstructed output. Since the global branch 
cannot easily reproduce local defects, it produces a higher 
SSIM loss when anomalies are present. We test our model on 
a Lamb wave dataset with multiple types of defects. DCAT 
achieves 97.8% accuracy and a precision of 98.6%, 
outperforming other SOTA baselines. These results show that 
DCAT is well-suited for accurate Lamb wave-based SHM 
without the need for labeled data. 

1. INTRODUCTION 

The SHM plays a crucial role in ensuring the safety and 
longevity of aerospace and civil infrastructures by enabling 
early detection of structural defects. Among various 
nondestructive evaluation (NDE) techniques, ultrasonic 
guided waves, particularly Lamb waves, are widely used due 
to their ability to propagate over long distances and 
sensitivity to both surface and internal defects (Zhao et al., 
2011). Lamb waves propagate within structural boundaries 
and are particularly responsive to thickness discontinuities, 
allowing efficient inspection of large-scale structures 
(Alleyne & Cawley, 1992). When interacting with defects, 
Lamb waves generate unique spatiotemporal patterns that 
serve as "wave fingerprints" for identifying the presence and 
characteristics of damage (Giurgiutiu, 2005). Recent studies 
have applied Lamb wave methods in practical SHM systems, 
particularly within the PHM Society community. For 
example, Cantero-Chinchilla et al. (2018) developed a highly 
efficient Lamb wave–based damage indicator for plate-like 
structures, relying on baseline comparisons and cumulative 
damage factors to detect and track delamination. 
Additionally, Mishra et al. (2015) proposed a multivariate 
cumulative sum (CUSUM) technique for Lamb-wave sensor 
data, enabling online detection of damage progression in 
composite structures. These efforts highlight the increasing 
viability of Lamb wave–based SHM for practical engineering 
applications. A typical Lamb wave inspection system 
comprises an actuator and a receiver; damage is inferred by 
comparing received signals to defect-free baselines. To 
automate this comparison, machine learning techniques have 
increasingly been employed. 

Convolutional Neural Networks (CNNs) have proven highly 
effective for extracting spatial features from wave images, 
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improving SHM and NDT capabilities. Recent work has 
improved CNNs further by incorporating wavelet transforms 
and attention mechanisms (Zhao, 2022). For instance, the 
Wavelet-Attention CNN (WA-CNN) applies Discrete 
Wavelet Transform (DWT) to decompose feature maps into 
low- and high-frequency components, then directs attention 
mechanisms to the high-frequency parts to enhance detail 
sensitivity while maintaining low-frequency structure. This 
technique has improved classification performance on 
benchmark datasets such as CIFAR-10 and CIFAR-100. 
Similarly, the Multi-level Wavelet CNN (MWCNN) uses 
wavelet decomposition within a U-Net structure (Liu et al., 
2018), effectively balancing receptive field size and 
computational complexity in image restoration tasks like 
denoising and super-resolution. In other domains, WaDeNet 
directly integrates wavelet decomposition into CNNs for 
speech signal analysis, capturing both temporal and spectral 
patterns and improving non-invasive emotion recognition 
(Suresh & Ragav, 2020).  

Recurrent Neural Networks (RNNs), including Gated 
Recurrent Units (GRUs) and Long Short-Term Memory 
(LSTM) networks, have also been successfully applied to 
Lamb wave–based SHM because of their ability to model 
temporal dynamics. These models are adept at capturing 
complex wave propagation effects, which are critical for 
detecting time-dependent anomalies. For example, Azad et 
al. (2024) developed an LSTM-based model for localizing 
and quantifying damage severity in composite structures 
using Lamb wave data, demonstrating high accuracy across 
various operational conditions. Likewise, Zhang et al. (2020) 
reported that GRU models outperformed traditional 
techniques in identifying subtle damage signatures, 
confirming the robustness of RNNs for modeling dispersive 
waveforms.  

