
Causal-Aware LLM Agents for PHM Co-Pilots: Health Monitoring
and Intervention Planning

Rajarajan Kirubanandan1

1 Independent Researcher, New York, NY, 10705, USA
rajarajankirubanandan@gmail.com

ABSTRACT

Large language models (LLMs) can generate plausible di-
agnostic plans and corrective actions from sensor data, but
they lack intrinsic causal reasoning and cannot assess whether
their recommendations will lead to successful issue reme-
diation. This limitation is especially critical in high stakes
domains like Prognostics and Health Management (PHM),
where decisions must be both interpretable and causally
grounded. While LLMs excel at generating contextually rele-
vant outputs, they cannot be relied upon to evaluate their own
plans. To address this gap, we propose a hybrid framework
that integrates LLM based planning with structured causal in-
ference. The system retrieves top-k similar historical traces
based on the current sensor context and operational settings
and constructs a localized causal structure from these matches
to simulate and evaluate the impact of potential actions. Rec-
ommendations are ranked based on their estimated effect on
resolution likelihood and are causally validated within the
same agentic workflow. Our results demonstrate that aug-
menting LLM generated plans with external causal inference
significantly improves relevance, consistency, and safety, of-
fering a deployable blueprint for PHM scenarios where LLMs
alone cannot be trusted to reason reliably.

1. INTRODUCTION

PHM plays a pivotal role in modern industrial systems by
enabling early detection of faults, estimation of remaining
useful life, and recommendation of corrective actions to pre-
vent failures. Traditional PHM systems rely heavily on sta-
tistical modelling, signal processing, and machine learning
techniques trained on historical sensor data. While these ap-
proaches have demonstrated success in detecting anomalies
and predicting failures, they often fall short in providing inter-
pretable reasoning, especially when tasked with recommend-
ing intervention strategies under uncertainty.
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With the rise of LLMs, there has been growing interest in
leveraging their reasoning capabilities and domain adaptabil-
ity for industrial AI applications. LLMs, pretrained on vast
corpora of technical documentation and maintenance logs,
offer a new paradigm for building intelligent copilots that
can understand system behaviour, suggest diagnostic paths,
and generate maintenance plans. In high stakes maintenance
environments, reliable decision making requires more than
just identifying similar past cases it demands the ability to
estimate what would happen under alternative intervention
strategies. This involves answering counterfactual questions
(e.g., What if a different diagnostic step had been taken?”)
and isolating true causal effects from confounding influences.
Traditional similarity based retrieval systems, commonly em-
ployed in recent LLM based PHM copilots (Lukens, McCabe,
Gen, & Ali, 2024), are not equipped to handle such tasks.

While these systems offer rapid access to semantically rel-
evant historical cases, they operate on surface level correla-
tions and provide no guarantees about intervention effective-
ness. Without causal modelling, they cannot adjust for latent
factors that may influence both failures and recommended
actions, nor can they simulate the outcomes of untested al-
ternatives (Pearl, 2009). As we emphasize, LLMs trained
on observational text can mimic causal language but lack
the structural foundation to perform genuine causal inference
(Zečević, Willig, Dhami, & Kersting, 2023). These limita-
tions motivate the need for a causally aware PHM framework
one that augments LLM based reasoning. To bridge this gap,
we propose a proof of concept causal aware LLM agent ar-
chitecture that integrates the reasoning power of LLMs with
structured causal inference mechanism.

The agent is designed to assist in real-time PHM tasks by:

1. Inferring sensor-level triggers from observed data,
2. Retrieving similar historical cases based on operating

conditions and trigger profiles,
3. Constructing a localized causal graph from the retrieved

cases, and
4. Applying do-interventions on candidate diagnostic or

corrective actions to simulate causal effects, followed by
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counterfactual reasoning to evaluate the likelihood of is-
sue resolution under alternative actions.

This framework creates a hybrid pipeline where the LLM
proposes diagnostic or repair plans, and a causal inference
engine evaluates, and ranks them based on estimated treat-
ment effects and causal metrics. The result is an interpretable,
adaptive, and causally grounded PHM co-pilot that can rec-
ommend context-sensitive interventions. We evaluate our
approach on synthetic extensions of the NASA CMAPSS
dataset (Saxena, Goebel, Simon, & Eklund, 2008), demon-
strating the agent’s ability to simulate interventions and rec-
ommend high-impact corrective actions. Through a series of
experiments, we highlight the benefits of local causal reason-
ing and counterfactual simulation in improving both accuracy
and transparency in PHM decision making.

2. BACKGROUND AND RELATED WORK

2.1. Large Language Models in Industrial AI

(Lukens et al., 2024) demonstrated the feasibility of us-
ing LLM agents to support maintenance troubleshooting
workflows in industrial Prognostics and Health Management
(PHM) systems. Their framework introduced a modular copi-
lot design where a Recommender agent generates structured
diagnostic steps in response to sensor anomalies, and an Eval-
uator agent assesses whether each step would successfully
uncover a known failure mode. The system leveraged histor-
ical PHM case data and evaluated agent behaviour through
subject matter expert review. Notably, incorporating Re-
trieval Augmented Generation (RAG) by providing the Rec-
ommender agent with semantically similar historical cases
improved failure detection rates and reduced the number of
diagnostic steps. Their results showed that LLMs could auto-
mate parts of the PHM process with high accuracy and sug-
gested improvements when using agent based decomposition,
RAG grounding, and structured prompting. This dual agent
architecture offers a foundation for integrating LLMs into op-
erational maintenance settings by augmenting, rather than re-
placing, human expertise. (Lukens et al., 2024) proposed a
multi-agent PHM Copilot architecture where large language
model agents are orchestrated to automate tasks such as alert
summarization, failure explanation, and prescriptive step gen-
eration. Their system demonstrated the utility of structured
prompting and function calling APIs, with domain ground-
ing provided by case data retrieval. This work established the
feasibility of applying LLMs to industrial diagnostics and in-
spired extensions to causal modelling and intervention plan-
ning, as explored in our study.

2.2. Short Comings of the Similarity Based Searches

Similarity based retrieval systems, such as those employed in
LLM driven PHM frameworks, identify and reuse past cases
that appear semantically or operationally similar to the cur-

rent system state. While this approach provides intuitive and
fast access to historical patterns, it suffers from fundamen-
tal limitations. First, similarity does not imply causality; ac-
tions that resolved failures in prior cases may have done so
under different latent conditions and may not generalize to
the current context. Second, such systems offer no guaran-
tees about intervention effectiveness, as they fail to estimate
counterfactual outcomes what would have happened if a dif-
ferent action were taken. Third, without modelling confound-
ing variables, similarity search may reinforce existing biases
in the data (e.g., commonly chosen actions may appear re-
peatedly not because they are optimal, but because they were
frequently applied). Consequently, decisions based solely on
similarity can lead to misleading or suboptimal recommen-
dations, particularly in high-stakes or dynamically evolving
environments. To overcome these limitations, our framework
integrates causal inference to simulate interventions, estimate
treatment effects, and ground recommendations in counter-
factual reasoning enabling decisions that are both data driven
and causally sound.

