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ABSTRACT

Lamb wave-based Structural Health Monitoring (SHM) is a
promising technique for detecting defects in materials and
structures. However, traditional methods often rely on
computationally intensive signal processing and struggle to
detect subtle anomalies wave patterns. In this work, we
propose a novel transformer-based framework, called Dual-
Contrastive-Attention Transformer (DCAT), for
unsupervised anomaly detection in Lamb wave data. DCAT
uses two attention branches during training: a Global-Context
Attention (GCA) branch that captures long-range patterns,
and a Local-Context Attention (LCA) branch that serves as a
constraint. A contrastive loss is used to prevent the global
branch from over-learning local features, encouraging it to
focus on the overall structure. Both branches are trained to
reconstruct the input, using a structural similarity (SSIM) loss
that better reflects waveform patterns than traditional mean
squared error. After training, only the global branch is
retained for inference. Anomalies are detected by comparing
the input and reconstructed output. Since the global branch
cannot easily reproduce local defects, it produces a higher
SSIM loss when anomalies are present. We test our model on
a Lamb wave dataset with multiple types of defects. DCAT
achieves 97.8% accuracy and a precision of 98.6%,
outperforming other SOTA baselines. These results show that
DCAT is well-suited for accurate Lamb wave-based SHM
without the need for labeled data.

Jiawei Guo et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

1. INTRODUCTION

The SHM plays a crucial role in ensuring the safety and
longevity of aerospace and civil infrastructures by enabling
early detection of structural defects. Among various
nondestructive evaluation (NDE) techniques, ultrasonic
guided waves, particularly Lamb waves, are widely used due
to their ability to propagate over long distances and
sensitivity to both surface and internal defects (Zhao et al.,
2011). Lamb waves propagate within structural boundaries
and are particularly responsive to thickness discontinuities,
allowing efficient inspection of large-scale structures
(Alleyne & Cawley, 1992). When interacting with defects,
Lamb waves generate unique spatiotemporal patterns that
serve as "wave fingerprints" for identifying the presence and
characteristics of damage (Giurgiutiu, 2005). Recent studies
have applied Lamb wave methods in practical SHM systems,
particularly within the PHM Society community. For
example, Cantero-Chinchilla et al. (2018) developed a highly
efficient Lamb wave—based damage indicator for plate-like
structures, relying on baseline comparisons and cumulative
damage factors to detect and track delamination.
Additionally, Mishra et al. (2015) proposed a multivariate
cumulative sum (CUSUM) technique for Lamb-wave sensor
data, enabling online detection of damage progression in
composite structures. These efforts highlight the increasing
viability of Lamb wave—based SHM for practical engineering
applications. A typical Lamb wave inspection system
comprises an actuator and a receiver; damage is inferred by
comparing received signals to defect-free baselines. To
automate this comparison, machine learning techniques have
increasingly been employed.

Convolutional Neural Networks (CNNs) have proven highly
effective for extracting spatial features from wave images,
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improving SHM and NDT capabilities. Recent work has
improved CNNs further by incorporating wavelet transforms
and attention mechanisms (Zhao, 2022). For instance, the
Wavelet-Attention CNN (WA-CNN) applies Discrete
Wavelet Transform (DWT) to decompose feature maps into
low- and high-frequency components, then directs attention
mechanisms to the high-frequency parts to enhance detail
sensitivity while maintaining low-frequency structure. This
technique has improved classification performance on
benchmark datasets such as CIFAR-10 and CIFAR-100.
Similarly, the Multi-level Wavelet CNN (MWCNN) uses
wavelet decomposition within a U-Net structure (Liu et al.,
2018), effectively balancing receptive field size and
computational complexity in image restoration tasks like
denoising and super-resolution. In other domains, WaDeNet
directly integrates wavelet decomposition into CNNs for
speech signal analysis, capturing both temporal and spectral
patterns and improving non-invasive emotion recognition
(Suresh & Ragav, 2020).

Recurrent Neural Networks (RNNs), including Gated
Recurrent Units (GRUs) and Long Short-Term Memory
(LSTM) networks, have also been successfully applied to
Lamb wave-based SHM because of their ability to model
temporal dynamics. These models are adept at capturing
complex wave propagation effects, which are critical for
detecting time-dependent anomalies. For example, Azad et
al. (2024) developed an LSTM-based model for localizing
and quantifying damage severity in composite structures
using Lamb wave data, demonstrating high accuracy across
various operational conditions. Likewise, Zhang et al. (2020)
reported that GRU models outperformed traditional
techniques in identifying subtle damage signatures,
confirming the robustness of RNNs for modeling dispersive
waveforms.

