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ABSTRACT

We propose an autonomous aerial inspection system to
address growing safety concerns of railway infrastructure
degradation. Unlike conventional labor- and sensor-intensive
methods, our quadrotor integrates a depth camera, monocular
inspection camera, Global Positioning System (GPS)
module, and onboard computing unit. Combining visual-
inertial fusion with GPS, it achieves robust localization even
in GPS-denied environments. A lightweight deep learning
model built on You Only Look Once v12 (YOLOv12)
enables real-time detection of key components such as spikes
and clips. To enhance autonomy, we introduce Railway
Autonomous Navigation Guided by Embedded Recognition
(RANGER), a novel algorithm that reconstructs 3D world
coordinates from 2D detections using only onboard sensing,
without requiring prior global maps. By fusing detection with
localization data, RANGER enables precise track following
and stable altitude control in complex or GPS-denied
conditions. This reduces hardware demand while ensuring
accurate navigation. Our system reduces operational costs,
enhances scalability, and enables accurate, real-time
inspections in complex, unstructured environments.

1. INTRODUCTION

The railway system is a vital component of national and
regional transportation networks, providing a dependable and
efficient means of moving freight and passengers. In the
United States, the railway network stretches over 225,000
kilometers, making it the most extensive in the world
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(Association of American Railroads, 2024). However, as the
infrastructure continues to age, safety concerns are growing,
particularly the integrity of small yet essential components,
including spikes, fasteners, and clips. According to the
Federal Railroad Administration (2024), failures in these
components contributed to more than 400 railway accidents
in 2024 alone. Traditional inspection methods, including
manual visual examinations and vehicle-mounted systems,
are often time-consuming, labor-intensive, and subjective,
along with operational constraints. These methods are
ineffective for inspecting remote or hard-to-access locations,
such as tunnels, bridges, and mountain regions, due to
significant logistical difficulties and costs.

To address these challenges, computer vision and deep
learning technologies have been increasingly adopted for
automated railway infrastructure inspection. For example,
Zheng et al. (2021) proposed a multi-stage detection
framework based on YOLOVS (Jocher, 2020), Mask R-CNN
(He etal., 2017), and ResNet (He et al., 2016), achieving high
performance in identifying and classifying defects on rails
and fasteners. Wang et al. (2021) introduced AttnConv-Net,
an attention-enhanced convolutional model that utilizes
cascaded attention blocks and positional encoding to improve
the detection of multiple rail components, such as bolts and
clips, without requiring extensive pre- or post-processing.
Semantic segmentation models, such as U-Net (Ronneberger
et al.,, 2015) and DeepLabV3+ (Chen et al., 2018), have
enabled pixel-level fault localization, which is crucial for
detailed structural assessment (Weng et al., 2023). Hybrid
models such as SSD-Faster Net (J. Wang & Yu, 2022) have
combined fast object localization with refined segmentation
to enhance inspection effectiveness in complex environments.
These techniques have significantly improved the
performance of automated inspection systems, enabling more
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comprehensive and real-time detection capabilities.
Nonetheless, despite these advances, such systems remain
computationally intensive and primarily rely on fixed
ground-based sensors or inspection vehicles, limiting their
coverage and flexibility for real-time deployment in
inaccessible areas.