More recently, Transformer architectures have been adopted 
in SHM due to their superior global feature modeling 
capabilities. Self-attention mechanisms in Transformers 
effectively capture long-range dependencies in time-series 
data, which traditional RNNs may miss. Ding et al. (2022) 
proposed a time-frequency Transformer architecture that 
achieved significant accuracy improvements in rolling 
bearing fault diagnosis. However, most Transformer-based 
models require large amounts of labeled anomaly data for 
training, limiting their application in real-world SHM 
scenarios where defect data is scarce. To address this, Wang 
et al. (2023) introduced the Defect Transformer (DefT), 
which combines CNNs and Transformers to detect surface 
defects in complex environments more efficiently. Despite 
these advances, reducing reliance on labeled data remains a 
major challenge. 

Unsupervised learning, especially with autoencoders (AEs), 
provides a promising solution to this issue. AEs are typically 
trained on normal Lamb wave data and used to reconstruct 
those signals. Anomalies manifest as reconstruction errors 

when the model fails to recreate signals that deviate from the 
learned normal patterns. For instance, Rizvi et al. (2024) 
proposed a Bi-LSTM autoencoder augmented with Maximal 
Overlap Discrete Wavelet Transform (MODWT) to improve 
detection and localization of structural anomalies in 
composites. Similarly, Lee et al. (2022) used a deep 
autoencoder to automatically classify fatigue damage in 
composite materials via Lamb wave inputs. These studies 
demonstrate that integrating components such as LSTM and 
wavelet transforms into AEs architectures can significantly 
enhance anomaly discrimination. 

Despite these advances, existing AEs models for Lamb wave 
anomaly detection often struggle to detect subtle or 
structurally similar defects. These models typically rely on 
reconstruction loss, which only becomes significant when the 
anomaly deviates clearly from normal patterns, a condition 
not always met in practice. Moreover, they are often overfit 
to local features and underutilize global information, 
allowing even anomalous signals to be reconstructed 
accurately and thus reducing detection effectiveness.  

To address these limitations, this study proposes a self-
supervised framework named Dual-Contrastive-Attention 
Transformer (DCAT). The model integrates Global-Context 
Attention (GCA) and Local-Context Attention (LCA) 
mechanisms and introduces a contrastive learning strategy to 
guide the encoder toward learning globally consistent 
representations. By enforcing structural similarity-based 
reconstruction and suppressing over-reliance on local context, 
the model enhances its sensitivity to detect anomaly while 
requiring no labeled data during training. 

The rest of this paper is organized as follows: Section 2 
introduces transformer-based anomaly detection methods 
and discusses their limitations. Section 3 describes the 
proposed DCAT framework in detail. Section 4 outlines the 
implementation, experimental setup, and results. Section 5 
concludes the paper. 

2. PRELIMINARIES 

The section describes the preliminaries of the Transformer-
based anomaly detection. Section 2.1 outlines the standard 
architecture and reconstruction-based detection paradigm. 
Section 2.2 discusses the limitations of these methods, 
particularly in the context of guided wave signals for SHM. 

2.1. Transformer-based Anomaly Detection 

Transformer-based models have gained popularity in 
anomaly detection due to their strong capacity to capture 
long-range dependencies. In reconstruction-based settings, 
these models are trained on normal data and tasked with 
reconstructing the input. Anomalies are identified by 
comparing the input and output signals, with reconstruction 
errors serving as indicators of abnormality. This type of 
methods have been applied in various domains including 
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industrial inspection, video surveillance, time-series analysis, 
and more recently, structural health monitoring (SHM) using 
guided waves. 

