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ABSTRACT 

We propose an autonomous aerial inspection system to 
address growing safety concerns of railway infrastructure 
degradation. Unlike conventional labor- and sensor-intensive 
methods, our quadrotor integrates a depth camera, monocular 
inspection camera, Global Positioning System (GPS) 
module, and onboard computing unit. Combining visual-
inertial fusion with GPS, it achieves robust localization even 
in GPS-denied environments. A lightweight deep learning 
model built on You Only Look Once v12 (YOLOv12) 
enables real-time detection of key components such as spikes 
and clips. To enhance autonomy, we introduce Railway 
Autonomous Navigation Guided by Embedded Recognition 
(RANGER), a novel algorithm that reconstructs 3D world 
coordinates from 2D detections using only onboard sensing, 
without requiring prior global maps. By fusing detection with 
localization data, RANGER enables precise track following 
and stable altitude control in complex or GPS-denied 
conditions. This reduces hardware demand while ensuring 
accurate navigation. Our system reduces operational costs, 
enhances scalability, and enables accurate, real-time 
inspections in complex, unstructured environments. 

1. INTRODUCTION 

The railway system is a vital component of national and 
regional transportation networks, providing a dependable and 
efficient means of moving freight and passengers. In the 
United States, the railway network stretches over 225,000 
kilometers, making it the most extensive in the world 

(Association of American Railroads, 2024). However, as the 
infrastructure continues to age, safety concerns are growing, 
particularly the integrity of small yet essential components, 
including spikes, fasteners, and clips. According to the 
Federal Railroad Administration (2024), failures in these 
components contributed to more than 400 railway accidents 
in 2024 alone. Traditional inspection methods, including 
manual visual examinations and vehicle-mounted systems, 
are often time-consuming, labor-intensive, and subjective, 
along with operational constraints. These methods are 
ineffective for inspecting remote or hard-to-access locations, 
such as tunnels, bridges, and mountain regions, due to 
significant logistical difficulties and costs. 

To address these challenges, computer vision and deep 
learning technologies have been increasingly adopted for 
automated railway infrastructure inspection. For example, 
Zheng et al. (2021) proposed a multi-stage detection 
framework based on YOLOv5 (Jocher, 2020), Mask R-CNN 
(He et al., 2017), and ResNet (He et al., 2016), achieving high 
performance in identifying and classifying defects on rails 
and fasteners. Wang et al. (2021) introduced AttnConv-Net, 
an attention-enhanced convolutional model that utilizes 
cascaded attention blocks and positional encoding to improve 
the detection of multiple rail components, such as bolts and 
clips, without requiring extensive pre- or post-processing. 
Semantic segmentation models, such as U-Net (Ronneberger 
et al., 2015) and DeepLabV3+ (Chen et al., 2018), have 
enabled pixel-level fault localization, which is crucial for 
detailed structural assessment (Weng et al., 2023). Hybrid 
models such as SSD-Faster Net (J. Wang & Yu, 2022) have 
combined fast object localization with refined segmentation 
to enhance inspection effectiveness in complex environments. 
These techniques have significantly improved the 
performance of automated inspection systems, enabling more 
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comprehensive and real-time detection capabilities. 
Nonetheless, despite these advances, such systems remain 
computationally intensive and primarily rely on fixed 
ground-based sensors or inspection vehicles, limiting their 
coverage and flexibility for real-time deployment in 
inaccessible areas. 

Recently, Unmanned Aerial Vehicles (UAVs) have emerged 
as a promising alternative for railway inspection due to their 
mobility, flexibility, and non-contact sensing capabilities. 
UAVs can rapidly cover large and complex terrains, making 
them ideal for inspecting long-distance railway lines and 
hard-to-access infrastructure. For instance, Qiu et al. (2024) 
developed a UAV-based track geometry measurement 
system using LiDAR and IMU sensors combined with SLAM 
algorithms. This system can measure track gauge, curvature, 
and alignment with sub-inch accuracy without interrupting 
regular train operations. Similarly, Xu et al. (2023) proposed 
a vision-based autonomous UAV inspection framework for 
tunnel environments. Their system leverages RGB-D 
cameras and dynamic mapping modules to navigate unknown 
and obstacle-dense construction sites, enabling 3D 
reconstruction and autonomous flight planning without prior 
mapping. Moreover, UAVs have been integrated with 
structural health monitoring (SHM) systems to evaluate the 
seismic safety and surface integrity of railway infrastructure. 
Liu (2023) applied deep learning models such as AlexNet 
(Krizhevsky et al., 2012), VGG(Simonyan & Zisserman, 
2014), and ResNet (He et al., 2016) for crack segmentation 
in concrete components, improving the accuracy and utility 
of UAV-based SHM systems. Ngeljaratan et al. (2024) 
utilized MSER-based (Donoser & Bischof, 2006) feature 
extraction techniques to analyze seismic-induced 
deformations in linear railway structures using aerial imagery. 
However, despite these advantages, UAV platforms face 
several operational and technical limitations. Onboard 
computational capabilities are often limited by size, weight, 
and power (SWaP) constraints, making it challenging to run 
traditional deep learning models in real-time. UAVs are also 
limited by flight time, payload capacity, and their 
dependency on satellite signals, which may be unavailable in 
tunnels, dense urban settings, or forested regions. 
Furthermore, many UAV-based inspection methods rely 
heavily on pre-mapped environments, reducing their 
adaptability in dynamic or unknown contexts. 

