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ABSTRACT

Condition-Based Maintenance (CBM) and Predictive-Based
Maintenance (PBM) have emerged as pivotal strategies in
the aircraft industry, offering to revolutionize maintenance
operations by optimizing schedules, reducing costs, and
enhancing safety through Health Indicators (HIs). Realizing
the full benefits of these approaches requires the ability to
accurately measure the performance of both predictive
models and the equipment itself.

However, widespread implementation faces challenges, as
the concept of "performance" is often interpreted differently
by various stakeholders. This paper addresses the limitations
of conventional metrics like MTBUR (Mean Time Between
Unscheduled Removals), which is no longer directly
applicable in a CBM / PBM context without biasing
performance calculations. The core ambiguity arises
because proactive interventions are also "unscheduled,"
which wrongly penalizes the perceived success of a
predictive program.

To resolve this, this paper advocates for a paradigm shift by
proposing a new suite of operational metrics. The primary
proposal is the adoption of MTBRR (Mean Time Between
Reactive Removals), used in conjunction with the classic
NFF (No Fault Found) rate, to clearly distinguish true
failures from non justified reactive removals.

These core metrics are then supplemented by a set of new
indicators designed for a predictive context: MTBPR (Mean
Time Between Predictive Removals), NDF (No Degradation
Found) rate, and MLR (Mean Lifetime Reduction).
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Furthermore, the paper delves into the crucial relationship
between model and operational performance, demonstrating
how standard data analytics metrics like Recall and
Precision can be formally linked to these new
equipment-level operational metrics. By establishing these
connections, this work provides a generalized and robust
framework that enables all stakeholders - including
suppliers, Maintenance, Repair and Overhaul (MRO)
providers, and operators - to define performance objectives,
accurately monitor in-service performance, and foster clear,
data-driven alignment.

1. INTRODUCTION

In the framework of maintenance operations, different
maintenance strategies have been built following the
evolution of technologies.

In particular CBM and PBM strategies, heavily reliant on
the effective selection, monitoring, and analysis of Health
Indicators, represent a significant advancement in
maintenance practices. They move away from reactive and
time-based approaches towards a more proactive and
data-driven methodology, ultimately delivering substantial
value to end users through improved equipment reliability,
reduced costs, and enhanced operational efficiency. The
ability to accurately assess the health of equipment and
predict potential failures empowers organizations to make
informed maintenance decisions at the right time.

The figures 1 and 2 illustrate a hierarchical view of the
different maintenance strategies.
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Figure 2. Hierarchy of maintenance strategies - part 2

In this work, we propose a modification of the way classical
KPIs are estimated, such as the well known Mean Time
Between Failures (MTBF). The introduction of new metrics
is presented as key to take into account the new paradigm of
‘Recognized Degradation Zone’ of an equipment before
reaching an actual failure. Focusing on their applicability at
Failure Mode and equipment level, this paper allows to
reconcile the conventional metrics of performance of
predictive models like the Precision and Recall with
operational metrics like the well-known MTBF. This way, a
practical process is proposed to support without bias the
in-service measurement of the operational performance.

In order to illustrate the concepts, and even if what follows
is applicable regardless of the techniques used, we illustrate
the scope of applicability with a prognostics approach based
on Health Indicators.

Figure 3. HI trajectories with uncertainties supporting the
RUL PDF (Probability Density Function) building

This paper is organized as follows. The section 2 deals with
the problem statement, showing that new concepts are
needed with associated KPIs to be considered and
officialized for the whole ecosystem of stakeholders. The
section 3 addresses the impacts of such new concepts at
Failure Mode and at equipment level, and the new set of
formulas applicable when using a CBM / PBM approach.
Section 4 then deals with the impacts on the in-service
measurement process required to properly assess the
performance through operational metrics. The conclusion
eventually summarizes the most important formulas to
consider as a take away and the perspective of next steps.

2. PROBLEM STATEMENT

In a CBM / PBM context, the formula below (traditionally
and historically used within an unscheduled maintenance
strategy) is no longer directly applicable without biasing the
in-service MTBF computation (using measured NFF rate
and MTBUR), and requires generalization.

1 1-NFF

= 1
MTBF MTBUR M

The ambiguity of the MTBUR metric stems from its origins
in a traditional maintenance paradigm, which consisted of
two distinct categories: Scheduled Maintenance (time or
usage-based) and Unscheduled Maintenance (reactive work
following a failure). In this model, "unscheduled" and
"reactive" were effectively synonymous.