2.3. Causal Inference in Industrial AI

Causal inference is increasingly being explored across vari-
ous domains of industrial AI, particularly in scenarios where
traditional correlation based methods fall short in guiding ef-
fective interventions. One such example is the work of (Diehl
& Ramirez-Amaro, 2021), who present a causal based frame-
work for predicting and preventing failures in robotic ma-
nipulation tasks. Their method leverages Bayesian networks
learned from simulation data to model the causal relation-
ships between action parameters and task outcomes. The
system predicts failure likelihood given the current state and,
when necessary, identifies corrective actions by searching for
alternative parameter configurations using contrastive reason-
ing. A key contribution of their work is the handling of
temporally shifted failure cases where an early action affects
the outcome of later steps by capturing causal dependencies
across the full sequence of actions. Their results show signif-
icant reductions in failure rates for both single and multi-step
stacking tasks, highlighting the value of causal modelling for
error prevention in robotics.

(Vanderschueren, Boute, Verdonck, Baesens, & Verbeke,
2022) introduced a compelling shift in preventive mainte-
nance strategy by proposing a prescriptive framework rooted
in causal machine learning. Traditional approaches often treat
maintenance effects as uniform, assuming every machine re-
sponds similarly to scheduled interventions. In contrast, their
method embraces the individuality of machines, recognizing
that maintenance outcomes can vary based on each machine’s
unique operational context. Their framework models over-
hauls and failures as potential outcomes influenced by the
frequency of preventive maintenance (PM). To make truly
individualized decisions, they optimize a cost function that
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balances the expenses of performing PM, dealing with fail-
ures, and executing full overhauls. At the heart of their ap-
proach lies SCIGAN, a generative adversarial network de-
signed for continuous treatments. This model enables ac-
curate counterfactual outcome prediction that is, estimating
what would have happened under a different maintenance
schedule and also corrects for selection bias inherent in ob-
servational datasets.

Tested on a dataset of more than 4,000 industrial mainte-
nance contracts, their causal approach significantly outper-
formed traditional supervised predictive models and general-
ized average-effect policies. The results underscore the value
of learning individualized treatment effects. Policies tailored
to the causal behaviour of each machine led to better pre-
dictive accuracy and greater cost efficiency, redefining what
optimal maintenance can look like in industrial operations.

(Yu & Smith, 2017) propose the use of Causal Chain Event
Graphs (CEGs) for modelling remedial maintenance pro-
cesses, offering a structured graphical formalism to repre-
sent event driven system deterioration and recovery. Unlike
traditional Bayesian networks, CEGs are designed to cap-
ture asymmetric, sequential event progressions and context-
specific dependencies commonly seen in real world engi-
neering systems. The authors define formal rules for mod-
elling different types of maintenance intervention perfect, im-
perfect, and uncertain, and extend Pearl’s do-calculus and
the back-door criterion to the CEG framework. Their ap-
proach enables causal reasoning over maintenance strate-
gies using path specific intervention logic, particularly suited
for discrete event systems where temporal progression and
conditional branching are central. Causality aware smart
troubleshooting framework that leverages LLMs and Causal
Bayesian Networks to extract root causes and solutions from
textual maintenance records (RoX).

Their system integrates technical ontologies (FMMEA) with
probabilistic graphical models, enabling causal inference at
both observational and interventional levels. While concep-
tually aligned with our work, their approach is based on static,
text driven causal graphs. In contrast, our PHM Co-pilot con-
structs localized causal models on the fly using structured
sensor and operational data, supports sequential intervention
simulation, and incorporates quantitative evaluation metrics
such as ATE and Counterfactual Success Rate (CSR). Our
system is designed for dynamic, real time decision making
with direct integration of effect estimation modules (e.g., DR
Learner), extending the capabilities of static textual diagnosis
frameworks (Trilla, Yiboe, Mijatovic, & Vitrià, 2024).

2.4. The Epistemic Gap Between LLMs and Interven-
tional Causal Inference

LLMs exhibit remarkable proficiency in generating main-
tenance plans and diagnostic suggestions from sensor in-

puts, their reasoning is fundamentally associative rather than
causal. Trained on vast corpora of text, LLMs rely on seman-
tic similarity and co-occurrence patterns to produce plausi-
ble outputs. However, this generative ability does not equate
to an understanding of intervention effects or counterfactual
reasoning. In the context of Prognostics and Health Man-
agement (PHM), where safety critical decisions depend on
knowing whether an action will resolve an issue under spe-
cific conditions, LLMs fall short. As noted by (Zečević et
al., 2023), LLMs may “talk causality” but lack the structural
machinery to reason causally. They cannot simulate alterna-
tive outcomes (e.g., “what would have happened if a differ-
ent action were taken”) or account for confounding variables,
both of which are central to robust treatment effect estima-
tion. Therefore, while we employ LLMs to generate con-
text aware and human-like maintenance suggestions, we pair
them with a dedicated causal inference engine that estimates
individualized treatment effects (e.g., ATE, ITE) over top k
matched historical episodes.

This hybrid approach ensures that recommended actions are
not just semantically plausible but also statistically grounded
in causal evidence. To discuss further LLMs often appear
to demonstrate causal reasoning, (Zečević et al., 2023) argue
that this behaviour is largely illusory. In their paper Causal
Parrots: Large Language Models May Talk Causality But Are
Not Causal, the authors introduce the concept of meta- Struc-
tural Causal Models (meta-SCMs) models that encode cor-
relations over causal facts found in natural language, rather
than performing genuine causal inference. They propose the
Correlation of Causal Facts (CCF) hypothesis, which posits
that LLMs correctly answer causal questions only when those
answers were already embedded in the training corpus as cor-
related causal statements, such as those found in Wikipedia.
Their experiments show that LLMs like GPT-3 can handle
simple causal chains and intuitive physical reasoning only
up to a point, but performance drops on longer, randomized,
or abstract chains indicating a lack of generalizable causal
reasoning. Even with Chain-of-Thought (CoT) prompting,
LLMs often rely on memorized reasoning templates rather
than dynamic inference. When tasked with reconstruct-
ing known causal graphs, LLMs demonstrated only moder-
ate accuracy, with results highly sensitive to prompt phras-
ing. Embedding-based retrieval using ConceptNet yielded
marginal improvements but again highlighted that LLMs re-
call rather than reason. Thus, (Zečević et al., 2023), con-
clude that LLMs behave as “causal parrots” repeating causal
patterns seen during training without modelling underlying
mechanisms. This distinction is critical when designing sys-
tems that rely on trustworthy, generalizable causal reasoning.
(Shrestha, Malberg, & Groh, 2025) investigate whether LLM
possess genuine causal reasoning abilities or simply replicate
memorized correlations, ultimately proposing prompt-based
strategies to enhance their performance in interventional and
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counterfactual tasks. The authors construct a new benchmark
spanning 170 causal questions across three levels of reason-
ing: (1) direct cause-effect associations, (2) mediated causa-
tion, and (3) counterfactual interventions. They evaluate pop-
ular models including GPT-3.5, GPT-4, Claude, PaLM, and
LLaMA under both zero-shot and Chain-of-Thought (CoT)
prompting conditions.