Recently, Unmanned Aerial Vehicles (UAVs) have emerged
as a promising alternative for railway inspection due to their
mobility, flexibility, and non-contact sensing capabilities.
UAVs can rapidly cover large and complex terrains, making
them ideal for inspecting long-distance railway lines and
hard-to-access infrastructure. For instance, Qiu et al. (2024)
developed a UAV-based track geometry measurement
system using LIDAR and IMU sensors combined with SLAM
algorithms. This system can measure track gauge, curvature,
and alignment with sub-inch accuracy without interrupting
regular train operations. Similarly, Xu et al. (2023) proposed
a vision-based autonomous UAV inspection framework for
tunnel environments. Their system leverages RGB-D
cameras and dynamic mapping modules to navigate unknown
and obstacle-dense construction sites, enabling 3D
reconstruction and autonomous flight planning without prior
mapping. Moreover, UAVs have been integrated with
structural health monitoring (SHM) systems to evaluate the
seismic safety and surface integrity of railway infrastructure.
Liu (2023) applied deep learning models such as AlexNet
(Krizhevsky et al., 2012), VGG(Simonyan & Zisserman,
2014), and ResNet (He et al., 2016) for crack segmentation
in concrete components, improving the accuracy and utility
of UAV-based SHM systems. Ngeljaratan et al. (2024)
utilized MSER-based (Donoser & Bischof, 2006) feature
extraction  techniques to analyze seismic-induced

deformations in linear railway structures using aerial imagery.

However, despite these advantages, UAV platforms face
several operational and technical limitations. Onboard
computational capabilities are often limited by size, weight,
and power (SWaP) constraints, making it challenging to run
traditional deep learning models in real-time. UAVs are also
limited by flight time, payload capacity, and their
dependency on satellite signals, which may be unavailable in
tunnels, dense urban settings, or forested regions.
Furthermore, many UAV-based inspection methods rely
heavily on pre-mapped environments, reducing their
adaptability in dynamic or unknown contexts.

To mitigate the limitations of deep learning on resource-
constrained UAV platforms, researchers have begun to
develop lightweight neural networks tailored for aerial
systems. Nguyen et al. (2019) proposed MAVNet, a compact
segmentation model inspired by ERFNet (Romera et al.,
2017), designed for real-time execution on micro aerial
vehicles (MAVs). This model significantly reduces the
number of parameters while maintaining acceptable
segmentation performance. Lee et al. (2023) developed
WATT-EffNet, which uses width-wise incremental feature
modules and attention mechanisms to achieve high

classification accuracy with minimal computational overhead.
Guo et al. (2023) introduced AWL-NanoDet, a lightweight
object detection model with less than 2 MB in size and 1.52
GFLOPs of computation, capable of real-time defect
detection on embedded systems through dynamic loss
weighting and teacher-student knowledge distillation. While
these lightweight models represent a significant advancement
in enabling deep learning on UAVs, most operate
independently of the UAV’s flight control and planning
modules. This disconnect leads to suboptimal performance,
with underutilized onboard resources. Additionally, their
inspection paths are not dynamically adjusted according to
real-time visual input. In essence, these systems detect
without influencing navigation or flight behavior, resulting in
inefficiencies and missed opportunities for intelligent
planning and adaptive coverage.

To bridge this gap, we propose a fully integrated aerial
inspection system that combines lightweight deep learning-
based perception with real-time flight control and planning.
The system is built on a quadrotor platform equipped with a
high-resolution inspection camera, a depth camera, and an
onboard computing unit. Our framework adopts a tightly
coupled sensor fusion approach. The system primarily relies
on visual-inertial odometry (VIO). When GPS signals are
available, GPS measurements are fused with VIO estimates
to improve positioning accuracy. In GPS-denied
environments such as tunnels or dense urban areas, the
system falls back to VIO alone to ensure robust localization
and mapping. At the core of our detection module is a
compact, real-time object detection network based on You
Only Look Once v12 (YOLOvI12) (Tian et al., 2025),
optimized for identifying essential railway components, such
as rails, fasteners, spikes, and clips, from aerial imagery with
minimal latency and computational cost. We introduce the
Railway Autonomous Navigation Guided by Embedded
Recognition (RANGER) module to convert detected 2D
features into global 3D coordinates without relying on
LiDAR or stereo vision. This allows the UAV to dynamically
adapt its inspection trajectory, improving spatial awareness
and ensuring consistent inspection coverage. Additionally,
the system features a computationally efficient motion
planner capable of generating real-time, collision-free paths
without the need for pre-mapped environments. This enables
the UAV to autonomously adjust its flight path based on
detection confidence, component density, or obstacle
presence, improving resource utilization and inspection
behavior. Unlike conventional inspection platforms that
require expensive hardware or extensive infrastructure, our
system is lightweight, cost-effective, and easily deployable
across large-scale railway networks. It enhances inspection
coverage, reduces labor demands, and enables accurate, real-
time defect identification even in challenging or previously
inaccessible environments.