To mitigate the limitations of deep learning on resource-
constrained UAV platforms, researchers have begun to 
develop lightweight neural networks tailored for aerial 
systems. Nguyen et al. (2019) proposed MAVNet, a compact 
segmentation model inspired by ERFNet (Romera et al., 
2017), designed for real-time execution on micro aerial 
vehicles (MAVs). This model significantly reduces the 
number of parameters while maintaining acceptable 
segmentation performance. Lee et al. (2023) developed 
WATT-EffNet, which uses width-wise incremental feature 
modules and attention mechanisms to achieve high 

classification accuracy with minimal computational overhead. 
Guo et al. (2023) introduced AWL-NanoDet, a lightweight 
object detection model with less than 2 MB in size and 1.52 
GFLOPs of computation, capable of real-time defect 
detection on embedded systems through dynamic loss 
weighting and teacher-student knowledge distillation. While 
these lightweight models represent a significant advancement 
in enabling deep learning on UAVs, most operate 
independently of the UAV’s flight control and planning 
modules. This disconnect leads to suboptimal performance, 
with underutilized onboard resources. Additionally, their 
inspection paths are not dynamically adjusted according to 
real-time visual input. In essence, these systems detect 
without influencing navigation or flight behavior, resulting in 
inefficiencies and missed opportunities for intelligent 
planning and adaptive coverage. 

To bridge this gap, we propose a fully integrated aerial 
inspection system that combines lightweight deep learning-
based perception with real-time flight control and planning. 
The system is built on a quadrotor platform equipped with a 
high-resolution inspection camera, a depth camera, and an 
onboard computing unit. Our framework adopts a tightly 
coupled sensor fusion approach. The system primarily relies 
on visual-inertial odometry (VIO). When GPS signals are 
available, GPS measurements are fused with VIO estimates 
to improve positioning accuracy. In GPS-denied 
environments such as tunnels or dense urban areas, the 
system falls back to VIO alone to ensure robust localization 
and mapping. At the core of our detection module is a 
compact, real-time object detection network based on You 
Only Look Once v12 (YOLOv12) (Tian et al., 2025), 
optimized for identifying essential railway components, such 
as rails, fasteners, spikes, and clips, from aerial imagery with 
minimal latency and computational cost. We introduce the 
Railway Autonomous Navigation Guided by Embedded 
Recognition (RANGER) module to convert detected 2D 
features into global 3D coordinates without relying on 
LiDAR or stereo vision. This allows the UAV to dynamically 
adapt its inspection trajectory, improving spatial awareness 
and ensuring consistent inspection coverage. Additionally, 
the system features a computationally efficient motion 
planner capable of generating real-time, collision-free paths 
without the need for pre-mapped environments. This enables 
the UAV to autonomously adjust its flight path based on 
detection confidence, component density, or obstacle 
presence, improving resource utilization and inspection 
behavior. Unlike conventional inspection platforms that 
require expensive hardware or extensive infrastructure, our 
system is lightweight, cost-effective, and easily deployable 
across large-scale railway networks. It enhances inspection 
coverage, reduces labor demands, and enables accurate, real-
time defect identification even in challenging or previously 
inaccessible environments. 

The remainder of this paper is organized as follows: Section 
2 examines current approaches in UAV autonomous 
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navigation and discusses limitations of existing methods. 
Section 3 details the pipeline of our proposed method. 
Section 4 describes the experimental setup and results with 
interpretation. Section 5 concludes the paper and outlines 
directions for future work. 

2. PRELIMINARY 

This section first reviews common navigation methods used 
in UAV-based inspection, then analyzes their limitations and 
motivates the need for a tightly integrated, perception-aware 
solution. 