Their findings reveal that while LLMs perform relatively
well on direct causal queries, performance sharply declines
on questions requiring mediated or counterfactual reason-
ing. Even with CoT prompting, improvements appear to
stem from formatting regularity rather than genuine causal
inference. The authors conclude that current LLMs still op-
erate largely as “causal parrots”, retrieving and reorganizing
known facts without modelling causal mechanisms. (Zhang,
Wang, Liu, & Agarwal, 2024) explore the kinds of reasoning
errors LLMs make when faced with causal questions. Their
controlled experiments show that models often fall prey to
cognitive biases, such as inferring causation from temporal
order (post hoc fallacy) or failing to recognize confounding
variables. Even under structured prompting, LLMs struggle
to self-correct these fallacies and instead rationalize incorrect
inferences. The authors argue that such failure modes reveal
the absence of a grounded causal model within the LLMs,
cautioning against their use in any setting that demands rig-
orous counterfactual or interventional reasoning. To address
these limitations, our framework augments LLM based case
retrieval with explicit causal inference modules in both the
recommender and evaluator components. While LLMs are
capable of inferring high-level triggers and generating can-
didate plans, they lack principled causal reasoning capabili-
ties and are prone to fallacies and memorization artifacts. We
therefore integrate a lightweight, dynamically trained causal
model to simulate do-interventions and estimate treatment ef-
fects, ensuring that the final recommendations are not only
relevant but also causally grounded.

3. SYSTEM DESIGN

Our Recommender–Evaluator agent structure draws inspira-
tion from the dual agent design proposed by (Lukens et al.,
2024), where LLM are used to generate structured diagnostic
plans and independently assess their ability to identify true
failure modes. In their setup, a Recommender agent pro-
duces a sequence of troubleshooting steps, and an Evaluator
agent verifies whether each step would reveal the actual fault.
Our overall system architecture follows a similar dual-agent
paradigm, as illustrated in Figure 1, we build upon this idea
but extend it in two key ways:

1. Recommender generates causally sensitive actions by es-
timating treatment effects (e.g., ATE) based on structured
inference input, and

2. Evaluator simulates counterfactual outcomes using

causal inference models to assess the likely resolution
impact of each action.

3.1. Trigger Inference Module

To enable structured causal reasoning in our PHM Copilot,
we propose a causally aware inference pipeline that integrates
sensor condition snapshots with the generative reasoning ca-
pabilities of LLMs. At the heart of this pipeline is the Trig-
ger Inference Module, which transforms structured sensor in-
puts into interpretable maintenance narratives encompassing
anomaly detection, failure diagnosis, and corrective action
planning. While the CMAPSS dataset provides rich time-
series degradation data across multiple engines and operating
conditions, it lacks explicit annotations for real-world fail-
ure modes, diagnostic steps, corrective actions, and resolu-
tion outcomes. This presents a significant barrier to building
explainable PHM systems grounded in causal logic, as most
supervised learning approaches rely on labelled intervention
data. To overcome this limitation, we develop a prompt-
ing framework that extracts relevant sensor snapshots from
CMAPSS typically corresponding to early signs of degra-
dation and feeds them into an LLM with tailored instruc-
tion templates. The prompts are designed to elicit structured
maintenance traces that include:

1. The sensor triggers that prompt investigation

2. The inferred root cause or failure mode

3. The suggested diagnostic steps

4. The corresponding corrective actions

5. The expected resolution outcome

These generated episodes serve a dual purpose. First, they en-
rich the original CMAPSS data with structured, interpretable
maintenance narratives, which are essential for downstream
interventional simulation. Second, they allow us to synthet-
ically generate large volumes of diagnostic and corrective
workflows without relying on proprietary logs or costly hu-
man annotation. By grounding each generated maintenance
trace in real sensor behaviour and inferring plausible failure
and recovery sequences, the Trigger Inference Module pro-
duces structured representations of industrial scenarios that
are both operationally realistic and semantically rich. This
module forms the backbone of our LLM-guided PHM sys-
tem, enabling subsequent components retrieval, graph con-
struction, and do-intervention analysis to operate on consis-
tent and interpretable maintenance narratives derived from
raw sensor inputs.

To generate structured maintenance traces from CMAPSS
sensor data, we adopt a hybrid prompting strategy that com-
bines Chain-of-Table (CoT-table) prompting (Zhang et al.,
2024) with the ReAct (Reasoning + Acting) framework (Yao
et al., 2023). CoT-table prompting allows us to present multi-
variate sensor and operational inputs as compact tabular snap-
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Sensor and Operational Settings
Real-time sensor signals and control settings.
• sensor 1, sensor 2, . . . , sensor n
• op setting 1, . . . , op setting n

Health Assessment
LLM uses Chain-of-Table reasoning to assess in-
puts and generate structured plans to each category.
Anomaly: Potential Combustion Instabil-

ity
Failure Model: High-temp instability
Sensor Trigger: Sensor 4, 7, 11
Diagnostics: Cross-check sensor 4
Correction: Recalibrate rotor, inspect com-

bustor

Top-K Retrieval via Nearest Neighbors
Similar historical episodes identified by
matching triggers and system settings.
• Used for similarity-ranked causal inference

Recommender Module
DR-Learner estimates treatment effects on retrieved data.
• Localized causal inference
• Suggests high-impact interventions
• Metrics: ATE, Policy Value, Personalization Gain

Evaluator Module
S-Learner with action injection for counterfactual validation.
• Top-k retrieved localized causal model with S-Learner–based counterfactual

injection
• Validates via counterfactual injection based causal inference
• Outputs: Proxy CSR, ATE Agreement, Reliability Flags

Figure 1. Causally informed PHM Co-Pilot architecture.

shots, enabling the language model to reason across corre-
lated signals and detect emerging trends. By layering Re-
Act on top, the model is guided through step by step rea-
soning identifying anomalies, inferring failure modes, se-
lecting diagnostic steps, and recommending corrective ac-
tions in a transparent and interpretable manner. This com-
bined approach mirrors how human technicians approach
troubleshooting: observe, decide, and act. It also produces
structured outputs that are easily transformable into elements
of a causal knowledge graph. Additionally, the integration of
Re-Act allows for mid step interventions, plan revisions, and
fallback reasoning, making the framework suitable for scal-
able and interactive synthetic data generation. This approach
enables the simulation of complete maintenance workflows
in a manner that is both physically grounded and structurally

interpretable. The resulting episodes preserve the physical
realism of CMAPSS sensor dynamics while generating se-
mantically rich maintenance traces that serve as inputs for
downstream modules, including case-based retrieval, local-
ized causal graph construction, and counterfactual interven-
tion simulation. Unlike RAG-based frameworks that rely on
retrieved textual knowledge, our approach constructs prompts
entirely from CMAPSS sensor data. This ensures that all
generated maintenance traces are grounded in real system be-
haviour, making the framework both interpretable and simu-
lation ready.