However, the adoption of CBM and PBM strategies disrupts
this binary classification. Removals or repairs triggered by
predictive alerts present a fundamental conflict with this
model:

e They are not reactive, as they preempt functional
failures.

e They are not scheduled in the traditional sense, as
they do not appear on a long-term maintenance
plan. Instead, these interventions are triggered by
emerging data, transforming an unscheduled need
into a planned and scheduled task, often on short
notice.

This results in a critical ambiguity. Classifying a proactive
removal from a CBM or PBM program as "unscheduled"”
inherently lowers the MTBUR metric. Consequently, the
maintenance program is misleadingly penalized for its own
success, creating the illusion of declining reliability while
failures are actually being preempted.

To resolve this paradox, we introduce and utilize the
MTBRR (Mean Time Between Reactive Removals). This
metric eliminates the ambiguity by classifying removals
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based on their direct operational impact - a reactive removal
or not - instead of their status as a scheduled or unscheduled
calendar event.

Therefore without CBM / PBM, (1) is equivalent to:

1 1-NFF

= 2
MTBF MTBRR @

2.1. Key concepts to be considered

Traditional reactive-based maintenance strategies operate on
a binary model, typically defined with equipment suppliers,
that recognizes only two operational states: 'Nominal' and
'Faulty'. The transition to the ‘Fault Zone’ is defined by a
threshold corresponding to fault effects detectable by test
benches and/or associated with in-service effects (e.g.
cockpit alerts). Once an asset crosses this threshold and the
fault is confirmed, a process of troubleshooting and
replacement is initiated.

In the context of a CBM / PBM approach, based on a large
usage of Health Indicators, a paradigm shift is required,
involving new concepts and KPIs to be formalized.

Hit Without CBM/PBM ? HI With CBM/PBM
Nominal Zone| Nominal Zone
e MTBPR Recognized Degradation Zone
e MLR Zone of CBM/PBM|
e NDFrate -Predictive Advisories-
Fault Zone Fault Zone
Zone of Reactive Maintenance
e MTBUR e MTBRR -Undergone Faults-|

e NFF rate e NFF rate

t

Required Paradigm evolution
from Reactive Maintenance to CBM/PBM

Figure 4. New concepts with corresponding operational
metrics

The foundational step for implementing a CBM / PBM
strategy is to evolve from the traditional binary health model
(GREEN/RED) by formally defining a three-state model.
This model introduces an intermediate AMBER zone,
representing a zone of detectable degradation that is
contractually recognized by the equipment supplier as
justifying an early maintenance action before a fault
manifests to the operator.

Of course the decomposition of the health indicator
excursion into three zones - GREEN (Nominal zone),
AMBER (Recognized Degradation Zone), and RED (Fault
Zone) - requires unambiguous definitions for its boundaries.

The lower boundary (AMBER/RED), or Fault Threshold, is
classically well-defined. It corresponds to a level of
degradation (or functional loss with inability to operate
properly) that triggers reconfigurations or redundancy loss
with cockpit alarms or other ‘Flight Deck Effects’ and is
determined through monitoring thresholds calibrated to
reach specified objectives at aircraft level. A crucial aspect

is that this threshold must be consistent with existing
diagnostics systems, such as Maintenance Messages, to
ensure a coherent health status across all monitoring
platforms.

By contrast, the upper boundary (GREEN/AMBER) has
historically lacked a formal definition. To make predictive
maintenance viable, this boundary must also be
unambiguously defined. It represents the precise level of
degradation at which an early predictive maintenance action
is both technically justified and contractually acceptable.
Operationally, this is the point where a "weak signal" allows
for the computation of a reliable Health Indicator (HI).
Commercially, crossing this threshold is the key trigger for
warranty applicability on a predictive removal, contractually
obligating the supplier to endorse the cost of the early
maintenance action during the warranty period.