2.1. Existing Navigation Methods 

GPS-based navigation remains the most widely adopted 
method for UAV positioning in aerial inspection tasks. 
Global Navigation Satellite Systems (GNSS), such as GPS, 
GLONASS, Galileo, and BeiDou, estimate absolute positions 
by triangulating signals from multiple satellites. Under open-
sky conditions, these systems typically achieve meter-level 
accuracy. To meet the precision requirements of 
infrastructure inspection tasks, Real-Time Kinematic (RTK) 
correction is often applied (Frodge et al., 1994). RTK 
improves accuracy to the centimeter level by comparing 
satellite signal phases between a stationary base station and 
the UAV receiver. This is particularly crucial for applications 
such as railway monitoring, where sub-meter spatial 
resolution is required. As a result, GPS-RTK systems form 
the foundation of modern UAV navigation pipelines in 
structured, open environments such as railways, highways, 
and powerlines. 

Building upon GNSS positioning, waypoint-based navigation 
defines UAV missions as ordered sequences of spatial 
coordinates, typically specified in either global or local 
frames. The UAV autonomously follows these waypoints 
using a position-holding flight controller, pausing at each 
location to perform tasks such as image capture or sensor 
measurement. These waypoint trajectories are often pre-
defined using ground control software, where operators 
configure flight paths and behaviors in advance. This method 
is commonly employed in structured inspection scenarios, 
including tunnel mapping, bridge deck scanning, and railway 
corridor surveillance. Repetitive waypoint paths enable 
consistent spatial coverage and support temporal comparison 
across inspection intervals. For instance, densely spaced 
waypoints can guide UAVs to capture overlapping high-
resolution images of rail fasteners or tunnel walls, facilitating 
pixel-level change detection. Commercial UAV platforms 
further support advanced waypoint features, such as adaptive 
hovering, gimbal control, and synchronized multi-sensor 
activation, making this strategy particularly effective for 
infrastructure monitoring. Though mission plans are pre-
defined, many systems allow in-flight adjustments to 
accommodate dynamic environments or updated inspection 
goals. 

Visual Simultaneous Localization and Mapping (SLAM) 
provides an alternative navigation strategy, enabling UAVs 
to estimate their position and map their surroundings without 
relying on GPS. This makes SLAM especially suitable for 
GPS-denied environments such as tunnels, underpasses, or 
dense urban areas. SLAM systems integrate visual input from 
monocular, stereo, or depth cameras with inertial 
measurements to perform simultaneous pose estimation and 
map construction. Modern visual SLAM frameworks, such as 
ORB-SLAM3(Campos et al., 2021), VINS-Mono(Qin et al., 
2018), and DSO(Engel et al., 2017), employ multi-stage 
pipelines involving visual feature extraction, matching, pose 
graph optimization, loop closure, and bundle adjustment. 
These methods support real-time onboard execution by 
leveraging keyframe-based optimization and tightly coupled 
VIO, ensuring robust performance in the presence of motion 
blur, lighting variations, and occlusions. SLAM-based 
navigation has been deployed in various UAV inspection 
scenarios, including bridge span modeling, rail tunnel 
surveying, and confined space exploration. By enabling drift-
corrected localization without external positioning 
infrastructure, SLAM allows UAVs to operate autonomously 
in previously inaccessible environments and adapt their paths 
based on the surrounding geometry. 

2.2. Limitations of Existing Navigation Methods 

Despite significant advancements, existing UAV navigation 
methods remain largely decoupled from the core inspection 
and detection objectives. GPS-based and waypoint-following 
approaches depend on pre-defined trajectories or satellite-
based localization, which ensure spatial coverage but may fail 
to align the UAV’s perception system with inspection targets 
such as clips, fasteners, or surface defects. These targets are 
regularly placed along the track, but a pre-defined flight path 
may not keep them within view. These methods typically 
treat detection as a post-processing step or as an independent 
module that does not influence flight behavior. Similarly, 
while visual SLAM provides real-time localization in GPS-
denied environments, it is primarily designed for mapping 
and pose estimation rather than task-specific, perception-
driven navigation. Most SLAM implementations focus on 
full-area coverage or loop closure, without the capability to 
prioritize regions of higher inspection relevance or 
dynamically modify paths in response to real-time visual 
cues. As a result, flight trajectories are often rigid or 
heuristically defined, limiting adaptability in complex or 
cluttered environments. 