3.2. Localized Causal Inference

Once the Trigger Inference Module generates a structured
corrective actions, the next step in our pipeline is to evalu-
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ate which actions are causally effective in resolving the de-
tected failure. To do this, we adopt a localized causal infer-
ence strategy that estimates treatment effects over a narrow,
context aware subset of historical cases, selected based on
similarity in operating conditions and sensor trigger profiles.
This ensures that estimated effects are tailored to the current
system state, improving relevance and reducing confounding
from unrelated operating regimes. Prior work has shown that
global causal models often fail to account for contextual het-
erogeneity and may introduce noise from unrelated operating
regimes, leading to biased or diluted effect estimates (Guo,
Gifford, & Fraser, 2010).

Instead, localized causal inference based on nearest neigh-
bour matching or contextual subsets has shown to improve
treatment effect estimation by conditioning on comparable
prior experiences (Zhou & Kosorok, 2017). Guided by this
principle, we avoid constructing a global causal model over
the entire dataset. Rather, we perform inference over the
top k most similar maintenance episodes, retrieved based on
operational settings and sensor trigger profiles. These top-k
episodes represent historical instances with similar degrada-
tion behaviour and environmental context enabling our sys-
tem to estimate context sensitive treatment effects grounded
in relevant past experiences.

For each candidate corrective action proposed by the LLM,
such as water wash or shop visits are not randomly assigned;
they are strongly influenced by engine operating settings and
sensor triggers. For example, engines with high compressor
pressure ratio or rising exhaust gas temperature were much
more likely to receive a water wash intervention. This creates
systematic confounding between treated and control groups,
because the same covariates that trigger action assignment
also directly accelerate degradation and shorten remaining
useful life. In other words, engines that receive treatment
typically begin in worse health states than those in the control
group. If we were to compare outcomes naively, the treated
group would appear to perform worse, not because the inter-
vention was harmful, but because they started from a more
degraded baseline. The DR-Learner is designed to address
exactly this scenario by combining outcome regression and
propensity modelling, yielding doubly robust treatment ef-
fect estimates that remain consistent even when one of the
nuisance models is mis specified (Künzel, Sekhon, Bickel, &
Yu, 2019). This makes it highly effective for learning individ-
ualized treatment effects in environments where intervention
assignment is biased by system state.

At the same time, PHM data exhibits nonlinear interactions
among operating variables, sensor states, and interventions.
For instance, the combined effect of high fan speed and mod-
erate altitude can lead to degradation patterns that are not well
captured by linear models. To handle this complexity, the S-
Learner was implemented with a flexible nonparametric re-

gressor, which can capture such nonlinearities while provid-
ing straightforward aggregate effect measures (ATE and ATE-
based metrics) for evaluating fleet level performance. For
example, causal forests have been developed as a random-
forest-based algorithm designed to estimate heterogeneous
treatment effects with valid asymptotic guarantees (Athey &
Imbens, 2016),(Wager & Athey, 2018). While our framework
instead employs meta learners specifically the S-learner in
the evaluator module and the DR-learner in the recommender
module, motivation is similar both approaches leverage flexi-
ble learning algorithms to overcome the limitations of classi-
cal parametric estimators in high-dimensional, nonlinear set-
tings. Thus, the two learners together address the core chal-
lenges of PHM data confounding in action assignment and
nonlinear dependencies in system behaviour, ensuring robust
individualized recommendations and reliable population level
evaluation.

Corrective action suggested by the LLM, we estimate its
causal impact on the resolution outcome using a localized
subset of top k historical cases matched by operational set-
tings and sensor triggers. This subset serves as the infer-
ence time dataset for training a lightweight causal model typ-
ically a DR-Learner in the recommender module or an S-
Learner in the evaluator module, thus avoiding reliance on
a static, global causal model. Operating within the potential
outcomes framework, we compute the Average Treatment Ef-
fect (ATE) and, when needed, the Individual Treatment Effect
(ITE) for each action. This localized causal reasoning ap-
proach enables simulation of do-interventions over relevant
prior episodes, thereby grounding each treatment effect esti-
mate in system states similar to the current context. In some
cases, we further enhance robustness by injecting synthetic
counterfactuals into the matched subset, allowing simulation
of alternative intervention trajectories. Although our method
introduces a per inference training step, the small size of the
top k window (typically 20–100 rows) ensures computational
feasibility and allows the system to generate personalized,
context aware causal estimates aligned with each engine’s
real time state.

3.3. Recommender Module: Intuitive Plan Generation
and Ranking

The Recommender module generates candidate corrective ac-
tions based on the current system issue, defined by its oper-
ational settings and sensor trigger profile. It initiates infer-
ence by passing the input features to a Large Language Model
(LLM), which returns a set of natural language maintenance
actions that reflect plausible diagnostic or repair strategies for
the inferred condition. To assess their likely effectiveness, the
system retrieves a localized subset of historical maintenance
episodes specifically, the top-k rows most similar to the cur-
rent case. Similarity is computed based on both operational
settings and LLM-identified sensor triggers, ensuring that re-
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trieved examples reflect comparable degradation patterns and
environmental conditions.

We standardized these features using scikit-learn’s Standard
Scaler, fitting the scaler on the candidate knowledge base
and applying the same transformation to the inference input.
This normalization ensures consistent scaling during simi-
larity comparison. Scikit-learn’s NearestNeighbors with Eu-
clidean distance was then applied to identify the top-k. To
identify the most effective corrective action among those pro-
posed by the LLM, we apply a causal re-ranking step based on
treatment effect estimation. For each candidate intervention,
a localized DR-Learner model is dynamically trained on the
top-k retrieved historical episodes those most similar to the
current system state based on operational settings and sensor
triggers. This model estimates the Average Treatment Effect
(ATE) or Individual Treatment Effect (ITE) under the cur-
rent context, representing the predicted resolution likelihood
if that specific action were taken. This follows the principle of
treatment effect based ranking, as demonstrated in prior work
(Xu, Mahajan, Manrao, Sharma, & Kiciman, 2020), where
individualized causal estimates guide the prioritization of in-
terventions in observational settings.