 
Figure 1. The pipeline of Transformer-based Anomaly 

Detection 
1. The first part of the architecture, as illustrated in Figure 

1, is an encoder composed of three stages. The input 
waveform 𝑋 = {𝑥!, 𝑥", … , 𝑥#} is first passed through a 
linear embedding layer to project it into a high-
dimensional latent space. Positional encoding is then 
added to preserve the sequential order and relative 
distance of signal components, which is critical for 
modeling spatiotemporal dependencies. The resulting 
sequence is processed by multi-head self-attention layers, 
enabling the model to capture global context across the 
entire input. This produces a feature representation 𝐹#, 
which is then supplied to the decoder for reconstruction. 
The encoder process can be formally represented as the 
following equation: 

𝐹$ = 𝑓%&(𝑋) (1) 

2. The second part is the decoder, typically implemented as 
a feedforward block that maps the latent feature 
representation 𝐹$  back to the original signal space and 
outputs a reconstruction waveform 𝑋' = {𝑥'!, 𝑥(' , … , 𝑥#' }. 
This process can be formulated as:  

𝑋′ = 𝑓)%(𝐹$) (2) 

Since the model is trained exclusively on normal data, it 
becomes proficient at reconstructing normal signal 
patterns. However, when the input contains anomalous 
components that deviate from the training distribution, 
the decoder struggles to reproduce them accurately. 

3. The third part is the anomaly detection module, which 
leverages the difference between the input and the 
reconstructed output. The reconstruction errors —
quantified as the difference between the original input 𝑋 

and the reconstructed signal 𝑋′. These errors are then 
aggregated into an anomaly score map that highlights 
regions where the reconstruction fails to align with the 
input. High reconstruction errors are interpreted as 
potential indicators of structural defects.  

This approach enables unsupervised detection, as the model 
does not require labeled anomalies during training, avoids the 
need for manually labeled defects. 

2.2. Issues in Transformer-based Method 

While Transformer-based reconstruction models show strong 
performance on many anomaly detection tasks, they also 
suffer from several limitations, particularly in the context of 
guided wave-based structural inspection. 

First, the self-attention mechanism is designed to capture 
global relationships across the entire input. While effective 
for modeling long-range dependencies, it tends to suppress 
localized variations. As a result, subtle or spatially small 
anomalies may be overlooked, as the model learns to enforce 
global consistency and smooth out local disruptions. 

Second, the high model capacity of Transformer decoders can 
lead to over-generalization. When trained exclusively on 
normal data, the model may still be capable of reconstructing 
abnormal inputs with low error due to its strong 
representation power. This reduces the gap in reconstruction 
error between normal and anomalous cases, which 
compromises the sensitivity and reliability of detection. 

Lastly, in low signal-to-noise environments common to 
Lamb wave applications, Transformers may misinterpret 
noise as structural variation, or vice versa. Without additional 
constraints or anomaly-aware learning mechanisms, their 
ability to separate signal from defect-related patterns can be 
compromised. 

These limitations highlight the need for architectures that can 
better capture local anomaly patterns while maintaining 
global context understanding, motivating the design of our 
proposed DCAT framework. 

3. PROPOSED DUAL-CONTRASTIVE-ATTENTION 
TRANSFORMER (DCAT) 

To address the limitations of existing Transformer-based 
anomaly detection methods, this work proposes a Dual-
Contrastive-Attention Transformer (DCAT) tailored for 
unsupervised Lamb wave defect detection, and the 
architecture is designed to enhance sensitivity to local 
anomalies. DCAT builds upon the reconstruction-based 
detection framework but introduces novel attention 
mechanisms and training strategies to improve anomaly 
localization. 
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Figure 2. The Proposed Dual-Attention Contrastive Transformer Framework 

 
As shown in Figure 2, the proposed framework DCAT 
consists of a dual-attention Transformer encoder, contrastive 
learning, and a decoder, forming a complete pipeline for 
unsupervised anomaly detection. During training, the 
encoder adopts a dual-attention structure, consisting of a 
primary Global-Context Attention (GCA) branch and an 
auxiliary Local-Context Attention (LCA) branch. The global 
branch uses the long-range global features to reconstruct the 
spatial continuity of normal wavefields, which typically 
exhibit globally consistent patterns. In contrast, anomalies 
usually appear only in small areas and don’t follow global 
patterns. If the model focuses too much on local details, it 
may reconstruct both normal and abnormal signals well—
making it hard to distinguish them. To address this, the LCA 
branch is introduced as a training-time constraint: it extracts 
local features, and a contrastive loss is imposed to penalize 
the GCA branch when its output features are too close to the 
LCA’s features. This encourages the GCA branch to focus on 
global structural patterns and avoid overfitting of local details, 
ensuring that anomalies are poorly reconstructed, while 
normal patterns are well reconstructed. This amplifies the 
distinction between normal and abnormal inputs. Each main 
components in this architecture will be detailed in the 
following section. 