In practice, detection modules on UAV platforms tend to 
operate passively, collecting data without influencing flight 
control or motion planning. This results in suboptimal 
inspection performance, inefficient resource utilization, and 
limited opportunities for focused, high-value data collection. 
While a few recent studies have begun exploring perception-
aware navigation, only a limited number have attempted to 
tightly couple real-time object detection with motion 
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planning, especially in unstructured or large-scale 
environments such as railway networks. 

3. PROPOSED RAILWAY AUTONOMOUS NAVIGATION 
GUIDED BY EMBEDDED RECOGNITION (RANGER) 

To address the limitations of conventional GPS-based or 
SLAM-based UAV navigation, we propose RANGER, 
Railway Autonomous Navigation Guided by Embedded 
Recognition, a real-time, vision-driven waypoint generation 
framework tailored for autonomous railway inspection. 
Unlike traditional systems that decouple perception from 
motion planning, RANGER tightly integrates rail detection 
and waypoint generation within a unified, vision-based 
navigation pipeline. The core idea is to extract spatially 
meaningful waypoints directly from visual observations, 
enabling the UAV to dynamically follow the physical railway 
path without relying on external maps or GPS infrastructure. 

 
Figure 1. Pipeline of Proposed Railway Autonomous 

Navigation Guided by Embedded Recognition 
(RANGER) 

As shown in Figure 1, our proposed RANGER pipeline 
comprises two main modules: (1) Embedded Recognition, 
which utilizes the Vision-based Integrated Perception and 
Waypoint Generation Model to obtain centerline reference 
points of the railway, and (2) Railway Autonomous 
Navigation, which corresponds to the 3D Reconstruction of 
Visual Waypoints. 

This unified perception-to-planning pipeline ensures that 
each waypoint is both visually grounded and spatially 
accurate, allowing the UAV to continuously adapt its flight 
path based on actual rail geometry. By bridging object 
detection with onboard navigation, RANGER enables robust, 
map-free inspection along complex or unstructured railway 
corridors. throughout. 

3.1. Vision-based Integrated Perception and Waypoint 
Generation Model 

To enable autonomous UAV navigation along railway tracks, 
we design a vision-based integrated perception and waypoint 
generation model built on the lightweight YOLOv12-n (Tian 
et al., 2025) architecture. The detector identifies the positions 
of the rail in each image frame by generating bounding boxes 
that tightly align with the orientation of the tracks. 

From each bounding box, we extract two centerline reference 
points: the top center (𝑃𝑃𝑡𝑡 ) and bottom center (𝑃𝑃𝑏𝑏 ), which 
represent the visual axis of the railway in the current frame. 
These two points are used to dynamically guide UAV flight. 
Formally, the waypoint centers are computed as: 

𝑃𝑃𝑡𝑡,𝑃𝑃𝑏𝑏 = �
𝑥𝑥𝑡𝑡𝑙𝑙 + 𝑥𝑥𝑡𝑡𝑟𝑟

2
,
𝑦𝑦𝑡𝑡𝑙𝑙 + 𝑦𝑦𝑡𝑡𝑟𝑟

2
� ,�

𝑥𝑥𝑏𝑏𝑙𝑙 + 𝑥𝑥𝑏𝑏𝑟𝑟

2
,
𝑦𝑦𝑏𝑏𝑙𝑙 + 𝑦𝑦𝑏𝑏𝑟𝑟

2
� (1) 

where (𝑥𝑥𝑡𝑡𝑙𝑙, 𝑦𝑦𝑡𝑡𝑙𝑙) and (𝑥𝑥𝑡𝑡𝑟𝑟, 𝑦𝑦𝑡𝑡𝑟𝑟) refer to the topmost points on the 
left and right sides of the bounding box, respectively. 
Similarly, (𝑥𝑥𝑏𝑏𝑙𝑙 , 𝑦𝑦𝑏𝑏𝑙𝑙 ) and (𝑥𝑥𝑏𝑏𝑟𝑟 , 𝑦𝑦𝑏𝑏𝑟𝑟 ) refer to the bottommost 
points on the left and right sides. 