We implement the DR-Learner using the EconML library
(Battocchi et al., 2019), which combines outcome regression
and propensity modelling to achieve doubly robust estimates
(Kennedy, 2020). To estimate the conditional treatment ef-
fects for each inference instance, we adopt the DR-Learner
(Doubly Robust Learner) framework, which combines out-
come modelling and inverse propensity weighting to generate
stable, bias-resistant treatment effect estimates. Specifically,
for each row i, we model the potential outcomes under treat-
ment and control using separate regressors:

µ̂1(xi) = E(Y | X = xi, T = 1) (1)

µ̂0(xi) = E(Y | X = xi, T = 0) (2)

We also estimate the propensity score:

ê(xi) = P(T = 1 | X = xi) (3)

Using these, the doubly robust estimate of the individual
treatment effect τ̂i is given by:

• τ̂i Estimated treatment effect for instance i

• xi Covariates / features for instance i

• Ti ∈ {0, 1} Treatment indicator (1=treated, 0=control)
• Yi Observed outcome for instance i

• ê(xi) Estimated propensity score: probability of receiv-
ing treatment given features xi

• µ̂1(xi) Predicted outcome under treatment

• µ̂0(xi) Predicted outcome under control

τ̂i =

(
µ̂1(xi) +

Ti

ê(xi)
(Yi − µ̂1(xi))

)
−
(
µ̂0(xi) +

1− Ti

1− ê(xi)
(Yi − µ̂0(xi))

) (4)

Our configuration uses linear regression for outcome and
final-stage treatment effect models, and logistic regression for
the propensity score model (with max iter=1000 to en-
sure convergence). Given the small size and structured nature
of the top-k matched subset, we disable cross fitting (cv=1),
as data splitting could reduce stability and model fit in such
localized windows. This setup provides an efficient, inter-
pretable foundation for personalized causal ranking of candi-
date actions within a context-aware decision support pipeline.

3.4. Evaluator Module: Critical Counterfactual Scoring
and Validation

The Evaluator module provides the counterfactual reason-
ing component of the PHM Co-Pilot pipeline, validating the
causal impact of candidate actions proposed by the Rec-
ommender. While the Recommender generates plausible
maintenance plans using LLM based reasoning and localized
DR-Learner estimates, the Evaluator independently assesses
whether these actions are likely to be effective in the cur-
rent system context defined by operational settings and sen-
sor trigger patterns observed at inference time. To perform
this evaluation, the Evaluator retrieves the top k most simi-
lar historical episodes based on the current context and trains
a localized S-Learner causal model. The S-Learner is im-
plemented using the EconML library (Microsoft Research;
Battocchi et al., 2019) and fits a single predictive model to
jointly learn outcomes as a function of covariates and treat-
ment indicators. Treatment effects are then computed by
comparing predicted outcomes under different interventions
while holding system features fixed (Künzel et al., 2019).
In our setup, the S-Learner uses a random forest regressor
(RandomForestRegressor from scikit-learn) as the underlying
outcome model. This choice supports nonlinear interactions
and accommodates heterogeneous treatment effects in the top
k matched subset, providing a robust and flexible modelling
foundation that complements the DR-Learner’s doubly robust
estimates.

To improve generalization and causal coverage, the Evalu-
ator applies synthetic counterfactual injection, where LLM
generated actions are embedded into the retrieved historical
rows to simulate “what-if” scenarios even for interventions
not previously observed. This approach is consistent with re-
cent work in Augmented Causal Effect Estimation (ACEE)
(Chen, Shen, & Pan, 2025) and enhances the system’s abil-
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ity to evaluate underrepresented or novel actions by expand-
ing the diversity of treatment outcome pairs. Beyond scor-
ing, the Evaluator also supports transparent decision making
by generating personalized treatment effect estimates (ITE)
and surfacing supporting evidence such as similar past cases
or interpretable causal summaries. These outputs ITE rank-
ings, resolution probabilities, and counterfactual comparisons
provide users with a grounded and explainable basis for ac-
tion selection. Prior studies have shown that such counter-
factual justifications significantly improve user trust and in-
terpretability in AI driven recommendation systems (Warren,
Keane, & Byrne, 2022).

4. EVALUATION AND DISCUSSION

As a proof of concept, we employed the aforementioned
prompting strategy combining Chain-of-Table and ReAct-
style reasoning to generate corrective actions from CMAPSS
sensor data. These prompts enabled the LLM to infer struc-
tured maintenance traces, including failure context and can-
didate repair steps, based on early-stage degradation patterns
observed in the sensor inputs. To simulate interventional and
counterfactual outcomes for evaluating the causal validity of
these LLM-generated maintenance plans, we deployed the
Evaluator module on a structured dataset of synthetic diag-
nostic episodes derived from the CMAPSS benchmark. All
prompts were processed using OpenAI’s GPT-4-turbo model
(gpt-4-0125-preview), selected for its strong reasoning ca-
pabilities and inference efficiency. The Evaluator was run
on a test set of 850 distinct inference rows, each represent-
ing a simulated degradation scenario. For each instance, the
LLM first generated a candidate corrective action plan. Sub-
sequently, the top k=20 most similar historical maintenance
episodes were retrieved from a knowledge base of 10,500
generated episodes using similarity in operational settings
and sensor trigger profiles. A localized causal model using
an S-Learner was then trained on this context-aware subset to
estimate treatment effects.

To perform counterfactual simulation, synthetic interventions
were injected by substituting the LLM-recommended action
into retrieved episodes where it had not originally occurred.
This enabled the estimation of unobserved outcomes under al-
ternative decisions. Both Individual Treatment Effects (ITE)
and Average Treatment Effects (ATE) were computed for
each candidate action, simulating do-interventions and eval-
uating their expected impact on resolution outcomes. Fi-
nal rankings of recommended actions were derived based
on these simulated causal effects, specifically their likeli-
hood of resolving the failure under hypothetical interven-
tions. This experimental design combines structured prompt-
based generation with localized causal inference and coun-
terfactual reasoning, showcasing the feasibility of an LLM-
driven, causally-grounded PHM Co-pilot. We evaluated our
Causal-Aware LLM PHM Co-pilot framework across 2,046

synthetic inference cases, each representing a distinct sensor-
derived system state. For a focused evaluation of the Evalua-
tor module, a filtered subset of 850 cases was selected based
on completeness and diversity of the retrieved historical con-
text. These 850 cases were used to simulate counterfactual
outcomes, compute causal metrics (ATE, ITE), and re-rank
candidate corrective actions.