The remainder of this paper is organized as follows: Section
2 examines current approaches in UAV autonomous
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navigation and discusses limitations of existing methods.
Section 3 details the pipeline of our proposed method.
Section 4 describes the experimental setup and results with
interpretation. Section 5 concludes the paper and outlines
directions for future work.

2. PRELIMINARY

This section first reviews common navigation methods used
in UAV-based inspection, then analyzes their limitations and
motivates the need for a tightly integrated, perception-aware
solution.

2.1. Existing Navigation Methods

GPS-based navigation remains the most widely adopted
method for UAV positioning in aerial inspection tasks.
Global Navigation Satellite Systems (GNSS), such as GPS,
GLONASS, Galileo, and BeiDou, estimate absolute positions
by triangulating signals from multiple satellites. Under open-
sky conditions, these systems typically achieve meter-level
accuracy. To meet the precision requirements of
infrastructure inspection tasks, Real-Time Kinematic (RTK)
correction is often applied (Frodge et al., 1994). RTK
improves accuracy to the centimeter level by comparing
satellite signal phases between a stationary base station and
the UAV receiver. This is particularly crucial for applications
such as railway monitoring, where sub-meter spatial
resolution is required. As a result, GPS-RTK systems form
the foundation of modern UAV navigation pipelines in
structured, open environments such as railways, highways,
and powerlines.

Building upon GNSS positioning, waypoint-based navigation
defines UAV missions as ordered sequences of spatial
coordinates, typically specified in either global or local
frames. The UAV autonomously follows these waypoints
using a position-holding flight controller, pausing at each
location to perform tasks such as image capture or sensor
measurement. These waypoint trajectories are often pre-
defined using ground control software, where operators
configure flight paths and behaviors in advance. This method
is commonly employed in structured inspection scenarios,
including tunnel mapping, bridge deck scanning, and railway
corridor surveillance. Repetitive waypoint paths enable
consistent spatial coverage and support temporal comparison
across inspection intervals. For instance, densely spaced
waypoints can guide UAVs to capture overlapping high-
resolution images of rail fasteners or tunnel walls, facilitating
pixel-level change detection. Commercial UAV platforms
further support advanced waypoint features, such as adaptive
hovering, gimbal control, and synchronized multi-sensor
activation, making this strategy particularly effective for
infrastructure monitoring. Though mission plans are pre-
defined, many systems allow in-flight adjustments to
accommodate dynamic environments or updated inspection
goals.

Visual Simultaneous Localization and Mapping (SLAM)
provides an alternative navigation strategy, enabling UAVs
to estimate their position and map their surroundings without
relying on GPS. This makes SLAM especially suitable for
GPS-denied environments such as tunnels, underpasses, or
dense urban areas. SLAM systems integrate visual input from
monocular, stereo, or depth cameras with inertial
measurements to perform simultaneous pose estimation and
map construction. Modern visual SLAM frameworks, such as
ORB-SLAM3(Campos et al., 2021), VINS-Mono(Qin et al.,
2018), and DSO(Engel et al., 2017), employ multi-stage
pipelines involving visual feature extraction, matching, pose
graph optimization, loop closure, and bundle adjustment.
These methods support real-time onboard execution by
leveraging keyframe-based optimization and tightly coupled
VIO, ensuring robust performance in the presence of motion
blur, lighting variations, and occlusions. SLAM-based
navigation has been deployed in various UAV inspection
scenarios, including bridge span modeling, rail tunnel
surveying, and confined space exploration. By enabling drift-
corrected localization  without external positioning
infrastructure, SLAM allows UAVs to operate autonomously
in previously inaccessible environments and adapt their paths
based on the surrounding geometry.