More recently, Transformer architectures have been adopted
in SHM due to their superior global feature modeling
capabilities. Self-attention mechanisms in Transformers
effectively capture long-range dependencies in time-series
data, which traditional RNNs may miss. Ding et al. (2022)
proposed a time-frequency Transformer architecture that
achieved significant accuracy improvements in rolling
bearing fault diagnosis. However, most Transformer-based
models require large amounts of labeled anomaly data for
training, limiting their application in real-world SHM
scenarios where defect data is scarce. To address this, Wang
et al. (2023) introduced the Defect Transformer (DefT),
which combines CNNs and Transformers to detect surface
defects in complex environments more efficiently. Despite
these advances, reducing reliance on labeled data remains a
major challenge.

Unsupervised learning, especially with autoencoders (AEs),
provides a promising solution to this issue. AEs are typically
trained on normal Lamb wave data and used to reconstruct
those signals. Anomalies manifest as reconstruction errors

when the model fails to recreate signals that deviate from the
learned normal patterns. For instance, Rizvi et al. (2024)
proposed a Bi-LSTM autoencoder augmented with Maximal
Overlap Discrete Wavelet Transform (MODWT) to improve
detection and localization of structural anomalies in
composites. Similarly, Lee et al. (2022) used a deep
autoencoder to automatically classify fatigue damage in
composite materials via Lamb wave inputs. These studies
demonstrate that integrating components such as LSTM and
wavelet transforms into AEs architectures can significantly
enhance anomaly discrimination.

Despite these advances, existing AEs models for Lamb wave
anomaly detection often struggle to detect subtle or
structurally similar defects. These models typically rely on
reconstruction loss, which only becomes significant when the
anomaly deviates clearly from normal patterns, a condition
not always met in practice. Moreover, they are often overfit
to local features and underutilize global information,
allowing even anomalous signals to be reconstructed
accurately and thus reducing detection effectiveness.

To address these limitations, this study proposes a self-
supervised framework named Dual-Contrastive-Attention
Transformer (DCAT). The model integrates Global-Context
Attention (GCA) and Local-Context Attention (LCA)
mechanisms and introduces a contrastive learning strategy to
guide the encoder toward learning globally consistent
representations. By enforcing structural similarity-based
reconstruction and suppressing over-reliance on local context,
the model enhances its sensitivity to detect anomaly while
requiring no labeled data during training.

The rest of this paper is organized as follows: Section 2
introduces transformer-based anomaly detection methods
and discusses their limitations. Section 3 describes the
proposed DCAT framework in detail. Section 4 outlines the
implementation, experimental setup, and results. Section 5
concludes the paper.

2. PRELIMINARIES

The section describes the preliminaries of the Transformer-
based anomaly detection. Section 2.1 outlines the standard
architecture and reconstruction-based detection paradigm.
Section 2.2 discusses the limitations of these methods,
particularly in the context of guided wave signals for SHM.

2.1. Transformer-based Anomaly Detection

Transformer-based models have gained popularity in
anomaly detection due to their strong capacity to capture
long-range dependencies. In reconstruction-based settings,
these models are trained on normal data and tasked with
reconstructing the input. Anomalies are identified by
comparing the input and output signals, with reconstruction
errors serving as indicators of abnormality. This type of
methods have been applied in various domains including
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industrial inspection, video surveillance, time-series analysis,
and more recently, structural health monitoring (SHM) using
guided waves.

Input Sequence (X)
Xo X1 ©r Xr-1 XT

..... l....| l...]
P i i M
| Linear Embedding U

y 4o 4
| Positional Embedding |j

Y T

Self-Attention Block

Transformer-Based Encoder

v
Fg

—— 3 e
e i :e’

Feed-Forward Block

<_> Anomaly
Detection Block :

Decoder
R
xo X'y o XpagXT
Output Sequence (X')