Secondly, measuring operational performance in this new
context requires a two-pronged approach. We must first
adapt existing maintenance concepts and introduce clearer
operational metrics like MTBRR and the associated NFF
(No Fault Found) rate. Furthermore, it is essential to
establish additional operational metrics that provide a
common performance framework for the entire ecosystem.
This includes stakeholders across the value chain, from
equipment suppliers and system designers to MRO
providers and data analytics specialists.

e The MTBPR (Mean Time Between Predictive
Removals) is the operational performance metric
for the AMBER zone, just as the MTBRR (Mean
Time Between Reactive Removals) is for the RED
one.

e The MLR (Mean Lifetime Reduction) formally
quantifies the reduction in an asset's potential
lifespan caused by a predictive removal.

e The NDF (No Degradation Found) rate is another
key performance indicator for the AMBER zone,
just as the NFF (No Fault Found) rate is for the
RED one. The NDF rate represents the proportion
of proactively removed assets for which no
significant degradation has been confirmed during
shop-level inspection.

These operational metrics are essential for performance
assessment within the framework of a continuous
improvement and feedback loop strategy.

From this baseline, the following steps need to be
addressed:

e Make the link between the different set of metrics at
Failure Mode and equipment levels

e Reconcile operational metrics with the classic ones
used in data analytics because it is crucial to align
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different teams and fields of expertise (project,
service, operational experts, data analysts, data
scientists...)

e Propose new ways of working to assess the in-service
performance of “health ready” equipment (cf SAE
JA6268) in the scope of a CBM / PBM strategy.

In particular, the measurement of the in-service performance
(once a given monitoring algorithm is deployed) must be
performed in an efficient way to ensure that there is no
deviation from the defined objectives (e.g. detect the
emergence of no new Failure Modes in particular when the
machine is ageing, no new unexpected degradation profile,
no new usage pattern ...). This requires adapting the
feedback loop process, the used set of metrics and the
continuous in-service performance assessment taking into
account the shop findings results.

The following figure compares key operational performance
metrics across two distinct scenarios: a purely reactive
maintenance strategy versus a purely predictive one.

RUL RUL
PdF PdF
typically with inhibited predictive advisories / alerts

CBM Advisory or Alert New reactive removal at

Time of last removal (at failure occurrence) failure occurrence

Time.
:\,:rr;spred‘c"ve MTBPR time limit before which the

repair action shall be
Mean “Advisory-Repair’. {0

performed to limit the risk (*)
Delta-Time
Mean Lifetime
Reduction

Time of predictive-based preventive
repair / removal (actual repair time)

Time of CBM
advisory / alert

Figure 5. Links between operational metrics in a perfect
predictive situation (Recall = Precision = 100%)

MTBF: Mean Time Between Failures

MTBPR: Mean Time Between Predictive Removals
MLR: Mean Lifetime Reduction

RUL: Remaining Useful Life

PDF: Probability Density Function

(*): time limit not to be exceeded, corresponding to the
maximum accepted cumulative risk level. This is the time at
which the Cumulative Distribution Function reaches the
value ‘1 - targeted Recall’.

As shown in Figure (5), the MTBPR represents the mean
time between removals triggered by CBM / PBM advisories
or alerts. Consequently, this metric incorporates the time
required by the operator to organize and perform the
maintenance action (i.e. replacing the equipment).

The MLR represents the Mean Lifetime Reduction for an
equipment lifetime due to the fact that replacing an
equipment before a failure naturally reduces its operational
usage time.

Besides, the NDF rate must be understood as corresponding
to the wellknown “NFF” concept (which is applied to
reactive removals), but when applied only to early removals
due to a predictive-based monitoring.

Then, the couple (NDF, MTBPR) here proposed should
play, for predictive removals, the same role as the couple
(NFF, MTBRR) in a context of reactive removals.

‘1 - NFF (rate)’ is the Precision of a given reactive
maintenance process, i.c. the percentage of removed
equipment confirmed as faulty following a reactive removal.

‘l - NDF (rate)’ is the Precision of a given predictive
solution, i.e. the percentage of removed equipment
confirmed as degraded for only predictive removals.

In the following chapters, the term ‘Precision’ will be used
only in the context of predictive removals.

So we have: Precision = 1-NDF.
2.2. Key End-to-End metrics
In data analytics, especially in anomaly detection, the

quality of detection, is usually measured using following
main standard metrics, derived from the confusion matrix:

TP .
Recall = TPiFN (also called detection rate)
Precision = P
recision = oo

i TN
Specificity = —y—r

With a CBM / PBM strategy, i.e. considering the AMBER
zone, following definitions allow to build also a confusion
matrix:

TP (True Positives): The number of predictive advisories
(triggered within a given validity window, that is not too
early and not to too late) that result in an equipment
removal, where the equipment’s degradation is subsequently
‘confirmed (e.g. in shop) and recognized’ as sufficiently
degraded to trigger an early removal.