2.2. Limitations of Existing Navigation Methods

Despite significant advancements, existing UAV navigation
methods remain largely decoupled from the core inspection
and detection objectives. GPS-based and waypoint-following
approaches depend on pre-defined trajectories or satellite-
based localization, which ensure spatial coverage but may fail
to align the UAV’s perception system with inspection targets
such as clips, fasteners, or surface defects. These targets are
regularly placed along the track, but a pre-defined flight path
may not keep them within view. These methods typically
treat detection as a post-processing step or as an independent
module that does not influence flight behavior. Similarly,
while visual SLAM provides real-time localization in GPS-
denied environments, it is primarily designed for mapping
and pose estimation rather than task-specific, perception-
driven navigation. Most SLAM implementations focus on
full-area coverage or loop closure, without the capability to
prioritize regions of higher inspection relevance or
dynamically modify paths in response to real-time visual
cues. As a result, flight trajectories are often rigid or
heuristically defined, limiting adaptability in complex or
cluttered environments.

In practice, detection modules on UAV platforms tend to
operate passively, collecting data without influencing flight
control or motion planning. This results in suboptimal
inspection performance, inefficient resource utilization, and
limited opportunities for focused, high-value data collection.
While a few recent studies have begun exploring perception-
aware navigation, only a limited number have attempted to
tightly couple real-time object detection with motion
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planning, especially in unstructured or
environments such as railway networks.

large-scale

3. PROPOSED RAILWAY AUTONOMOUS NAVIGATION
GUIDED BY EMBEDDED RECOGNITION (RANGER)

To address the limitations of conventional GPS-based or
SLAM-based UAV navigation, we propose RANGER,
Railway Autonomous Navigation Guided by Embedded
Recognition, a real-time, vision-driven waypoint generation
framework tailored for autonomous railway inspection.
Unlike traditional systems that decouple perception from
motion planning, RANGER tightly integrates rail detection
and waypoint generation within a unified, vision-based
navigation pipeline. The core idea is to extract spatially
meaningful waypoints directly from visual observations,
enabling the UAV to dynamically follow the physical railway
path without relying on external maps or GPS infrastructure.
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Figure 1. Pipeline of Proposed Railway Autonomous
Navigation Guided by Embedded Recognition
(RANGER)

As shown in Figure 1, our proposed RANGER pipeline
comprises two main modules: (1) Embedded Recognition,
which utilizes the Vision-based Integrated Perception and
Waypoint Generation Model to obtain centerline reference
points of the railway, and (2) Railway Autonomous
Navigation, which corresponds to the 3D Reconstruction of
Visual Waypoints.

This unified perception-to-planning pipeline ensures that
each waypoint is both visually grounded and spatially
accurate, allowing the UAV to continuously adapt its flight
path based on actual rail geometry. By bridging object
detection with onboard navigation, RANGER enables robust,
map-free inspection along complex or unstructured railway
corridors. throughout.

3.1. Vision-based Integrated Perception and Waypoint
Generation Model

To enable autonomous UAV navigation along railway tracks,
we design a vision-based integrated perception and waypoint
generation model built on the lightweight YOLOv12-n (Tian
et al., 2025) architecture. The detector identifies the positions
of the rail in each image frame by generating bounding boxes
that tightly align with the orientation of the tracks.

From each bounding box, we extract two centerline reference
points: the top center (P;) and bottom center (P,), which
represent the visual axis of the railway in the current frame.
These two points are used to dynamically guide UAV flight.
Formally, the waypoint centers are computed as:

b p _<x%+x{ y£+y{> (xé+x£ yé+y£) W
t»f'b — ] ) )
2 2 2 2

where (x!, y}) and (x], yT) refer to the topmost points on the
left and right sides of the bounding box, respectively.
Similarly, (x}, y}) and (x}, y}) refer to the bottommost
points on the left and right sides.