Figure 1. The pipeline of Transformer-based Anomaly
Detection

1. The first part of the architecture, as illustrated in Figure
1, is an encoder composed of three stages. The input
waveform X = {x,, x4, ..., X7} is first passed through a
linear embedding layer to project it into a high-
dimensional latent space. Positional encoding is then
added to preserve the sequential order and relative
distance of signal components, which is critical for
modeling spatiotemporal dependencies. The resulting
sequence is processed by multi-head self-attention layers,
enabling the model to capture global context across the
entire input. This produces a feature representation Fr,
which is then supplied to the decoder for reconstruction.
The encoder process can be formally represented as the
following equation:

FE =fen(X) (1)

2. The second part is the decoder, typically implemented as
a feedforward block that maps the latent feature
representation F back to the original signal space and
outputs a reconstruction waveform X’ = {x'g, x5, ..., x7}.
This process can be formulated as:

X' = fae(Fg) 2

Since the model is trained exclusively on normal data, it
becomes proficient at reconstructing normal signal
patterns. However, when the input contains anomalous
components that deviate from the training distribution,
the decoder struggles to reproduce them accurately.

3. The third part is the anomaly detection module, which
leverages the difference between the input and the
reconstructed output. The reconstruction errors —
quantified as the difference between the original input X

and the reconstructed signal X'. These errors are then
aggregated into an anomaly score map that highlights
regions where the reconstruction fails to align with the
input. High reconstruction errors are interpreted as
potential indicators of structural defects.

This approach enables unsupervised detection, as the model
does not require labeled anomalies during training, avoids the
need for manually labeled defects.

2.2. Issues in Transformer-based Method

While Transformer-based reconstruction models show strong
performance on many anomaly detection tasks, they also
suffer from several limitations, particularly in the context of
guided wave-based structural inspection.

First, the self-attention mechanism is designed to capture
global relationships across the entire input. While effective
for modeling long-range dependencies, it tends to suppress
localized variations. As a result, subtle or spatially small
anomalies may be overlooked, as the model learns to enforce
global consistency and smooth out local disruptions.

Second, the high model capacity of Transformer decoders can
lead to over-generalization. When trained exclusively on
normal data, the model may still be capable of reconstructing
abnormal inputs with low error due to its strong
representation power. This reduces the gap in reconstruction
error between normal and anomalous cases, which
compromises the sensitivity and reliability of detection.

Lastly, in low signal-to-noise environments common to
Lamb wave applications, Transformers may misinterpret
noise as structural variation, or vice versa. Without additional
constraints or anomaly-aware learning mechanisms, their
ability to separate signal from defect-related patterns can be
compromised.

These limitations highlight the need for architectures that can
better capture local anomaly patterns while maintaining
global context understanding, motivating the design of our
proposed DCAT framework.

3. PROPOSED DUAL-CONTRASTIVE-ATTENTION
TRANSFORMER (DCAT)

To address the limitations of existing Transformer-based
anomaly detection methods, this work proposes a Dual-
Contrastive-Attention Transformer (DCAT) tailored for
unsupervised Lamb wave defect detection, and the
architecture is designed to enhance sensitivity to local
anomalies. DCAT builds upon the reconstruction-based
detection framework but introduces novel attention
mechanisms and training strategies to improve anomaly
localization.
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Figure 2. The Proposed Dual-Attention Contrastive Transformer Framework

As shown in Figure 2, the proposed framework DCAT
consists of a dual-attention Transformer encoder, contrastive
learning, and a decoder, forming a complete pipeline for
unsupervised anomaly detection. During training, the
encoder adopts a dual-attention structure, consisting of a
primary Global-Context Attention (GCA) branch and an
auxiliary Local-Context Attention (LCA) branch. The global
branch uses the long-range global features to reconstruct the
spatial continuity of normal wavefields, which typically
exhibit globally consistent patterns. In contrast, anomalies
usually appear only in small areas and don’t follow global
patterns. If the model focuses too much on local details, it
may reconstruct both normal and abnormal signals well—
making it hard to distinguish them. To address this, the LCA
branch is introduced as a training-time constraint: it extracts
local features, and a contrastive loss is imposed to penalize
the GCA branch when its output features are too close to the
LCA’s features. This encourages the GCA branch to focus on
global structural patterns and avoid overfitting of local details,
ensuring that anomalies are poorly reconstructed, while
normal patterns are well reconstructed. This amplifies the
distinction between normal and abnormal inputs. Each main
components in this architecture will be detailed in the
following section.

3.1. Dual-Attention Transformer

In this section, the dual-attention transformer structure will
be detailed. A LCA branch is introduced during training to
constrain the GCA branch, and then the GCA is used for
reconstruction.