3.1. Dual-Attention Transformer 

In this section, the dual-attention transformer structure will 
be detailed. A LCA branch is introduced during training to 
constrain the GCA branch, and then the GCA is used for 
reconstruction.  

3.1.1. Local-Context Attention (LCA) 

The LCA module is designed to restrict the receptive field of 
the self-attention mechanism to a small neighborhood around 

each token. Unlike native self-attention, which allows each 
query to access the entire sequence information, our proposed 
method limits attention to a local window based on Euclidean 
distance. The restriction forces the model to extract only 
localized patterns and prevent it from incorporating long-
range context. The LCA module serves as an auxiliary 
component for regularizing GCA branch and is only enabled 
during training. To achieve this, it applies a locally 
constrained self-attention mechanism, where each token 
attends only to its temporal neighbors. The attention is 
computed as: 

𝑄(𝑡) = 𝑓!𝑊" 
𝐾(𝑡) = 𝑓!𝑊# 
𝑉(𝑡) = 𝑓!𝑊$ 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛'𝑄(𝑡), 𝐾(𝑡), 𝑉(𝑡).

= (𝑠𝑜𝑓𝑡𝑚𝑎𝑥 5
𝑄(𝑡)𝐾(𝑡)!

6𝑑"
⨀𝑀(𝑡):𝑉(𝑡)) 

(3) 

Here, the input feature 𝑓* represents the embedded signal at 
the 𝑡*+ time instance, derived from the positional embedding 
as shown in Figure 2. And 𝑊, , 	𝑊- ,𝑊. ,	 similar to the 
original self-attention, are learnable projection matrices, and 
𝑑/  is the key dimension. The ⨀  denotes element-wise 
multiplication. The attention mask 𝑀(𝑖) ∈ [0,1] introduces soft 
local constraints based on Euclidean distance. For each query 𝑡, 
the mask element 𝑀(𝑡) is defined as: 

𝑀(𝑡) = exp	(−
6𝑝* − 𝑝06(

𝐿 ) (4) 

where 𝑝* and 𝑝0 are the temporal position of token 𝑡 and 𝑗, 𝐿 
is the total length of the input sequence. This exponential 
formulation ensures that closer tokens receive higher 
attention weights, while more distant tokens are 
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exponentially suppressed. It smoothly encourages the model 
to focus on nearby regions, without using any hard or sudden 
cutoffs. 

3.1.2. Global-Context Attention (GCA) 

The GCA serves as the primary encoder for signal 
reconstruction in the DCAT framework. Unlike the LCA 
branch, which is limited to neighborhood-level information, 
GCA attends to the full input sequence, allowing it to capture 
long-range dependencies and structural continuity across the 
entire wavefield. This global perspective is particularly well-
suited for reconstructing normal waveforms, which typically 
follow consistent and structured propagation patterns. As a 
result, the global attention mechanism can effectively 
reconstruct normal inputs without relying on too much 
localized information. 

The self-attention in GCA follows the standard transformer 
formulation. Given the embedded feature 𝑓*  at time step 𝑡, 
the global self-attention is computed as: 

𝑄(𝑡) = 𝑓!𝑊" 
𝐾(𝑡) = 𝑓!𝑊# 
𝑉(𝑡) = 𝑓!𝑊$ 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛'𝑄(𝑡), 𝐾(𝑡), 𝑉(𝑡).

= (𝑠𝑜𝑓𝑡𝑚𝑎𝑥 5
𝑄(𝑡)𝐾(𝑡)!