As shown in the Figure 2, these points are visualized in the
rail. Specifically, the yellow dots at the top of the image
denote the topmost points on the left and right boundaries of
the bounding box, while the red dot indicates the top center
point. Likewise, the yellow dots at the bottom correspond to
the bottommost points on the left and right sides, and the red
dot marks the bottom center point. They are used as dynamic
waypoints to guide UAV motion frame by frame. This
approach enables real-time flight without relying on external
maps or localization infrastructure.
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Figlire 2. Bounding Box and Reference Points Extracted
by Vision-Based Integrated Perception and Waypoint
Generation Model

3.2. 3D Reconstruction of Visual Waypoints

This module aims to enable real-time, vision-based rail
tracking and autonomous navigation for UAVs using a
monocular inspection camera as the primary sensor. The
downward-facing inspection camera is rigidly mounted on
the underside of the UAV, aligned perpendicularly to the
ground. During flight, this camera continuously captures
sequential images of the railway beneath the UAV. These
image frames are processed through a combination of
computer vision and geometric reasoning techniques to
extract two centerline reference points as mentioned in
Section 3.1. To convert 2D image observations into real-
world 3D coordinates, the system employs a reconstruction
pipeline based on the pinhole camera model.

Initially, raw images are corrected for geometric distortion
induced by the lens, eliminating both radial and tangential
aberrations. Subsequently, the image is resized to fit the input
resolution of the vision-based integrated perception and
waypoint generation model. This resizing step records the
applied scaling factor and padding offsets, allowing accurate
inverse projection of the model's output to the original image
frame.

One critical requirement for accurate 3D back-projection is
the estimation of the UAV’s relative altitude (Z-axis
distance) to the railway surface. The system provides two
operating modes to support different application scenarios:
adaptive height estimation mode and preset height mode. In
adaptive height estimation mode, the system dynamically
estimates UAV altitude based on the observed pixel width of
the railway in the image. Given the intrinsic camera matrix
and the real-world rail width w,, the altitude Z can be
computed by applying the triangle Similarity Principle:

Wy

Z:f-Wp )

where f is the focal length of the camera (in pixels) and w;,
is the measured rail width in pixels. This mode is especially
useful in dynamically changing environments such as uneven
terrain or hilly regions, where adaptive altitude estimation
improves spatial localization accuracy. Alternatively, in
stable environments or latency-sensitive scenarios, users can
specify a constant height using preset height mode, which
remains unchanged throughout the mission.

Once the altitude Z is known (either adaptively estimated or
manually defined), the spatial position of the centerline
reference points can be calculated. The model identifies two
essential centerline reference points on the rail centerline: the
upper endpoint P, (top center) and the lower endpoint P,
(bottom center), both in pixel coordinates. These points act as
visual anchors representing the projected direction and
spatial extent of the rail within the image.

To reconstruct the 3D positions of P, and P, the system
utilizes the standard pinhole camera model. Let p =
(u,v)" € R? be the pixel coordinates of a keypoint in the
image. Assuming a known altitude Z, and given the camera’s
intrinsic parameters: focal lengths f,, f, and principal point
offsets ¢, , ¢, , the back-projected 3D position Py =
(X, Y., Z)T € R® in the camera coordinate frame is
calculated as:

uw—c) " Z
Xo=—""7T7— 3
3 (3)

w=-c)Z

V.= — 2
£ 7, 4)
Z. =Z %)

Alternatively, this projection can be expressed compactly
using the intrinsic matrix K as:
u
p=K" v] ©)
1
where p € R? represents the normalized image coordinate in
the camera frame. The corresponding 3D position of the point
in the camera coordinate frame P, € R? is then given by:

Pom =72-P (7

This result is then transformed into the UAV’s body frame
using a known extrinsic matrix T,;, € SE(3), which defines
the rigid-body transformation from the camera to UAV
coordinate system:

" Peam (8)

Here, Ppoqy € R3 represents the 3D position in the UAV’s
body coordinate frame. With P, and P, now reconstructed in
the UAV body frame, the system computes a normalized

Pbody = l¢p
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direction vector that represents the railway's forward
extension. Specifically, a directional unit vector d is
computed from P, to P; as follows:
Pt - Pb
d = — "~ 9
TP — P, )
This unit vector captures the spatial direction of the railway
in the UAV's local frame. To identify a navigable target point
ahead of the UAV, the system projects a new point along this
direction by a fixed distance A, such as 2 meters. This yields
the intermediate target waypoint in the body frame:

Wbody = Pbody +4-d (10)

This operation predicts a flyable waypoint ahead of the UAV
that lies along the perceived rail axis, enabling smooth and
progressive navigation aligned with the railway.

To integrate this waypoint into the UAV’s global navigation
framework, W4y, is transformed from the UAV body frame
into the global coordinate frame. The transformation uses the
UAV's current pose, represented by its global position vector
t € R® and orientation quaternion, which is converted to a
rotation matrix R € SO(3). The global 3D waypoint Wyspa
is then computed as:

ngobal =R- Wbody + (11)

This final waypoint, now expressed in the global coordinate
frame, encapsulates both the geometric alignment of the
railway and the UAV’s spatial context. It can be passed to the
downstream flight control module for real-time trajectory
tracking, enabling robust, map-free autonomous navigation
along the railway solely using visual input.

4. EXPERIMENTAL SETUP AND RESULT

To evaluate the performance of our proposed system, we
conducted a series of experiments, including both simulation
and real-world flight tests. The simulation experiments were
carried out within a Gazebo environment. The real-world
experiments took place at an abandoned railway site. A
customized quadrotor UAV was deployed, equipped with a
RealSense D435 depth camera, a PX4-based flight controller,
an Intel NUC onboard computing unit, a ZED-F9P GPS
module, and a downward-facing inspection camera. A VIO
algorithm was used to estimate the UAV’s pose and motion
state. All computations were performed onboard, enabling
fully autonomous operation.

4.1. System Hardware Setup

The overall UAV hardware configuration is illustrated in
Figure 3. The platform is equipped with a comprehensive
suite of sensors and computing modules designed to support
autonomous railway inspection and navigation tasks.

Depth camera GPS
module

Onboard

computing

unit

Flight Inspection

controller camera

Figure 3. Hardware Setup

A RealSense D435 depth camera is mounted on the UAV,
providing depth images for real-time mapping and obstacle
avoidance. Additionally, the RealSense D435 camera
provides a monocular image stream used as visual input for
the VIO module. A PX4-based flight controller interfaces
with the onboard computer, executing low-level flight control
and providing inertial measurements from its integrated IMU.
These measurements are fused with visual input to enable
accurate pose estimation. The primary onboard computing
unit is an Intel NUC, which delivers sufficient computational
performance for VIO, waypoint planning, and perception
tasks. Its integrated Iris GPU further supports real-time object
detection using lightweight neural networks. To enhance
localization accuracy, a ZED-F9P GPS module provides
high-precision positioning data that is fused with VIO
outputs. In addition, a downward-facing RGB inspection
camera is installed on the underside of the UAV to capture
high-resolution imagery of the railway tracks during flight.

4.2. System Software Architecture

The software architecture of our system, illustrated in Figure
4, is implemented using the Robot Operating System (ROS)
Noetic. For position estimation, we utilize the Global Visual-
Inertial Navigation System (GVINS) (Cao et al., 2022). This
module significantly mitigates the long-term drift typically
associated with standalone VIO systems, enhancing both
robustness and global consistency. In addition, GVINS
provides the UAV’s position and orientation estimates, which
are used as state information inputs to the RANGER module.
The proposed RANGER module generates the waypoints in
3D space once the railroad is detected. These waypoints act
as targets guiding the UAV along the inspection route. To
ensure safe traversal between waypoints and facilitate
responsive navigation in dynamic or cluttered environments,
local obstacle avoidance is handled by EGO-Planner(Zhou et
al., 2020). This planner computes safe, dynamically feasible
trajectories.