FP (False Positives): The number of predictive advisories
(triggered within a given validity window) that result in an
equipment removal, where the equipment's degradation is
NOT ‘“confirmed (e.g. in shop) and recognized’.

TN (True Negatives): The number of predictive points
(e.g., flights, cycles) where the component remains in the
nominal GREEN zone and without any predictive advisory
triggered (within a given validity window).

FN (False Negatives): The number of operational faults
(events in the RED zone) that occurred without being
preceded (within a given validity window) by a predictive
advisory.
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Moreover establishing a reliable ground truth is a critical
prerequisite for calculating these performance indicators.
While several methods exist, two primary strategies are
widely employed in the industry:

e Shop-based confirmation: Considered the gold
standard, this direct strategy uses results from shop
testing to physically confirm an equipment's state
of degradation after removal.

e Data-driven validation: A practical alternative is a
data-driven approach that analyzes the Health
Indicator's (HI) behavior following a maintenance
action. For instance, a True Positive is confirmed if
the HI value promptly returns to the nominal zone
post-replacement.

Also in data analytics, the Receiver Operating Characteristic
(ROC) curve is a standard tool for evaluating model
performance, typically plotting the True Positive Rate (i.e.,
Recall) against the False Positive Rate (1 - Specificity).

However, in acronautics, the high reliability of systems
(resulting in high MTBF values) leads to highly imbalanced
datasets where faults are relatively “rare” events. In such
cases, the ROC curve can be misleadingly optimistic.
Therefore, the Precision-Recall curve, which plots Precision
versus Recall, is often a more informative and suitable tool
for visualization and model tuning. And this Precision
metric is particularly important. A high Precision is key, as
it signifies a low rate of unnecessary maintenance removals.
Thus this metric is essential as it is directly linked to the
additional costs and the maintenance burden resulting from
inaccurate advisories (i.e. False Positives).

Besides, the introduction of new operational metrics also
necessitates a revision of the formulas used within the
feedback loop process. The classic formula (see (2)) cannot
be applied to a mixed population of predictive and reactive
removals without introducing significant bias.

3. IMPACT OF NEW APPLICABLE METRICS

Let’s define n, the number of Failure Modes, and n,, the
number of Failure Modes monitored by a predictive model.

FM;: the Failure Mode number <i> for a given equipment.

The following metrics are derived from the confusion
matrix. This presupposes that a ground truth is established
using a defined assessment method (e.g., ‘Shop-Based
Confirmation’ or ‘Data-Driven Validation”).

NDF;: The proportion of predictive removals for a given
FM; that are subsequently confirmed as "No Degradation
Found".

NFF;: The proportion of reactive removals for a given FM;
that are subsequently confirmed as "No Fault Found".

Precision;: the Precision of the predictive monitoring used
to address a given FM;.

Recall;: the Recall of the predictive monitoring used to
address a given FM;.

NDEF: The proportion of predictive equipment removals that
are subsequently confirmed as "No Degradation Found”.

NFF: the proportion of reactive equipment removals with
confirmed “No Fault Found”.

Precision: The rate of predictive removals that correctly
identify a degraded state. For a given piece of equipment, it
is calculated as ‘1 - NDF rate’.

Recall: The proportion of all actual equipment faults that
were successfully preempted by the predictive maintenance
monitoring.

3.1. At Failure Mode level

Using a basic composition rule on failure rates at FM; level,
which is valid considering the principle of Mutually
Exclusive and Collectively Exhaustive Events (MECE), we
have :

)\FMZ,= [rate of successful predictive removals] + [rate of
successful reactive removals]

That we can express as follows:

)\FMI' - APREDICTIVE

A 3
SUCCESSi REACTIVE

SUCCESSi

Using the following notation (practical to simplify the
writing):

MTBPR;=MTBPRL, + MLR,

(2) becomes with a basic consideration on rates:
1 1— NDF, 1- NFF, @
= el
MTBF, MTBPR MTBRR, )

Moreover by definition within the AMBER zone:
Precisioni = 1 — NDF ; %)
Besides, by definition, the Recall is the ratio of confirmed
predictions versus actual faults.
Hence, introducing NDF o we have:
1- NDF‘
SraeR (1-NDF).MTBF,

recall, = — = - (6)
i r MTBPR,

Using (4), multiplying by MTBPR;’, then multiplying by
MTBF,, we have:
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* (1-NDF).MTBF
MTBPR. = ‘ ‘ (7)
l MTB

F
- MTBRR A NFF)

Injecting (7) in (6), we finally obtain:

recall =1 — (1 — NFF ) ®)

MTBRR,

3.2. At equipment level

3.2.1. Preamble

The formulas demonstrated in the previous section are
scale-invariant and can therefore be applied at the
equipment level. While this property may seem intuitive
through the principle of composition, a formal
demonstration is essential. Such a proof is provided in the
following sections.