4.1. Recommender Effectiveness

We evaluated the causal impact of the LLM-generated cor-
rective actions, produced by the recommender module using
the DR-Learner framework, through average treatment effect
(ATE) estimation. The results, summarized in the table be-
low, show that the recommended actions were generally ef-
fective in improving resolution likelihood across diverse sys-
tem states. While most cases benefited from positive causal
influence, some instances exhibited variability and risk, par-
ticularly in low-confidence settings, as reflected in the ob-
served range of ATE values. Although the DR-Learner esti-
mates CATE the treatment effect conditional on each system’s
features we summarize these into a global ATE metric to
quantify the general effectiveness of the LLM-recommended
actions across all inference rows. The mathematical formula-
tion underlying this causal estimation is provided in the sec-
tion below.

Mean ATE =
1

n

n∑
i=1

τ̂i (5)

Median ATE = median (τ̂1, τ̂2, . . . , τ̂n) (6)

Negative ATE Rate =
1

n

n∑
i=1

1 (τ̂i < 0) (7)

4.2. ATE Lift Over Control

When comparing the LLM recommended corrective actions
against the historical actions taken in similar situations by
evaluating their relative causal effectiveness. Specifically, we
assessed the ATE lift the improvement in average treatment
effect of the LLM generated recommendation compared to
the average effect of past (control) actions in the top-k re-
trieved rows. This comparison allows us to quantify whether
the recommender system offers meaningful improvements
over prior maintenance decisions made in similar operational
contexts. Using ATE lift as a metric is particularly impor-
tant in high stakes decision making systems, where simply
estimating the effect of an action is not enough. We need
to benchmark the LLM’s proposed actions against historical
baselines to ensure that the system is not just generating plau-
sible interventions, but is actually recommending better-than-
before decisions. By evaluating the direction and frequency
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of ATE lift, we can identify how often the LLM’s recom-
mendations truly outperform historical decisions and also flag
instances where they may introduce risk thereby supporting
downstream validation and risk-aware deployment.

Let τ̂LLM
i be the estimated treatment effect (ATE) of the LLM-

recommended action for inference row i, and let τ̂ control
i be the

mean ATE of the historical (control) actions taken in the top-k
retrieved rows for the same inference input.

ATE Lifti = τ̂LLM
i − τ̂ control

i (8)

Mean ATE Lift =
1

n

n∑
i=1

(
τ̂LLM
i − τ̂ control

i

)
(9)

Positive Lift Rate =
1

n

n∑
i=1

1
(
τ̂LLM
i > τ̂ control

i

)
(10)

• 1(·) is the indicator function: it equals 1 if the condition
is true, and 0 otherwise.

• n is the number of inference rows.

4.3. Policy Value Estimation

To assess the effectiveness of the LLM-generated actions in a
real world deployment scenario, we estimate the policy value
defined as the expected outcome (e.g., resolution likelihood)
if a given policy were applied consistently across all infer-
ence cases. This metric allows us to simulate and compare
the performance of different decision making strategies with-
out needing to deploy them in practice. By comparing the
estimated policy value of the LLM-based policy against that
of the historical control actions, we can quantify the poten-
tial benefit of adopting the recommender system over legacy
or frequency based heuristics. A higher policy value for the
LLM recommended actions suggests that they are more likely
to lead to successful outcomes when broadly applied, offering
evidence for replacing or augmenting current maintenance
practices with learned acausal policies Dudı́k, M., Erhan, D.,
Langford, J., and Li, L. (2014).

Let π be the policy being evaluated (e.g., the LLM-generated
policy), Yi be the observed outcome for instance i, Ŷi(π) be
the estimated outcome had policy π been applied, and n be
the total number of inference cases.

Then, the estimated policy value is:

Policy Value(π) =
1

n

n∑
i=1

Ŷi(π) (11)

If we’re comparing the LLM policy πLLM against a control

policy πcontrol, the policy value improvement is:

Policy Value

Improvement = Policy Value(πLLM)

− Policy Value(πcontrol)

(12)

4.4. ATE Agreement with Injected Estimate

To assess internal consistency and validate the stability of
our causal effect estimation pipeline, we compared the ATE
values generated directly by the recommender module with
those obtained through a separate process involving syn-
thetic action injection. This comparison helps ensure that
the model’s estimated treatment effects are not artifacts of
a particular estimation strategy, but instead remain consistent
across different causal reasoning procedures. High agreement
between these two approaches strengthens confidence in the
reliability of the estimated action impacts, reinforcing the va-
lidity of decisions based on the LLM-generated recommen-
dations (Narita, Yasui, & Yata, 2021). We define agreement
between the direct ATE and the injected ATE when their ab-
solute difference is within a small threshold ϵ typically set to
0.05:

Agreementi = 1
(∣∣∣τ̂ direct

i − τ̂ injected
i

∣∣∣ ≤ ϵ
)

(13)

τ̂ direct
i is the ATE estimated by the DR-Learner on the origi-

nal (non-injected) recommendation. τ̂ injected
i is the ATE com-

puted after injecting the same recommended action synthet-
ically into the historical data for unit i. ϵ is the agreement
threshold (e.g., 0.05). 1(·) is the indicator function returning
1 if the condition is true, 0 otherwise.

ATE Agreement Rate =
1

n

n∑
i=1

Agreementi (14)

4.5. Personalization Gain

The recommender’s general causal effect estimates with in-
dividualized treatment effects tailored to each inference case.
This comparison helps evaluate how well the global policy
aligns with row specific needs. A high alignment indicates
that the recommender’s default behaviour performs reason-
ably well across diverse scenarios. However, discrepancies
between the global and individualized effects can reveal op-
portunities for fine grained personalization enabling the sys-
tem to adapt recommendations more precisely based on the
unique characteristics of each system state. By quantifying
this alignment, we gain insight into how much additional
value could be unlocked through personalization beyond the
average-case policy. This is especially important in high-
stakes domains like predictive maintenance, where a generic
recommendation might not optimally address specific degra-
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dation profiles. Personalization gain thus serves as a guiding
metric to identify when and where more tailored interven-
tions are warranted. Tu, Y., Basu, K., DiCiccio, C., Bansal,
R., Nandy, P., Jaikumar, P., and Chatterjee, S. (2020).

Let τ̂i be the Individual Treatment Effect (ITE) for the i-th
inference case, estimated by the DR-Learner. Let ATEglobal
be the global Average Treatment Effect estimated by the rec-
ommender across all inference cases.