6𝑑"
):𝑉(𝑡)) 

(5) 

The formulation follows the standard transformer attention 
structure, where the projection weights and dimensional 
terms are as defined in Section 3.1.1. 

To avoid overfitting to local anomalies, the global attention 
branch is regularized during training using a contrastive 
constraint with the LCA branch. The detailed contrastive 
formulation is described in the following section. 

3.2. Contrastive Learning 

To prevent the GCA branch from overusing local information 
during training, we introduce a contrastive regularization 
based on distribution-level dissimilarity. Specifically, we 
apply a Kullback-Leibler (KL) divergence loss between the 
feature maps generated by the GCA and LCA branches:  

ℒ-1 = 𝐷-1(𝐹$2||𝐹$1) = 𝐹$2log	(
𝐹$2

𝐹$1
) (6) 

Here, 𝐹$2  and 𝐹$1  represent the feature maps (treated as 
distributions) from the GCA and LCA, as Figure 2 shows, 
respectively. Unlike typical loss terms that are minimized, 
our objective is to maximize this divergence. A higher KL 
value reflects a greater divergence between global and local 
representations, indicating that the GCA branch emphasizes 
long-range structural features instead of relying on local 
information. 

This constraint is only active during training. After training, 
both the LCA branch and this regularization are removed, 
leaving the GCA encoder for inference. 

3.3. Decoder 

To ensure the feature maps extracted by both the GCA and 
LCA branches are meaningful and reconstruction-relevant, 
we pass their outputs 𝐹$2 and 𝐹$1 to the decoder. The decoder 
is a feedforward network that transforms the feature maps 
back into the original waveform. By applying the 
reconstruction loss to both the global and local feature maps 
during training, it is ensured that both branches learn useful 
and meaningful features instead of random or low-quality 
outputs. 

To measure reconstruction quality, we adopt the Structural 
Similarity Index Measure (SSIM) instead of the commonly 
used Mean Squared Error (MSE). SSIM is more appropriate 
for waveform data, as it evaluates structural similarity in 
terms of wave pattern, rather than point-wise numerical 
accuracy. The SSIM-based reconstruction loss is defined as: 

ℒ3%4 = 1 − 𝑆𝑆𝐼𝑀(𝑋, 𝑋′) (7) 

The SSIM index ranges from 0 to 1, where 1 indicates perfect 
structural similarity between the input and reconstructed 
signal. Since we aim to maximize similarity, we use the loss 
in the form of 1 − 𝑆𝑆𝐼𝑀, so that lower values of the loss 
correspond to better reconstructions. 

After training, the LCA branch is discarded, and only the 
GCA encoder and decoder are used during inference. 
Anomaly detection is then performed by comparing the SSIM 
between the input and the reconstructed output. 

Because the GCA branch is trained only on normal data and 
penalized for using local patterns, it learns to focus on global 
structure. But anomalies usually do not follow any global 
patterns, therefore the trained model fails to reconstruct them 
well. Thus, the SSIM loss is much higher when an anomaly 
is present. 

4. EXPERIMENTAL SETUP AND RESULT 

All experiments were implemented using PyTorch 1.13.1 and 
conducted on a workstation equipped with an NVIDIA RTX 
A6000 GPU, which features 10,752 CUDA cores and 48 GB 
of GDDR6 memory. Each input sample consists of a 
temporal sequence of 100 steps (𝑇 = 100 ). The DCAT 
architecture used for training includes 3 transformer layers, 
each with 8 self-attention heads. The dimensionality of the 
query, key, and value vectors is fixed at 512. A batch size of 
32 and a learning rate of 0.005 are used for all training runs. 
Anomaly detection was based on (1 – SSIM) reconstruction 
loss, with a threshold of 0.42 selected for DCAT based on 
validation. For all baselines, the best-performing thresholds 
were used. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025 

6 

4.1. Dataset collection & Pre-process 

To generate data for model development and evaluation, a 
non-invasive Lamb wave inspection system, as shown in 
Figure 3, was established using a Scanning Laser Doppler 
Vibrometer (SLDV). The SLDV excites and measures wave 
signals on the plate surface. When defects such as notches or 
attachments are present, they cause noticeable distortions in 
the wave propagation patterns. And the system was applied 
to a stainless-steel plate with the dimensions 310mm×
310mm× 1mm. The guided Lamb waves were excited at 
120 kHz and measured along radial scan lines.  