As a starting point for this demonstration, we will use an
exponential reliability function as a good approximation.
This model assumes a constant failure rate (o), meaning that
the risk of failure is entirely random, with no memory
effect, no wear and tear, and no cumulative damage.

Failure rate

Youth phase Maturity phase | Wear-out phase

Y

Time

Figure 6. bathtub reliability curve

Engineers widely use this approximation in aeronautics
because:

- The first non linear part of the curve is avoided
through robustness tests ensuring to suppress
youthful failures.

- The second non linear part of the curve is avoided
using maximum safe-lifetime-limited parts.

With constant failure rates A;, the Reliability function Ri(t) is
expressed as:

RO=¢ ' ©

If the FM; are considered in series (that is, when any FM;
occurrence fails the equipment), the following laws apply:

® = H R(®

eqpt
This leads easily to:
1

n
= '21 A S umEr
=

n
eqpt = g TBF (10)

However, if the Failure Modes (FM;) are configured in
parallel, the calculation becomes more complex. A parallel
configuration implies that the equipment fails only if all
individual Failure Modes occur. The system's failure
probability is therefore governed by the following
principles:

® = l'IF(t)

eqpt
Ri(t) = 1- Fi(t)
where:

e  F..«(t) is the failure probability of the equipment.

e F(t) is the failure probability of the i-th Failure
Mode.

e R(t) is the reliability function of the i-th Failure
Mode.

Therefore, calculating the overall system reliability entails
analyzing the internal architecture of the equipment. And it
is essential to consider the arrangement of components and
Failure Modes, specifically whether they are configured in
series or in parallel (i.e., with redundancies).

To connect these principles to the equipment level, the space
of Failure Modes for a given piece of equipment is
described as follows:

PNR: {FMi} covered by an imperfect
predictive model

Figure 7. Sets of Failure Modes

Let the following sets define the space of all possible
Failure Modes (FM,) for the equipment under consideration:
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e F: The complete set of all possible Failure Modes
{FM;} for the equipment.

e P: The set of Failure Modes that are covered by a
predictive  monitoring  function,  therefore
associated with predictive and reactive removals.

e P*: The subset of P containing Failure Modes for
which only predictive removals are performed
(detection rate = 100%).

e R: The set of Failure Modes that can result in a
failure leading to reactive removals. Such failures
can originate from two sources:

o Failure Modes that have no predictive
monitoring coverage.

o Failure Modes where the predictive
monitoring is imperfect (detection rate <
100%).

e R*: The subset of R associated with only reactive
removals. This subset contains only the Failure
Modes that are not covered by any predictive
monitoring.

e PNR: This intersection represents the set of Failure
Modes covered by an imperfect predictive model.
It corresponds to failures that are "missed" by the
monitoring system, resulting in reactive removals.

Based on these definitions, the complete space of Failure
Modes can be described as the union of the modes covered
by predictive monitoring (P) and those that are not (R*):

3.2.2.  Demonstration

The following demonstration will assume all Failure Modes
(FM;) are independent and configured in series. As
previously established, the failure rate at the equipment
level is therefore given by an additive law:

n
?\eqpt = 'Z )\i (1)
i=1
Then
1 1
MTBF _Z MTBF (12)
iEF t
Then
1 1 1
MTBF ~— 'Z MTBF, + Z* MTBF, (13)
iep ' ieR '
1 1 - NDF, 1 - NFF, 1-NFF,
MTBF g MTBRR 2 MTBRR (14)
; MTBPR ; . )
iep i ¢ i€R ¢

Noting MTBPR;* = MTBPR, + MLR,

Hence:

1 1-NDF, 1— NFF,
L L

=2 + X (15)
MTBF &, mrBPR®, S MTBRR,

This can be also expressed as follows with appropriate
definitions:

1
MTBF

1
MTBSPR:

=2

1
; Z MTBSRR. (16)
iep iEF ¢

Indeed let’s consider these defined rates:

e —L— Rate of Successful Predictive Removals
MTBSPR.