As shown in the Figure 2, these points are visualized in the 
rail. Specifically, the yellow dots at the top of the image 
denote the topmost points on the left and right boundaries of 
the bounding box, while the red dot indicates the top center 
point. Likewise, the yellow dots at the bottom correspond to 
the bottommost points on the left and right sides, and the red 
dot marks the bottom center point. They are used as dynamic 
waypoints to guide UAV motion frame by frame. This 
approach enables real-time flight without relying on external 
maps or localization infrastructure. 
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Figure 2. Bounding Box and Reference Points Extracted 

by Vision-Based Integrated Perception and Waypoint 
Generation Model 

3.2. 3D Reconstruction of Visual Waypoints 

This module aims to enable real-time, vision-based rail 
tracking and autonomous navigation for UAVs using a 
monocular inspection camera as the primary sensor. The 
downward-facing inspection camera is rigidly mounted on 
the underside of the UAV, aligned perpendicularly to the 
ground. During flight, this camera continuously captures 
sequential images of the railway beneath the UAV. These 
image frames are processed through a combination of 
computer vision and geometric reasoning techniques to 
extract two centerline reference points as mentioned in 
Section 3.1. To convert 2D image observations into real-
world 3D coordinates, the system employs a reconstruction 
pipeline based on the pinhole camera model. 

Initially, raw images are corrected for geometric distortion 
induced by the lens, eliminating both radial and tangential 
aberrations. Subsequently, the image is resized to fit the input 
resolution of the vision-based integrated perception and 
waypoint generation model. This resizing step records the 
applied scaling factor and padding offsets, allowing accurate 
inverse projection of the model's output to the original image 
frame. 

One critical requirement for accurate 3D back-projection is 
the estimation of the UAV’s relative altitude (Z-axis 
distance) to the railway surface. The system provides two 
operating modes to support different application scenarios: 
adaptive height estimation mode and preset height mode. In 
adaptive height estimation mode, the system dynamically 
estimates UAV altitude based on the observed pixel width of 
the railway in the image. Given the intrinsic camera matrix 
and the real-world rail width 𝑤𝑤𝑟𝑟 , the altitude 𝑍𝑍  can be 
computed by applying the triangle Similarity Principle: 

𝑍𝑍 =  𝑓𝑓 ∙  
𝑤𝑤𝑟𝑟
𝑤𝑤𝑝𝑝

 (2) 

where 𝑓𝑓 is the focal length of the camera (in pixels) and 𝑤𝑤𝑝𝑝 
is the measured rail width in pixels. This mode is especially 
useful in dynamically changing environments such as uneven 
terrain or hilly regions, where adaptive altitude estimation 
improves spatial localization accuracy. Alternatively, in 
stable environments or latency-sensitive scenarios, users can 
specify a constant height using preset height mode, which 
remains unchanged throughout the mission. 

Once the altitude 𝑍𝑍 is known (either adaptively estimated or 
manually defined), the spatial position of the centerline 
reference points can be calculated. The model identifies two 
essential centerline reference points on the rail centerline: the 
upper endpoint 𝑃𝑃𝑡𝑡  (top center) and the lower endpoint 𝑃𝑃𝑏𝑏 
(bottom center), both in pixel coordinates. These points act as 
visual anchors representing the projected direction and 
spatial extent of the rail within the image. 

To reconstruct the 3D positions of 𝑃𝑃𝑡𝑡  and 𝑃𝑃𝑏𝑏 , the system 
utilizes the standard pinhole camera model. Let 𝑝𝑝 =
(𝑢𝑢, 𝑣𝑣)⊤ ∈ 𝑅𝑅𝟚𝟚  be the pixel coordinates of a keypoint in the 
image. Assuming a known altitude 𝑍𝑍, and given the camera’s 
intrinsic parameters: focal lengths 𝑓𝑓𝑥𝑥, 𝑓𝑓𝑦𝑦 and principal point 
offsets 𝑐𝑐𝑥𝑥 , 𝑐𝑐𝑦𝑦 , the back-projected 3D position 𝑃𝑃𝑐𝑐𝑎𝑎𝑎𝑎 =
(𝑋𝑋𝑐𝑐 ,𝑌𝑌𝑐𝑐,𝑍𝑍𝑐𝑐)⊤ ∈ 𝑅𝑅𝟛𝟛  in the camera coordinate frame is 
calculated as: 

𝑋𝑋𝑐𝑐 =
(𝑢𝑢 −  𝑐𝑐𝑥𝑥)  ∙  𝑍𝑍

𝑓𝑓𝑥𝑥
 (3) 

𝑌𝑌𝑐𝑐 =
(𝑣𝑣 −  𝑐𝑐𝑦𝑦)  ∙  𝑍𝑍

𝑓𝑓𝑦𝑦
 (4) 

𝑍𝑍𝑐𝑐  =  𝑍𝑍 (5) 

Alternatively, this projection can be expressed compactly 
using the intrinsic matrix 𝐾𝐾 as:  