All perception, state estimation, planning, and control
modules run fully onboard the UAV on the Intel NUC
computer, enabling complete autonomy without dependence
on external computation or communication.
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Figure 4. Software Architecture

4.3. Flight Experiment in Simulation

We conducted independent testing of the RANGER module
in a simulated environment using the Gazebo platform. A
realistic railway scene was created, as shown in Figure 5, to
evaluate the module's adaptability to typical inspection tasks.
To better approximate real-world flight conditions, wind
disturbances were introduced into the simulation. The tests
focused on verifying the module’s ability to detect railway
tracks and generate corrective waypoints when the UAV
deviated from the track centerline. These simulation-based,
module-level evaluations enabled us to assess the functional
stability and reliability of the RANGER module under
complex environmental conditions before full system
integration and real-world deployment.

b

Figure 5. Gazebo Simulation Environment

4.4. Real World Flight Experiment

To validate the effectiveness and robustness of our proposed
autonomous inspection system, we conducted real-world
flight experiments at an abandoned railway site located in a
semi-structured outdoor environment. This environment
presents several challenges, including uneven terrain, varying
lighting conditions, and the presence of static obstacles such
as poles, vegetation, and infrastructure debris, making it a
suitable testbed for evaluating the system’s perception,
localization, and planning capabilities.

The primary objective of the experiment was to
autonomously inspect the railway while maintaining safe
flight and avoiding obstacles. The UAV was launched
autonomously. During the mission, the UAV wused the
onboard positioning module to continuously estimate its
pose. The downward-facing RGB inspection camera
captured high-resolution images of the railway during the
flight. The RANGER module was configured to operate in
preset height mode, as the surrounding terrain was relatively
flat. The UAV followed the waypoints generated by the
RANGER module, while EGO-Planner computed collision-
free trajectories in real time based on onboard depth
perception and continuously updated maps. All system
modules, including VIO, navigation, obstacle avoidance, and
image logging, ran fully onboard, without requiring any
offboard processing or human intervention.
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4.5. Result

We evaluated the detection function of RANGER module
using a custom-labeled dataset of railway images. The vision-
based integrated perception and waypoint generation model
in RANGER module achieved a mean Average Precision
(mAP@0.5) of 0.954 across all classes, with a precision of
0.894 and a recall of 0.97, demonstrating robust detection
performance.

We further validated the effectiveness of the proposed
RANGER module in simulation scenarios. As shown in
Figure 7, the simulated environment differs from the real
world in lighting conditions, object textures, and other visual
features, the model was never trained using simulated
images. Figure 8 shows the detection results in the
simulation. During testing, the model successfully detected
railway tracks within the simulation and generated
segmentation masks for use by the RANGER module. This
demonstrates the model’s strong generalization capability.
As illustrated in Figure 9, during simulated flights, by
utilizing the RANGER module to detect and send target
points, the railway tracks were consistently maintained near
the center of the downward-facing camera’s field of view.

Figure 7. Comparison between railway tracks in the
simulated environment (left) and the real-world
environment (right)

Figure 8. RANGER Result in Simulation

Figure 9. Visualization of the onboard inspection camera
placement on the UAV. The green dot indicates the
optical center of the camera.