at FM; level
1
MTBSRR,

FM,; level

: Rate of Successful Reactive Removals at

Considering the rules of addition regarding independent
FM,; in series, we have at equipment level:

1 1
e = 2———= (17)
;
1 1
“mAr = 22— —— (13)
MTBSRR
S icF MTBSRR,

Hence we can express (15) as follows:

1 1 1

MTBF = MTBSPR* + MTBSRR (19)

This can also be expressed as a general law at equipment
level:

1—NFF
MTBRR

1 _ 1-NDF
MTBF MTBPR

(20)

Using the following defined term at equipment level:

1

MTBPR MTBSPR_

NDF = 1 — /=1 —
MTBSPR S
MTBPR

‘NDF’ being defined like this in order to have the following
verified relation:

1 1—NDF

MTBSPR* PR

We can see that this “‘NDF”’ actually corresponds to the right
definition of the rate of ‘No Degradation Found” at
equipment level:

NDF =1 - [% of success among the predictive removals]
NDF = [% of bad predictive removals]

Having the same approach for NFF, we can first define:

1
_ MTBRR  __ “MTBSRR_
NFE =1 MTBSRR 1 1

MTBRR

in order to have:
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1 1 - NFF

MTBSRR MTBRR

Again we can see that this “NFF” actually corresponds to
the right definition of the rate of ‘No Fault Found” at
equipment level:

NFF =1 - [% success among the reactive removals]
NFF = [% of bad reactive removals]

Thus, the terms NDF and NFF align with their standard
definitions at the equipment level. However, a question
remains: how do these indicators relate to those defined at
the Failure Mode (FM;) level? The answer is affirmative,
and the relationship is demonstrated as follows:

Let’s define normalisation coefficients respectively on F, P
and R:

R
MTBF,

a = over F (21)
We have obviously: Y a = 1
ier *
1
MTBPR
BL_ = . over P (22)
rcp MTBPR,
We have obviously: Y, B. = 1
iep '
1
WTBRR,
Y. = : over R (23)
! 1l
k%RMTBRRk
We have obviously: ), y. = 1
ier *
MTBPR'
From the definition: NDF = 1 — ————
MTBSPR
We can write it like this:
1
EP MTBSPR,
NDF =1 —— (24)
Z 1
Kep MTBPR,
1
NDF — Z MTBPR‘ _ Z ; (25)
iep 1 i€P\ ' ——MTBSPR
rep MTBPR, rep MTBPR, i
NDF =—1 L _ 1 vy 1 __ ()
L jep MTBPR \__jep MTBSPR,
rep MTBPR, rep MTBPR,

1
NDF = y|—22— 1 -
iep\ y—

kep MTBPR,

Then, using following relations:

MTBPR
NDF. =1 - ——
i MTBSPR,
MTBRR,
NFF =1 - MTBSRR,
This leads to:
L G
NDF = Y| —=—NDF | (28)
iep 1 !

rep MTBPR,

NDF = ¥ B.NDF,  (29)

iep

This is logical, the equipment-level ‘NDF rate’ is computed

as a weighted sum of the individual NDF; values.

Using same demonstration principles for NFF, we have:
MTBRR

NFF = 1 — —— (30)
MTBSRR

NFF =Y y .NFF (31)
ier ' ¢
Furthermore, coming back to the raw definition, we have :

% confirmed predictions
% predictions

Precision =

1—NDI:"
—=“—=1-NDF (32)

MTBPR'

Precision =
And considering that:
Precisionl_ =1- NDFL_

This easily leads to the following expression:

Precision = )’ Bi.Precisioni (33)
iep

The Recall at the equipment level is now considered.

We have by definition:
_ Y% confirmed predictions
Recall = % actual failure
1
MTBSPR'
Recall = —— (34)

MTBF
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1

E;J MTBSPR
Recall = (35)
1
E‘F MTBSPR,
Recall = (36)
kEF MTBFk
Having MTBSPR," = c over R*
This leads to:
MTBSPR
Recall = ¥, ‘ (37)
ieF ]EFW
1
MTBF
Recall = ¥ | —= L (38)
ieF\ w1 MTBSPR,
reF MTBFk

Recall = Y o . Recall
ieF '

with Recall; = 0 over R* (39)

Recall = ) ocl_.Recalll_ (40)

i€EP

Besides, from (20) and based on same demonstration
principles shown on §3.1, we obtain:

MTBF
Recall= 1 — (1 — NFF).
MTBRR

(41)

Furthermore, returning to the basic definition, the following
laws also apply:

1— NDF
Recall = MTBF _ = MTll?PRV (42)
MTBSPR T
_ _(1-NDF).MTBF_
Recall = S—TPDMIEL (43)

MTBPR
In addition, it is easy to demonstrate the following relations:

MTBF =1, ¥ o . MTBF, (44)

njer

MTBPR'=—-. ¥ . MTBPR  (45)

P ieP
MLR =—— ¥ B . MLR, (46)
v jep !
MTBPR=—. ¥, B.. MTBPR. (47)
P {eP

3.3. Consistency checks

Without CBM / PBM, there are no predictive removals and
MTBPR = 0.

Thus, (20) reduces to (2), the historical law used in the
context of a purely reactive maintenance strategy. This
relationship confirms that the traditional approach is simply
a specific case of the more comprehensive model presented
here.

Besides (41) can be written as:

1-NFF

Recall = 1 — 2% (48)

MTBF

Which corresponds to:

_ % confirmed reactive removals
Recall =1 % actual failures (49)

This is consistent with the definition.
Noting:

1
MTBF  _ "MTBRR __

P="urBrR = _1_
MTBF

% reactive removals
% actual failures

We have :
Recall =1 - p.(1-NFF) (50)

With only successful predictive removals (i.e. without
reactive removals), we have MTBRR = .

Then p = 0, then Recall = 100%, which is consistent again.
4. IMPACTS ON THE MEASUREMENT PROCESS

4.1. Equivalent expression of performance targets

The equation (41) shows the equivalence in terms of
performance targets expressed in a Purchase Technical

Specification:

e When defining a minimum  operational
performance target expressed in the form:

MTBRR
MTBF

> coeff

Using a coeff > 1 requires predictive monitoring
functions

e When defining a “classic” set of performance
targets (in data analytics) expressed in the form:

Recall > value
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4.2. Formalisation of shopfinding results

To compute performance indicators at the equipment level,
it is necessary to understand the architectural relationship of
the different Failure Modes (FM;) involved.

By default, all FM; should be provided as formalized,
independent, and configured in series. If a more complex
relationship exists (e.g., involving parallel configurations or
dependencies), this architecture must be specified. This
information is essential for calculating the system-level
performance using the appropriate aggregation laws.

4.3. A Methodology for In-Service Performance
Evaluation

To ensure an accurate and unbiased estimation of
operational KPIs such as MTBEF, the following in-service
evaluation process must be applied. A core principle is to
analyze distinct populations of equipment that share, on
average, the same wusage profiles and environmental
conditions.

Step 1: Establish the Baseline MTBF

This requires a "control" population of equipment that is not
subject to predictive maintenance removals (i.e., operating
in a purely reactive or "shadow" mode). This ensures all
inherent Failure Modes (FM;) can manifest.

1. Estimate the Mean Time Between Reactive
Removals (MTBRRy ): Measure the MTBRRy for
this control population, where all removals are, by
definition, reactive.

2. Determine the NFFy for this population through a
robust feedback loop with suppliers and MRO
providers, using the defined ground truth
assessment methods for fault confirmation
(typically a Shop-Based Confirmation).

3. Compute the Baseline MTBF: Calculate the
equipment's design-dependent MTBF using the
classic formula:

MTBF = MTBRR; / (1 - NFFy)
Step 2: Evaluate the CBM / PBM Program

This requires a second representative population of
equipment where predictive monitoring and removals are
active.

4. Estimate the Mean Time Between Predictive
Removals (MTBPR): Measure the MTBPR for this
CBM / PBM-enabled population.

5. Estimate the No Degradation Found (NDF) rate:
Determine the NDF rate for predictive removals
through the feedback loop, using the defined
ground truth assessment method for degradation

confirmation.
6. Analyze the Reactive Sub-Population: Within this
same CBM / PBM group, analyze the

sub-population of assets that still fail reactively.
Estimate their specific MTBRR and NFF rate.
These values are expected to differ from the
baseline MTBRRy and NFFy due to the effect of
the model's Recall (some failures are successfully
prevented).