3.1.1. Local-Context Attention (LCA)

The LCA module is designed to restrict the receptive field of
the self-attention mechanism to a small neighborhood around

each token. Unlike native self-attention, which allows each
query to access the entire sequence information, our proposed
method limits attention to a local window based on Euclidean
distance. The restriction forces the model to extract only
localized patterns and prevent it from incorporating long-
range context. The LCA module serves as an auxiliary
component for regularizing GCA branch and is only enabled
during training. To achieve this, it applies a locally
constrained self-attention mechanism, where each token
attends only to its temporal neighbors. The attention is
computed as:

Q) = fW?
K(t) = fiwX
V() = fw”
Attention(Q (1), K(t), V(1)) 3)

T
= (softmax (% G)M(t)) V()
K

Here, the input feature f; represents the embedded signal at
the t* time instance, derived from the positional embedding
as shown in Figure 2. And W9, WX, WV, similar to the
original self-attention, are learnable projection matrices, and
dy is the key dimension. The ® denotes element-wise
multiplication. The attention mask M (i) € [0,1] introduces soft
local constraints based on Euclidean distance. For each query t,
the mask element M (t) is defined as:

”pf _pf”z) 4)

L
where p; and p; are the temporal position of token ¢ and j, L
is the total length of the input sequence. This exponential

formulation ensures that closer tokens receive higher
attention weights, while more distant tokens are

M(t) = exp (-
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exponentially suppressed. It smoothly encourages the model
to focus on nearby regions, without using any hard or sudden
cutoffs.

3.1.2. Global-Context Attention (GCA)

The GCA serves as the primary encoder for signal
reconstruction in the DCAT framework. Unlike the LCA
branch, which is limited to neighborhood-level information,
GCA attends to the full input sequence, allowing it to capture
long-range dependencies and structural continuity across the
entire wavefield. This global perspective is particularly well-
suited for reconstructing normal waveforms, which typically
follow consistent and structured propagation patterns. As a
result, the global attention mechanism can effectively
reconstruct normal inputs without relying on too much
localized information.

The self-attention in GCA follows the standard transformer
formulation. Given the embedded feature f; at time step ¢,
the global self-attention is computed as:

Q) = fiw?
K(t) = fiw*
V) = fw?
Attention(Q (1), K(t), V(1)) ®)
= (softmax (%)) V(t))

The formulation follows the standard transformer attention
structure, where the projection weights and dimensional
terms are as defined in Section 3.1.1.

To avoid overfitting to local anomalies, the global attention
branch is regularized during training using a contrastive
constraint with the LCA branch. The detailed contrastive
formulation is described in the following section.

3.2. Contrastive Learning

To prevent the GCA branch from overusing local information
during training, we introduce a contrastive regularization
based on distribution-level dissimilarity. Specifically, we
apply a Kullback-Leibler (KL) divergence loss between the
feature maps generated by the GCA and LCA branches:

FG
L = D (FE|IF) = F{log (o (6)
E

Here, FE and F} represent the feature maps (treated as
distributions) from the GCA and LCA, as Figure 2 shows,
respectively. Unlike typical loss terms that are minimized,
our objective is to maximize this divergence. A higher KL
value reflects a greater divergence between global and local
representations, indicating that the GCA branch emphasizes
long-range structural features instead of relying on local
information.

This constraint is only active during training. After training,
both the LCA branch and this regularization are removed,
leaving the GCA encoder for inference.

3.3. Decoder

To ensure the feature maps extracted by both the GCA and
LCA branches are meaningful and reconstruction-relevant,
we pass their outputs F¢ and FE to the decoder. The decoder
is a feedforward network that transforms the feature maps
back into the original waveform. By applying the
reconstruction loss to both the global and local feature maps
during training, it is ensured that both branches learn useful
and meaningful features instead of random or low-quality
outputs.

To measure reconstruction quality, we adopt the Structural
Similarity Index Measure (SSIM) instead of the commonly
used Mean Squared Error (MSE). SSIM is more appropriate
for waveform data, as it evaluates structural similarity in
terms of wave pattern, rather than point-wise numerical
accuracy. The SSIM-based reconstruction loss is defined as:

Lo =1—SSIM(X, X" @)

The SSIM index ranges from 0 to 1, where 1 indicates perfect
structural similarity between the input and reconstructed
signal. Since we aim to maximize similarity, we use the loss
in the form of 1 — SSIM, so that lower values of the loss
correspond to better reconstructions.