𝒑𝒑�  =  𝐾𝐾−1 �
𝑢𝑢
𝑣𝑣
1
� (6) 

where 𝒑𝒑 � ∈ 𝑅𝑅𝟛𝟛 represents the normalized image coordinate in 
the camera frame. The corresponding 3D position of the point 
in the camera coordinate frame 𝑷𝑷𝑐𝑐𝑎𝑎𝑎𝑎 ∈ 𝑅𝑅𝟛𝟛 is then given by: 

𝑷𝑷𝑐𝑐𝑎𝑎𝑎𝑎  =  𝑍𝑍 ∙  𝒑𝒑� (7) 

This result is then transformed into the UAV’s body frame 
using a known extrinsic matrix 𝑇𝑇𝑐𝑐𝑐𝑐 ∈ 𝑆𝑆𝑆𝑆(3), which defines 
the rigid-body transformation from the camera to UAV 
coordinate system: 

𝑷𝑷𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  =  𝑇𝑇𝑐𝑐𝑐𝑐  ∙  𝑷𝑷𝑐𝑐𝑎𝑎𝑎𝑎 (8) 

Here, 𝑷𝑷𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 ∈ 𝑅𝑅𝟛𝟛 represents the 3D position in the UAV’s 
body coordinate frame. With 𝑃𝑃𝑡𝑡 and 𝑃𝑃𝑏𝑏 now reconstructed in 
the UAV body frame, the system computes a normalized 
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direction vector that represents the railway's forward 
extension. Specifically, a directional unit vector 𝑑𝑑  is 
computed from 𝑃𝑃𝑏𝑏 to 𝑃𝑃𝑡𝑡 as follows: 

𝒅𝒅 =  
𝑃𝑃𝑡𝑡  −  𝑃𝑃𝑏𝑏
‖𝑃𝑃𝑡𝑡  −  𝑃𝑃𝑏𝑏‖

 (9) 

This unit vector captures the spatial direction of the railway 
in the UAV's local frame. To identify a navigable target point 
ahead of the UAV, the system projects a new point along this 
direction by a fixed distance λ, such as 2 meters. This yields 
the intermediate target waypoint in the body frame: 

𝑾𝑾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  =  𝑷𝑷𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  +  𝜆𝜆 ∙  𝒅𝒅 (10) 

This operation predicts a flyable waypoint ahead of the UAV 
that lies along the perceived rail axis, enabling smooth and 
progressive navigation aligned with the railway. 

To integrate this waypoint into the UAV’s global navigation 
framework, 𝑾𝑾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is transformed from the UAV body frame 
into the global coordinate frame. The transformation uses the 
UAV's current pose, represented by its global position vector 
𝑡𝑡 ∈ 𝑅𝑅𝟛𝟛 and orientation quaternion, which is converted to a 
rotation matrix 𝑅𝑅 ∈ 𝑆𝑆𝑆𝑆(3). The global 3D waypoint 𝑊𝑊global 
is then computed as: 

𝑾𝑾global  =  𝑅𝑅 ∙  𝑾𝑾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  +  𝒕𝒕 (11) 

This final waypoint, now expressed in the global coordinate 
frame, encapsulates both the geometric alignment of the 
railway and the UAV’s spatial context. It can be passed to the 
downstream flight control module for real-time trajectory 
tracking, enabling robust, map-free autonomous navigation 
along the railway solely using visual input. 

4. EXPERIMENTAL SETUP AND RESULT 

To evaluate the performance of our proposed system, we 
conducted a series of experiments, including both simulation 
and real-world flight tests. The simulation experiments were 
carried out within a Gazebo environment. The real-world 
experiments took place at an abandoned railway site. A 
customized quadrotor UAV was deployed, equipped with a 
RealSense D435 depth camera, a PX4-based flight controller, 
an Intel NUC onboard computing unit, a ZED-F9P GPS 
module, and a downward-facing inspection camera. A VIO 
algorithm was used to estimate the UAV’s pose and motion 
state. All computations were performed onboard, enabling 
fully autonomous operation.  

4.1. System Hardware Setup 

The overall UAV hardware configuration is illustrated in 
Figure 3. The platform is equipped with a comprehensive 
suite of sensors and computing modules designed to support 
autonomous railway inspection and navigation tasks. 

 
Figure 3. Hardware Setup 

A RealSense D435 depth camera is mounted on the UAV, 
providing depth images for real-time mapping and obstacle 
avoidance. Additionally, the RealSense D435 camera 
provides a monocular image stream used as visual input for 
the VIO module. A PX4-based flight controller interfaces 
with the onboard computer, executing low-level flight control 
and providing inertial measurements from its integrated IMU. 
These measurements are fused with visual input to enable 
accurate pose estimation. The primary onboard computing 
unit is an Intel NUC, which delivers sufficient computational 
performance for VIO, waypoint planning, and perception 
tasks. Its integrated Iris GPU further supports real-time object 
detection using lightweight neural networks. To enhance 
localization accuracy, a ZED-F9P GPS module provides 
high-precision positioning data that is fused with VIO 
outputs. In addition, a downward-facing RGB inspection 
camera is installed on the underside of the UAV to capture 
high-resolution imagery of the railway tracks during flight.  