5. CONCLUSION

This paper presents a fully integrated aerial inspection system
that combines real-time object detection, onboard sensing,
and perception-aware navigation for autonomous railway
inspection. Leveraging a lightweight quadrotor platform
equipped with a monocular camera, depth sensor, GPS, and
onboard computing, the system achieves robust localization
through visual-inertial-GPS fusion. The proposed vision-
based detection module enables real-time identification of
key railway components with minimal computational
overhead. To close the loop between perception and motion,
we introduce RANGER, a novel navigation algorithm that
reconstructs 3D target positions from 2D detections, guiding
the UAV without requiring pre-mapped environments or
high-end sensors. This approach significantly enhances
autonomy, efficiency, and adaptability in GPS-denied or
cluttered scenarios. Field evaluations demonstrate accurate
target detection, stable flight, and intelligent path adjustment
in real time. Future work will focus on extending multi-target
prioritization strategies, improving robustness in adverse
weather conditions, and validating long-term deployment
performance across diverse railway infrastructures.
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APPENDIX

The total cost of the UAV system is detailed in Table 1, amounting to USD 1,967.15. This remains under the target budget of

USD 2,000, fulfilling the requirements for a low-cost, modular, and functional platform suitable for research and prototyping.

Table 1. Cost breakdown of the Intelligent Railway Inspection System

Item Unit Qty | Unit Price Total Price (Each)
Intel NUC 11th gen Intel Core i5-1135G7 Tiger Canyon set 1 $555.00 $555.00
G.SKILL Ripjaws 16GB DDR4 Laptop Memory piece 1 $29.99 $29.99
Samsung - 990 PRO 1TB Internal SSD piece 1 $119.99 $119.99
SpeedyFPV Q250 250mm Quadcopter Drone Frame Kit kit 1 $18.86 $18.86
Universal Landing Gear pack 1 $6.39 $6.39
EMAX Formula Series 45A ESC support piece 4 $44.99 $179.96
F60PRO IV V2.0 Fpv Racing Drone Motor 4-6S KV2550 box 4 $26.90 $107.60
Pixhawk 4 set 1 $142.03 $142.03
Radiolink R12DSM 2.4Ghz 12 Channels Micro RC Receiver | piece 1 $26.99 $26.99
Radiolink AT9S Pro 2.4G Radio Controller Transmitter piece 1 $120.02 $120.02
HDMI Dummy Plug pack 1 $6.99 $6.99
Tattu 14.8V 2300mAh 4S 75C LiPo Battery Pack pack 1 $47.99 $47.99
Fpv Drone Props Propelle 51477 Tri-Blade 5 Inch pack 1 $19.99 $19.99
MP1584EN 3A Mini DC-DC Buck 5V Voltage Regulator pack 1 $8.69 $8.69
Intel RealSense Depth Camera D435 set 1 $307.41 $307.41
Multicopter Propeller Guards Prop Protector pack 1 $17.99 $17.99
2PCS Smoke Stopper for FPV Drone,Short-Circuit Protection | pack 1 $15.99 $15.99
M3x8mm Round Aluminum Standoff Column Spacer pack 1 $7.89 $7.89
Aluminum Spacer Posts M3 x 10mm pack 1 $8.99 $8.99
Aluminum Spacer Posts M3 x 15mm pack 1 $8.99 $8.99
Aluminum Spacer Posts M3 x 20mm pack 1 $9.99 $9.99
10cm Breadboard Jumper Wires Assorted Kit pack 1 $6.98 $6.98
15¢m Breadboard Jumper Wires Assorted Kit pack 1 $7.49 $7.49
Double Sided Tape lin x 16.5ft, Mounting Tape Heavy Duty | tape 1 $17.99 $17.99
M3-0.5 x 6mm Flat Head Socket Cap Screws Bolts pack 1 $6.99 $6.99
14AWG Flexible Extension Cord pack 1 $18.99 $18.99
18AWG 2 Conductors Flexible Wire pack 1 $15.99 $15.99
20AWG OFC 12V/24V DC Extension Wire pack 1 $17.99 $17.99
120fps USB Camera Module piece 1 $106.99 $106.99
Total Price (All) : | $1,967.15
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