Then, for each row i, the Personalization Gain is computed
as:

PersonalizationGaini = τ̂i − ATEglobal

4.6. Negative ATE Flag Rate

In a decision-support system that recommends corrective ac-
tions, it is critical to identify instances where the proposed
actions could inadvertently lead to worse outcomes than
the status quo. Negative ATE (Average Treatment Effect)
cases represent such failure points situations where the LLM-
recommended intervention is estimated to reduce the proba-
bility of resolution compared to historically observed control
actions. Flagging these cases is essential because it helps dis-
tinguish risky or potentially harmful recommendations from
beneficial ones. This metric serves as a safeguard, highlight-
ing the need for an evaluator module that can act as a fil-
ter rejecting or adjusting interventions that may backfire. By
surfacing these adverse effect scenarios, the system ensures
that causal recommendations undergo an additional layer of
scrutiny before being deployed, enhancing both safety and
trust in high-stakes operational settings like industrial main-
tenance or healthcare diagnostics.

Let τ̂i be the estimated individual treatment effect (ITE or
CATE) for inference case i, i.e.,

τ̂i = Ŷi(1)− Ŷi(0) (15)

where:

• Ŷi(1): predicted outcome if the LLM-recommended ac-
tion is applied

• Ŷi(0): predicted outcome under the control (historical)
action

Define an indicator function: Let the negative flag for in-
stance i be defined as:

Negative Flagi = 1 (τ̂i < 0) (16)

Then, the Negative ATE Flag Rate is:

Negative ATE Flag Rate =
1

n

n∑
i=1

Negative Flagi

=
1

n

n∑
i=1

1 (τ̂i < 0)

(17)

4.7. Support-Based ATE Reliability

Many LLM-recommended actions are based on limited his-
torical matches, making their ATE estimates potentially un-
reliable. Even if the estimated effect appears strong, low data
support raises concerns about statistical validity. This moti-
vates the need for an Evaluator module, which helps filter or
flag low-support actions. By assessing the reliability of ATE
estimates, the evaluator ensures that only well supported and
trustworthy actions are considered for decision-making.

Let Si be the number of matched historical samples (support)
for inference row i, and let τ̂i be the estimated ATE. We define
an indicator for high-support reliability as:

Reliable Flagi = 1 (Si ≥ smin) (18)

where:

• Si is the number of matched historical samples for infer-
ence case i

• smin is the minimum support threshold for reliability

1(·) is the indicator function that returns 1 if the condition is
true, and 0 otherwise. Then, the Support-Based Reliability
Rate across all n inference rows is:

Reliability Rate =
1

n

n∑
i=1

Reliable Flagi (19)

4.8. Evaluator Effectiveness (Proxy Analysis)

To gauge the evaluator’s contribution without relying on ex-
pensive counterfactual simulations for every inference case,
we introduced a proxy-based approach that estimates how
well the evaluator aligns with the recommender’s individu-
alized causal estimates. By comparing the evaluator’s as-
sessment with personalized treatment effects generated by the
recommender, we can approximate how consistently the eval-
uator filters or validates recommended actions. This proxy
serves as a lightweight indicator of counterfactual agreement
how likely it is that a recommended action truly leads to res-
olution when compared against plausible alternatives. Most
cases fall within a moderate confidence zone, indicating that
the evaluator plays a stabilizing role, offering a second opin-
ion in uncertain decision regions. Moreover, a high rate of
agreement between the recommender and evaluator modules
suggests that the overall framework maintains causal coher-
ence across components. This builds confidence in the sys-
tem’s internal alignment and helps identify edge cases where
evaluator intervention can prevent incorrect or risky recom-
mendations from being deployed.

Let τ̂i be the individual treatment effect (ITE) for inference
case i, estimated by the DR-Learner in the recommender. Let
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n be the total number of inference cases. Define the proxy
CSR (Counterfactual Success Rate) for case i as:

CSRi = 1 (τ̂i > 0) (20)

That is, we consider a case successful if the estimated ITE is
positive, implying that the recommended action improves the
resolution likelihood over the control. Then, the overall mean
proxy CSR is:

Mean Proxy CSR =
1

n

n∑
i=1

1(τ̂i > 0) (21)

This gives the proportion of inference cases where the rec-
ommended action is expected to have a positive causal effect,
serving as a lightweight proxy for full counterfactual sim-
ulation success. To improve decision-making under offline
conditions, we rely on proxy evaluation strategies that esti-
mate relative policy improvement rather than absolute value.
The ∆-OPE framework introduced by Jeunen and Ustimenko
(2024) enables low-variance estimation of policy value dif-
ferences by leveraging offline data from a logging policy,
thereby functioning as an effective proxy for real-world per-
formance evaluation in recommender systems Jeunen, O., &
Ustimenko, A. (2024).As shown in Table 1, each evaluation
metric is accompanied by observed values and a descriptive
comment explaining its relevance. This ensures that the us-
ability of all metrics both for recommender effectiveness and
evaluator alignment is clearly conveyed.

5. LIMITATIONS

5.1. Lack of Ground Truth for Corrective Actions

The CMAPSS dataset does not include labelled ground-truth
corrective actions for each degradation event. Consequently,
the causal effectiveness of the LLM generated and evaluator-
ranked interventions cannot be validated against real-world
outcomes. While our evaluation leverages synthetic coun-
terfactual injection and causal inference metrics (ATE, ITE),
these remain approximations and cannot fully replace expert-
annotated resolution logs or operator feedback.

5.2. Synthetic Data and Simulated Reasoning

Our inference and evaluation pipelines operate on structured
synthetic episodes derived from CMAPSS sensor traces.
While useful for proof-of-concept, these do not capture the
full operational variability or uncertainty seen in real indus-
trial workflows. This may affect generalizability and suggests
caution when extrapolating our results to field-deployed PHM
systems.

5.3. Generalizability and Domain Transfer

The framework was tested on a single benchmark (CMAPSS)
and has not yet been validated across different machinery
types, industries, or sensor ecosystems. The quality of LLM-
generated plans and the robustness of causal estimators (like
DR-Learner) may vary significantly depending on domain-
specific failure modes and data sparsity.

5.4. Simplified Causal Modelling Assumptions

Our use of S-Learner and DR-Learner methods relies on
assumptions of conditional ignorability and minimal con-
founding within the top-k retrieved cases. However, in real-
world settings with latent confounders or time-varying ef-
fects, more advanced methods such as marginal structural
models (MSMs) or instrumental variable techniques may be
required for robust inference.

5.5. Lack of Multi-Step Causal Modelling

While our framework evaluates individual actions, it does not
model the joint or sequential causal effect of multi-step main-
tenance plans. Specifically, we do not estimate the cumulative
impact of executing sequences like Inspect � Calibrate �
Replace, nor do we model chained do-calculus effects (Daw-
son & Lavori, 2007; Fan, 2022). Each DR-Learner/S-Learner
is trained per action, ignoring interdependencies between se-
quential steps.