4.2. System Software Architecture 

The software architecture of our system, illustrated in Figure 
4, is implemented using the Robot Operating System (ROS) 
Noetic. For position estimation, we utilize the Global Visual-
Inertial Navigation System (GVINS) (Cao et al., 2022). This 
module significantly mitigates the long-term drift typically 
associated with standalone VIO systems, enhancing both 
robustness and global consistency. In addition, GVINS 
provides the UAV’s position and orientation estimates, which 
are used as state information inputs to the RANGER module. 
The proposed RANGER module generates the waypoints in 
3D space once the railroad is detected. These waypoints act 
as targets guiding the UAV along the inspection route. To 
ensure safe traversal between waypoints and facilitate 
responsive navigation in dynamic or cluttered environments, 
local obstacle avoidance is handled by EGO-Planner(Zhou et 
al., 2020). This planner computes safe, dynamically feasible 
trajectories.  

All perception, state estimation, planning, and control 
modules run fully onboard the UAV on the Intel NUC 
computer, enabling complete autonomy without dependence 
on external computation or communication.  
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Figure 4. Software Architecture 

 

4.3. Flight Experiment in Simulation 

We conducted independent testing of the RANGER module 
in a simulated environment using the Gazebo platform. A 
realistic railway scene was created, as shown in Figure 5, to 
evaluate the module's adaptability to typical inspection tasks. 
To better approximate real-world flight conditions, wind 
disturbances were introduced into the simulation. The tests 
focused on verifying the module’s ability to detect railway 
tracks and generate corrective waypoints when the UAV 
deviated from the track centerline. These simulation-based, 
module-level evaluations enabled us to assess the functional 
stability and reliability of the RANGER module under 
complex environmental conditions before full system 
integration and real-world deployment.  

 
Figure 5. Gazebo Simulation Environment 

4.4. Real World Flight Experiment 

To validate the effectiveness and robustness of our proposed 
autonomous inspection system, we conducted real-world 
flight experiments at an abandoned railway site located in a 
semi-structured outdoor environment. This environment 
presents several challenges, including uneven terrain, varying 
lighting conditions, and the presence of static obstacles such 
as poles, vegetation, and infrastructure debris, making it a 
suitable testbed for evaluating the system’s perception, 
localization, and planning capabilities. 

The primary objective of the experiment was to 
autonomously inspect the railway while maintaining safe 
flight and avoiding obstacles. The UAV was launched 
autonomously. During the mission, the UAV used the 
onboard positioning module to continuously estimate its 
pose. The downward-facing RGB inspection camera 
captured high-resolution images of the railway during the 
flight. The RANGER module was configured to operate in 
preset height mode, as the surrounding terrain was relatively 
flat. The UAV followed the waypoints generated by the 
RANGER module, while EGO-Planner computed collision-
free trajectories in real time based on onboard depth 
perception and continuously updated maps. All system 
modules, including VIO, navigation, obstacle avoidance, and 
image logging, ran fully onboard, without requiring any 
offboard processing or human intervention.  
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Figure 6. Real World Flight Experiment 

4.5. Result 

We evaluated the detection function of RANGER module 
using a custom-labeled dataset of railway images. The vision-
based integrated perception and waypoint generation model 
in RANGER module achieved a mean Average Precision 
(mAP@0.5) of 0.954 across all classes, with a precision of 
0.894 and a recall of 0.97, demonstrating robust detection 
performance. 

We further validated the effectiveness of the proposed 
RANGER module in simulation scenarios. As shown in 
Figure 7, the simulated environment differs from the real 
world in lighting conditions, object textures, and other visual 
features, the model was never trained using simulated 
images. Figure 8 shows the detection results in the 
simulation. During testing, the model successfully detected 
railway tracks within the simulation and generated 
segmentation masks for use by the RANGER module. This 
demonstrates the model’s strong generalization capability. 
As illustrated in Figure 9, during simulated flights, by 
utilizing the RANGER module to detect and send target 
points, the railway tracks were consistently maintained near 
the center of the downward-facing camera’s field of view. 