 
Figure 3. Inspection System 

Defects were introduced in the form of a surface notch to 
produce abnormal wave propagation patterns as shown in 
Figure 4. It compares normal and anomalous wavefields. 
Subfigure (a) shows a typical wave pattern from an 
undamaged plate, while subfigure (b) shows the altered 
pattern caused by structural defects. 

 
(a) 

 
(b) 

Figure 4. Example of Normal & Anomaly Waveform 
 

The collected spatiotemporal wavefield data form two-
dimensional representations of Lamb wave propagation over 
both time and space. To effectively train and evaluate the 
proposed model, each full measurement is further divided 
into smaller patches, as visualized in Figure 4, using the 
sliding window technique. Each patch captures a short 
temporal evolution of wave propagation over the spatial scan 
line. Specifically, the x-axis corresponds to time (i.e., the 
evolution of the wave signal), while the y-axis represents 
spatial locations along the scan line (i.e., distances from the 
wave source). The length of each path is 100 along the x-axis 
and 145 along the y-axis, matching the number of spatial 
sampling points from the SLDV scan. The temporal window 
size of 100 is chosen to balance the need to capture 
meaningful wave patterns while maintaining computational 
efficiency. 

The preprocessed patches were subsequently split into two 
subsets: the training dataset and the testing dataset. The 
training dataset consists of 2,000 patches that reflect only 
normal wave samples for model training purposes. On the 
other hand, the testing dataset includes 600 samples in total, 
where the number of wave patches representing normal and 
abnormal cases is 450 and 150, respectively. 

4.2. Performance Metrics 

The detection performance of the proposed model is 
quantitatively measured by four main evaluation metrics: 
Accuracy, Precision, Recall, and 𝐹" -score. The value of 
accuracy indicates the overall rate at which the model 
produces correct predictions, including both normal and 
abnormal outcomes. Precision is the percentage of predicted 
anomalies that are real defects. Recall represents the ratio of 
detected anomalies to all the abnormal samples in the ground 
truth. 𝐹"-score provides a balanced evaluation by combining 
precision and recall into a single metric. It is especially useful 
when the data is imbalanced, as it highlights the trade-off 
between missing anomalies and incorrectly predicted normal 
instances. The associated equations are defined below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (10) 

𝐹"	𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

(11) 

where 𝑇𝑃 , 𝐹𝑃 , 𝑇𝑁 , and 𝐹𝑁  represents the value of true 
positive, false positive, true negative, and false negative, 
respectively. In this work, anomalies are defined as positive 
instances, while normal samples are considered negative. A 
larger value in each of these metrics indicates stronger 
detection performance. 
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4.3. Result 

This section presents the experimental results of our proposed 
DCAT model. We first compare its performance with other 
state-of-the-art (SOTA) baselines to evaluate its effectiveness 
in detecting Lamb wave anomalies. And the ablation study is 
also presented to demonstrate the contribution of key 
component in DCAT framework. 

4.3.1. Comparison with SOTA 

In the following section, the performance of the proposed 
DCAT model is evaluated and compared against a range of 
representative anomaly detection baselines. These include 
LSTM-AE (Wong et al., 2022), DACAD (Darban et al., 
2025), ACR-DSVDD(Li et al., 2024), LUNAR (Goodge et 
al., 2022), and DADA(Shentu et al., 2024), each representing 
a different modeling strategy widely used in Lamb wave or 
sequential anomaly detection. All methods are trained and 
tested under the same preprocessing and evaluation setup. 