After training, the LCA branch is discarded, and only the
GCA encoder and decoder are used during inference.
Anomaly detection is then performed by comparing the SSIM
between the input and the reconstructed output.

Because the GCA branch is trained only on normal data and
penalized for using local patterns, it learns to focus on global
structure. But anomalies usually do not follow any global
patterns, therefore the trained model fails to reconstruct them
well. Thus, the SSIM loss is much higher when an anomaly
is present.

4. EXPERIMENTAL SETUP AND RESULT

All experiments were implemented using PyTorch 1.13.1 and
conducted on a workstation equipped with an NVIDIA RTX
A6000 GPU, which features 10,752 CUDA cores and 48 GB
of GDDR6 memory. Each input sample consists of a
temporal sequence of 100 steps (T = 100). The DCAT
architecture used for training includes 3 transformer layers,
each with 8 self-attention heads. The dimensionality of the
query, key, and value vectors is fixed at 512. A batch size of
32 and a learning rate of 0.005 are used for all training runs.
Anomaly detection was based on (1 —SSIM) reconstruction
loss, with a threshold of 0.42 selected for DCAT based on
validation. For all baselines, the best-performing thresholds
were used.
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4.1. Dataset collection & Pre-process

To generate data for model development and evaluation, a
non-invasive Lamb wave inspection system, as shown in
Figure 3, was established using a Scanning Laser Doppler
Vibrometer (SLDV). The SLDV excites and measures wave
signals on the plate surface. When defects such as notches or
attachments are present, they cause noticeable distortions in
the wave propagation patterns. And the system was applied
to a stainless-steel plate with the dimensions 310mm X
310mm X 1mm. The guided Lamb waves were excited at
120 kHz and measured along radial scan lines.

Figure 3. Inspection System
Defects were introduced in the form of a surface notch to
produce abnormal wave propagation patterns as shown in
Figure 4. It compares normal and anomalous wavefields.
Subfigure (a) shows a typical wave pattern from an
undamaged plate, while subfigure (b) shows the altered
pattern caused by structural defects.
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Figure 4. Example of Normal & Anomaly Waveform

The collected spatiotemporal wavefield data form two-
dimensional representations of Lamb wave propagation over
both time and space. To effectively train and evaluate the
proposed model, each full measurement is further divided
into smaller patches, as visualized in Figure 4, using the
sliding window technique. Each patch captures a short
temporal evolution of wave propagation over the spatial scan
line. Specifically, the x-axis corresponds to time (i.e., the
evolution of the wave signal), while the y-axis represents
spatial locations along the scan line (i.e., distances from the
wave source). The length of each path is 100 along the x-axis
and 145 along the y-axis, matching the number of spatial
sampling points from the SLDV scan. The temporal window
size of 100 is chosen to balance the need to capture
meaningful wave patterns while maintaining computational
efficiency.

The preprocessed patches were subsequently split into two
subsets: the training dataset and the testing dataset. The
training dataset consists of 2,000 patches that reflect only
normal wave samples for model training purposes. On the
other hand, the testing dataset includes 600 samples in total,
where the number of wave patches representing normal and
abnormal cases is 450 and 150, respectively.

4.2. Performance Metrics

The detection performance of the proposed model is
quantitatively measured by four main evaluation metrics:
Accuracy, Precision, Recall, and F; -score. The value of
accuracy indicates the overall rate at which the model
produces correct predictions, including both normal and
abnormal outcomes. Precision is the percentage of predicted
anomalies that are real defects. Recall represents the ratio of
detected anomalies to all the abnormal samples in the ground
truth. F;-score provides a balanced evaluation by combining
precision and recall into a single metric. It is especially useful
when the data is imbalanced, as it highlights the trade-off
between missing anomalies and incorrectly predicted normal
instances. The associated equations are defined below:

Accuracy = TP+ TN ®)

TP+ FP+TN+FN

TP
Precision = TP+ FP ©
Recall = —TP (10)
TP + FN

Precision X Recall

F, Score =2 X 11

Precision + Recall

where TP, FP, TN, and FN represents the value of true
positive, false positive, true negative, and false negative,
respectively. In this work, anomalies are defined as positive
instances, while normal samples are considered negative. A
larger value in each of these metrics indicates stronger
detection performance.