5.6. Causal Limits of LLMs

While our framework integrates LLMs for generating candi-
date actions, the actual causal reasoning is delegated to struc-
tured inference modules due to the LLMs’ lack of explicit
causal modelling. As emphasized in prior work (Zečević et
al., 2023),(Pearl, 2009), LLMs cannot simulate counterfactu-
als or perform do-calculus. This reinforces the necessity of
hybrid approaches that ground generative fluency with causal
rigor (Trilla et al., 2024),(Warren et al., 2022)

6. FUTURE WORK

6.1. Integrating Evaluator Feedback for Causal Re-
Ranking

Our current architecture maintains an open-loop separation
between the Recommender and Evaluator modules, where
the Evaluator passively computes causal metrics such as
localized ATE, Proxy Counterfactual Success Rate (CSR),
and support-based reliability, without influencing the Recom-
mender’s final action choice. As a future extension, we pro-
pose enabling a re-ranking mechanism where the Evaluator’s
causal assessments can be used to prioritize or filter candidate
actions. By computing a composite causal quality score based
on metrics like estimated treatment effect, policy value, and
reliability flags the system could dynamically adjust the rank-
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Table 1. Summary of Causal Evaluation Metrics for LLM-Generated Actions

Metric Observed Values Comments
Recommender Effective-
ness (Mean ATE)

Mean = 0.695, Median = 0.833,
Max = +1.0, Min = -1.0

LLM-generated actions were generally effective in improving
outcomes, though variability in causal impact underscores the
need for caution in low-confidence cases.

ATE Lift Over Control Mean = -0.011, Median =
0.017, Positive Lift = 52.64%

LLM-generated actions outperformed historical ones in the ma-
jority of cases, but variability in causal lift highlights the need
for validation to prevent suboptimal decisions.

Policy Value Estimation LLM Policy Value = 0.689,
Control = -0.011, Absolute
Gain = +0.700

LLM-generated actions outperformed historical controls in ex-
pected resolution outcomes, demonstrating their potential as ef-
fective, policy-level interventions when guided by causal eval-
uation.

ATE Agreement with Injec-
tion Estimate

Agreement Rate (within ±0.05)
= 93%

LLM-generated actions demonstrated strong internal consis-
tency, with causal estimates remaining stable across different
evaluation methods, supporting the reliability of the recom-
mender’s outputs.

Personalization Gain Mean Gain = -0.011, Median =
0.017, Positive Gain = 52.64%

LLM-generated actions show moderate alignment with person-
alized causal needs, but their effectiveness could be improved
by tailoring recommendations more precisely to individual sys-
tem states.

Negative ATE Rate 14.31% of inference rows had
negative ATE

LLM-generated actions occasionally reduced resolution likeli-
hood, highlighting the risk of blindly accepting such outputs
and underscoring the need for causal filtering to avoid harmful
decisions.

Support-Based ATE Relia-
bility

Low-Support ATE = 0.696,
High-Support ATE = 0.654,
High-Support Rows = 0.21%

Most LLM-generated actions were supported by few historical
matches, making their ATE estimates less statistically reliable
and highlighting the need for causal validation.

Evaluator Effectiveness
(Proxy CSR)

Mean CSR = 0.702, Std Dev
= 0.247, High Confidence (>
0.8) = 2.27%, Low Confidence
(< 0.5) = 0.91%, Agreement =
93%

High agreement between recommendation and causal validation
modules suggests that while LLM actions are often plausible,
their reliability benefits from causal oversight.

ing of LLM-generated actions prior to final selection. Such
a feedback loop would strengthen the causal grounding of
the overall recommendation pipeline, improving robustness
in high-stakes or low-confidence environments. This direc-
tion aligns with broader trends in causal recommender sys-
tems, where treatment effect estimation is increasingly inte-
grated into ranking decisions, though our approach is distinct
in leveraging localized causal inference over retrieved top-k
episodes with action injection. Incorporating such causal re-
ranking as a downstream filtering or reordering layer remains
a promising area for further development.

6.2. Toward Production-Scale Causal Co-Pilots

To move beyond the current proof-of-concept, future work
will focus on enhancing both the realism and scalability of
the framework. In production settings, the computational
overhead of causal estimation can be mitigated through tech-
niques such as batching, caching, and retrieval-aware model
reuse. To improve the quality of LLM-generated plans, future
iterations may incorporate fine-tuning on real-world mainte-
nance logs and operator annotations. Expanding the system’s
causal reasoning capabilities will involve modelling multi-
step action chains using Structural Causal Models (SCMs)

or Marginal Structural Models (MSMs) to capture temporal
dependencies and treatment interactions. Additionally, re-
placing localized retrieval with FAISS style global embed-
ding search could enable more scalable and diverse access
to historical knowledge. Finally, integrating symbolic causal
modules or structured reasoning scaffolds into the prompt-
ing strategy may allow future LLMs to generate plans with
stronger causal coherence, bridging the gap between genera-
tive fluency and interventional validity.

7. CONCLUSION

This paper presents a hybrid causally aware PHM Co-
pilot framework that integrates large language models with
structured causal inference to generate and evaluate mainte-
nance recommendations. By combining generative prompt-
ing strategies with localized treatment effect estimation, the
system is capable of producing interpretable and context-
sensitive action plans grounded in real-time sensor data.
Through extensive simulation over the CMAPSS benchmark,
we demonstrate that LLM generated corrective actions when
evaluated using causal models such as DR-Learner and S-
Learner can be ranked and validated effectively using syn-
thetic counterfactual injections. This dual-module design en-
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sures both adaptability and accountability; while the Recom-
mender suggests human-like interventions, the Evaluator ver-
ifies their potential effectiveness under realistic “what-if” sce-
narios.

The framework shows strong alignment between individual
and average treatment effects, and exhibits promising be-
haviour in terms of personalization and causal reliability.
While certain limitations such as lack of multi-step causal
modelling and ground-truth labels remain, this work estab-
lishes a robust proof of concept for the use of causality driven
LLM agents in industrial prognostics and health manage-
ment. Future extensions may explore multi-step treatment
trajectories, symbolic causal model fusion, and real world
deployment in safety critical environments. Together, these
advancements can help transform LLM-based co-pilots from
generative tools into trustworthy, decision-critical partners in
industrial maintenance.

NOMENCLATURE

LLM Large Language Model
PHM Prognostics and Health Manage-

ment
ATE Average Treatment Effect
ITE Individual Treatment Effect
CATE Conditional Average Treatment Ef-

fect
DR-Learner Doubly Robust Learner for causal

effect estimation
S-Learner Single-model learner estimating

treatment effects in a unified model
SCM Structural Causal Model
MSM Marginal Structural Model
CSR Counterfactual Success Rate
CCF Correlation of Causal Facts (hy-

pothesis about LLM causal behav-
ior)

CMAPSS Commercial Modular Aero-
Propulsion System Simulation
dataset

Do-Intervention Causal intervention operator from
do-calculus
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