As shown in Table 1, DCAT achieves the best overall 
performance across the board, with 97.8% accuracy, 98.6% 
precision, 92.7% recall, and an 𝐹" -score of 95.6%. These 
results highlight the effectiveness of DCAT’s dual-attention 
design and contrastive regularization, which together 
improve sensitivity to anomalies. 

Compared to DADA, which achieves a competitive 𝐹"-score 
of 91.8% and recall 92.6%, DCAT shows much higher 
precision. DADA’s dual-decoder structure lacks explicit 
attention control, making it less reliable in isolating anomaly-
relevant features. LSTM-AE performs the worst in recall 
(35.3%) due to its limited temporal modeling and lack of 
spatial awareness. ACR-DSVDD and DACAD rely on 
feature compactness and adversarial learning, but being non-
reconstruction-based, they struggle to capture full complex 
spatiotemporal patterns. LUNAR integrates channel and 
temporal attention but lacks DCAT’s contrastive design, 
resulting in weaker anomaly separation and lower recall. 

 

Model Accuracy (%)↑ Precision (%)↑ Recall (%)↑ 𝐹"	𝑆𝑐𝑜𝑟𝑒	(%)↑	

DCAT (Proposed) 97.8 98.6 92.7 95.6 

LSTM-AE 78.5 62.4 35.3 45.1 

DACAD 93.3 90.4 82.0 86.0 

ACR-DSVDD 92.1 86.5 81.3 83.9 

LUNAR 90.9 84.2 78.0 80.0 

DADA 95.8 90.9 92.6 91.8 

Table 1. Comparison Result with Benchmark Models 
 

4.3.2. Ablation Analysis 

To assess the contribution of each component in the DCAT 
framework, we conduct an ablation study by selectively 
removing the LCA and GCA branches. The results are 
summarized in Table 2. 

When the GCA is removed and only the LCA is used, the 
model shows a drastic drop in recall (20.0%). This is because 
the local branch only sees a narrow spatial window and lacks 
global awareness, allowing it to reconstruct both normal and 
anomalous signals well, thus failing to distinguish anomalies. 
A low recall indicates that the model is not sensitive to 
defects. 

On the other hand, when the LCA is removed and only the 
GCA is retained, the model becomes a plain Transformer 
autoencoder without any constraint. Although the GCA 
captures global features, without contrastive regularization it 
also tends to inordinately use local information, resulting in 

high-quality reconstructions even for anomalous inputs, 
which leads to poor recall (28.0%). 

When both attention branches are removed, the model 
degrades into a feedforward convolutional autoencoder 
(FCN-AE). In this case, the overall reconstruction ability is 
weaker, which makes it slightly more sensitive to anomalies 
(recall improves to 37.3%), but still significantly worse than 
the full DCAT model with structured attention and 
contrastive learning. 

These results confirm that both global and local attention, as 
well as the interaction between them, are critical to achieving 
strong anomaly detection performance. 
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Component 
Accuracy (%)↑ Precision (%)↑ Recall (%)↑ 𝐹"	𝑆𝑐𝑜𝑟𝑒	↑ 

LCA GCA 

✓ ✓ 97.8 98.6 92.7 95.6 

✓ ✗ 79.2 85.7 20.0 32.4 

✗ ✓ 80.7 84.0 28.0 42.0 

✗ ✗ 83.7 76.7 37.3 50.2 

Table 2. Ablation Results 
 

5. CONCLUSION 

This study introduces DCAT, a transformer-based 
unsupervised framework developed for Lamb wave anomaly 
detection. DCAT integrates GCA and LCA mechanisms with 
contrastive learning and SSIM-guided reconstruction to 
mitigate drawbacks of traditional autoencoder and 
transformer models, that is, anomalies are also reconstructed 
well. DCAT demonstrates salient performance in identifying 
subtle and structurally similar anomalies. Future work will 
explore adaptation to multi-sensor configurations, real-time 
deployment, and improve the robustness under noisy 
conditions. 
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