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

4.3. Result

This section presents the experimental results of our proposed
DCAT model. We first compare its performance with other
state-of-the-art (SOTA) baselines to evaluate its effectiveness
in detecting Lamb wave anomalies. And the ablation study is
also presented to demonstrate the contribution of key
component in DCAT framework.

4.3.1. Comparison with SOTA

In the following section, the performance of the proposed
DCAT model is evaluated and compared against a range of
representative anomaly detection baselines. These include
LSTM-AE (Wong et al., 2022), DACAD (Darban et al.,
2025), ACR-DSVDD(Li et al., 2024), LUNAR (Goodge et
al., 2022), and DADA(Shentu et al., 2024), each representing
a different modeling strategy widely used in Lamb wave or
sequential anomaly detection. All methods are trained and
tested under the same preprocessing and evaluation setup.

As shown in Table 1, DCAT achieves the best overall
performance across the board, with 97.8% accuracy, 98.6%
precision, 92.7% recall, and an F; -score of 95.6%. These
results highlight the effectiveness of DCAT’s dual-attention
design and contrastive regularization, which together
improve sensitivity to anomalies.

Compared to DADA, which achieves a competitive F;-score
of 91.8% and recall 92.6%, DCAT shows much higher
precision. DADA’s dual-decoder structure lacks explicit
attention control, making it less reliable in isolating anomaly-
relevant features. LSTM-AE performs the worst in recall
(35.3%) due to its limited temporal modeling and lack of
spatial awareness. ACR-DSVDD and DACAD rely on
feature compactness and adversarial learning, but being non-
reconstruction-based, they struggle to capture full complex
spatiotemporal patterns. LUNAR integrates channel and
temporal attention but lacks DCAT’s contrastive design,
resulting in weaker anomaly separation and lower recall.

Model Accuracy (%) Precision (%) Recall (%)7 F, Score (%)7
DCAT (Proposed) 97.8 98.6 92.7 95.6
LSTM-AE 78.5 62.4 353 45.1
DACAD 93.3 90.4 82.0 86.0
ACR-DSVDD 92.1 86.5 81.3 83.9
LUNAR 90.9 84.2 78.0 80.0
DADA 95.8 90.9 92.6 91.8

Table 1. Comparison Result with Benchmark Models

4.3.2. Ablation Analysis

To assess the contribution of each component in the DCAT
framework, we conduct an ablation study by selectively
removing the LCA and GCA branches. The results are
summarized in Table 2.

When the GCA is removed and only the LCA is used, the
model shows a drastic drop in recall (20.0%). This is because
the local branch only sees a narrow spatial window and lacks
global awareness, allowing it to reconstruct both normal and
anomalous signals well, thus failing to distinguish anomalies.
A low recall indicates that the model is not sensitive to
defects.

On the other hand, when the LCA is removed and only the
GCA is retained, the model becomes a plain Transformer
autoencoder without any constraint. Although the GCA
captures global features, without contrastive regularization it
also tends to inordinately use local information, resulting in

high-quality reconstructions even for anomalous inputs,
which leads to poor recall (28.0%).

When both attention branches are removed, the model
degrades into a feedforward convolutional autoencoder
(FCN-AE). In this case, the overall reconstruction ability is
weaker, which makes it slightly more sensitive to anomalies
(recall improves to 37.3%), but still significantly worse than
the full DCAT model with structured attention and
contrastive learning.

These results confirm that both global and local attention, as
well as the interaction between them, are critical to achieving
strong anomaly detection performance.
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Component
T GCA Accuracy (%) Precision (%) Recall (%)7 F, Score T
v v 97.8 98.6 92.7 95.6
v X 79.2 85.7 20.0 324
X v 80.7 84.0 28.0 42.0
X X 83.7 76.7 37.3 50.2

Table 2. Ablation Results

5. CONCLUSION

This study introduces DCAT, a transformer-based
unsupervised framework developed for Lamb wave anomaly
detection. DCAT integrates GCA and LCA mechanisms with
contrastive learning and SSIM-guided reconstruction to
mitigate drawbacks of traditional autoencoder and
transformer models, that is, anomalies are also reconstructed
well. DCAT demonstrates salient performance in identifying
subtle and structurally similar anomalies. Future work will
explore adaptation to multi-sensor configurations, real-time
deployment, and improve the robustness under noisy
conditions.
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