7. Compute the Mean Lifetime Reduction (MLR):
Using the metrics from the CBM / PBM
population, calculate the MLR by rearranging the
generalized formula (19):

1 / MTBF = (1-NDF) / (MTBPR + MLR) +
(1-NFF) / MTBRR

Step 3: Verify the CBM / PBM Program's Efficiency

8. Check the Efficiency Ratio: Ensure that the ratio of
lifetime reduction to the theoretical mean lifetime
remains within an acceptable target, typically in the
range [1% - 5%].

MLR/MTBEF < Target%.

In practice this target percentage should be defined
based on factors such as the equipment's MTBF
and price, the cost of an operational interrupt, and
the relative costs of proactive versus reactive
repairs. A high MLR/MTBF ratio can indicate that
a predictive model is intervening too carly, thus
requiring improvement to its anticipation time.

A Note on Statistical Validity:

When calculating mean-time indicators like MTBRR and
MTBPR, it is crucial to ensure statistical significance. If
these metrics are based on only a few events, they may not
be representative. In such situations, it is necessary to
expand the measurement window or the size of the
equipment population to gather more data.

5. CoONCLUSION

This paper has addressed a fundamental challenge in
evaluating the performance of modern maintenance
strategies. We first established that, while deeply ingrained,
the MTBUR metric is a legacy of a purely reactive
paradigm and is ill-suited for a CBM / PBM context. Its use
creates misleading assessments by penalizing successful
proactive interventions. The logical and necessary first step
for any organization adopting predictive maintenance is
therefore to transition to unambiguous metrics that

10
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accurately reflect operational performance and foster a
proactive culture.

To resolve this ambiguity, we introduced a new set of
complementary operational metrics: MTBRR, MTBPR,
MLR, and NDF. This comprehensive framework
overcomes the  inherent bias  of  traditional
"unscheduled-based" measurements. Crucially, it provides a
common language that reconciles the perspectives of the
data analytics domain and the operational world. Key
mathematical relationships were formalized to connect these
different levels of analysis:

e Linking Failure Mode to Equipment Level (for
independent, series-configured FM;):

Recall = Y, a Recalli (5D

ieP

Precision = Y, . Precision. (52)
iep ' :
NDF = Y B.NDF  (53)
iep !
NFF = Y y.NFF (54
ieR ' !

e Linking Data Analytics and Operational
Metrics at the equipment level:

MTBF
MTBRR

Recall = 1 — (1 — NFF) (55)

This can be rearranged to generalize the classically used
equation (1):
MTBRR = —2£

1—Recall MTBF

(56)
And finally, another useful expression for the ‘Recall’
metric was presented:

Recall = —=NBE

MTBPR*

MTBF (57)

Furthermore, a detailed step-by-step measurement process
was proposed to ensure that these metrics can be calculated
consistently and without bias from in-service data. The
framework and methodologies presented here now require
experimental validation on a wide scale. Successful
implementation will depend on acceptance by all
stakeholders, particularly those involved in the feedback
loop for in-service parts management. Adopting this
rigorous approach will prevent misalignments between
suppliers, integrator and operators viewpoints, leading to a
more accurate and transparent assessment of operational
performance in a predictive maintenance environment.

NOMENCLATURE

CBM
E2E
EQPT
FM
FP

FN

HI
MEL
MRO
MTBF

MTBPR

MLR

MTBPR

MTBRR

MTBSPR

MTBSPR

MTBUR

MTBSRR

NFF

Condition Based Maintenance
End-to-End

Equipment

Failure Mode

False Positive

False Negative

Health Indicator

Minimum Equipment List

Maintenance, Repair, and Overhaul

Mean Time Between Failures

Mean Time Between Predictive Removals
(“Predictive” term chosen to be PBM
centric, but in fact we consider here all

early CBM-based removals)

Mean Lifetime Reduction

Mean Time Between Predictive Removals
added to the Mean Lifetime Reduction

MTBPR* = MTBPR + MLR

Mean Time Between Reactive Removals

Mean Time Between Successful
Predictive Removals
Mean Time Between  Successful

Predictive Removals added to the Mean
Lifetime Reduction

MTBSPR = MTBSPR + MLR

Mean Time Between Unscheduled

Removals

Mean Time Between Successful Reactive
Removals

No Fault Found, or rate of equipment with
‘No Fault Found’ when used in a formula

11
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NDF No Degradation Found, or rate of
equipment with ‘No Degradation Found’
when used in a formula

PBM Predictive Based Maintenance

PDF Probability Density Function

RUL Remaining Useful Life

TP True Positive

N True Negative
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