 
Figure 7. Comparison between railway tracks in the 

simulated environment (left) and the real-world 
environment (right) 

 

 
Figure 8. RANGER Result in Simulation 

 

 
Figure 9. Visualization of the onboard inspection camera 

placement on the UAV. The green dot indicates the 
optical center of the camera. 

5. CONCLUSION 

This paper presents a fully integrated aerial inspection system 
that combines real-time object detection, onboard sensing, 
and perception-aware navigation for autonomous railway 
inspection. Leveraging a lightweight quadrotor platform 
equipped with a monocular camera, depth sensor, GPS, and 
onboard computing, the system achieves robust localization 
through visual-inertial-GPS fusion. The proposed vision-
based detection module enables real-time identification of 
key railway components with minimal computational 
overhead. To close the loop between perception and motion, 
we introduce RANGER, a novel navigation algorithm that 
reconstructs 3D target positions from 2D detections, guiding 
the UAV without requiring pre-mapped environments or 
high-end sensors. This approach significantly enhances 
autonomy, efficiency, and adaptability in GPS-denied or 
cluttered scenarios. Field evaluations demonstrate accurate 
target detection, stable flight, and intelligent path adjustment 
in real time. Future work will focus on extending multi-target 
prioritization strategies, improving robustness in adverse 
weather conditions, and validating long-term deployment 
performance across diverse railway infrastructures. 
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APPENDIX 

The total cost of the UAV system is detailed in Table 1, amounting to USD 1,967.15. This remains under the target budget of 
USD 2,000, fulfilling the requirements for a low-cost, modular, and functional platform suitable for research and prototyping. 
 

Table 1. Cost breakdown of the Intelligent Railway Inspection System 
Item Unit Qty Unit Price Total Price (Each) 
Intel NUC 11th gen Intel Core i5-1135G7 Tiger Canyon  set 1 $555.00  $555.00  
G.SKILL Ripjaws 16GB DDR4 Laptop Memory piece 1 $29.99  $29.99  
Samsung - 990 PRO 1TB Internal SSD piece 1 $119.99  $119.99  
SpeedyFPV Q250 250mm Quadcopter Drone Frame Kit kit 1 $18.86  $18.86  
Universal Landing Gear pack 1 $6.39  $6.39  
EMAX Formula Series 45A ESC support piece 4 $44.99  $179.96  
F60PRO Ⅳ V2.0 Fpv Racing Drone Motor 4-6S KV2550 box 4 $26.90  $107.60  
Pixhawk 4 set 1 $142.03  $142.03  
Radiolink R12DSM 2.4Ghz 12 Channels Micro RC Receiver piece 1 $26.99  $26.99  
Radiolink AT9S Pro 2.4G Radio Controller Transmitter piece 1 $120.02  $120.02  
HDMI Dummy Plug pack 1 $6.99  $6.99  
Tattu 14.8V 2300mAh 4S 75C LiPo Battery Pack pack 1 $47.99  $47.99  
Fpv Drone Props Propelle 51477 Tri-Blade 5 Inch pack 1 $19.99  $19.99  
MP1584EN 3A Mini DC-DC Buck 5V Voltage Regulator pack 1 $8.69  $8.69  
Intel RealSense Depth Camera D435 set 1 $307.41  $307.41  
Multicopter Propeller Guards Prop Protector pack 1 $17.99  $17.99  
2PCS Smoke Stopper for FPV Drone,Short-Circuit Protection pack 1 $15.99  $15.99  
M3x8mm Round Aluminum Standoff Column Spacer pack 1 $7.89  $7.89  
Aluminum Spacer Posts M3 x 10mm pack 1 $8.99  $8.99  
Aluminum Spacer Posts M3 x 15mm pack 1 $8.99  $8.99  
Aluminum Spacer Posts M3 x 20mm pack 1 $9.99  $9.99  
10cm Breadboard Jumper Wires Assorted Kit pack 1 $6.98  $6.98  
15cm Breadboard Jumper Wires Assorted Kit pack 1 $7.49  $7.49  
Double Sided Tape 1in x 16.5ft, Mounting Tape Heavy Duty tape 1 $17.99  $17.99  
M3-0.5 x 6mm Flat Head Socket Cap Screws Bolts pack 1 $6.99  $6.99  
14AWG Flexible Extension Cord pack 1 $18.99  $18.99  
18AWG 2 Conductors Flexible Wire pack 1 $15.99  $15.99  
20AWG OFC 12V/24V DC Extension Wire pack 1 $17.99  $17.99  
120fps USB Camera Module piece 1 $106.99  $106.99     

Total Price (All) : $1,967.15  
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