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ABSTRACT

Detecting nuclear material loss or leak events is a critical
challenge for nuclear safeguards and material accountancy
in the recycling of used nuclear fuel. The MAYER (Multi-
Sensor Assimilation Yielding Enhanced Reliability) project,
part of the ARPA-E CURIE (Converting UNF Radioisotopes
Into Energy) program, aims to develop a framework for track-
ing material loss in nuclear facilities by integrating multi-
sensor data with predictive modeling. In this paper, we in-
troduce MAterial Loss Tracking via Time Series Sketching
(MALTS), a deep learning-based method designed to detect
material loss events across the nuclear fuel recycling system.
MALTS enhances the accuracy and robustness of nuclear ma-
terial loss tracking by employing time series sketching to cap-
ture essential patterns while filtering out sensor noise, re-
sulting in more stable predictions despite sensor noise ef-
fects. This approach also improves the time efficiency of
material loss tracking by reducing the dimensionality of high-
frequency sensor data, thereby enhancing computational scal-
ability and enabling real-time inference. To further provide
insights into the leak, MALTS ranks anomalous channels
by post-processing results with a pretrained vision-language
model (VLM) that considers the system flow diagram, gen-
erating a sorted list of anomalous channels from upstream
to downstream. The initial leak location is identified as the
first upstream channel. Experimental results demonstrate
MALTS’s effectiveness and efficiency in accurately identify-
ing unseen nuclear material loss events and pinpointing ini-
tial leak locations, making it suitable for deployment within
the MAYER digital twin framework for nuclear material safe-
guards.

Hao Huang et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. INTRODUCTION

Ensuring the security and accountability of nuclear materi-
als is a strategic priority for the Advanced Research Projects
Agency–Energy (ARPA-E) and the U.S. Department of En-
ergy (DOE). Developing solutions that would enable facil-
ity reprocessing operators to keep the tracking and measure-
ments of used fuel flowing in the pipes of the facilities them-
selves has the potential to yield estimated savings in the hun-
dreds of millions of dollars annually in operating costs while
enabling more used fuel to be recycled with enhanced safe-
guards. Currently, fuel reprocessing operators have to tem-
porarily shut down plant operations to perform a full inven-
tory of nuclear materials within the plant. Additionally, there
are planned scheduled outages for these physical inventory
checks.

The CURIE (Converting UNF Radioisotopes Into Energy)
program, established by the DOE through ARPA-E, aims
to develop advanced technologies for recycling used nuclear
fuel (UNF) and improving nuclear safeguards CURIE pro-
gram by ARPA-E (2022). A critical component of CURIE is
the MAYER project (Multi-Sensor Assimilation Yielding En-
hanced Reliability) MAYER ARPA-E (2023), which focuses
on creating digital twins to enhance nuclear material accoun-
tancy and loss detection. MAYER integrates data from multi-
ple sensors within nuclear facilities, using predictive models
to identify material loss or leak events accurately Honnold et
al. (2024).

State-of-the-art methods for nuclear material accountancy,
such as Material Unaccounted For (MUF) and Sequential Im-
balance Testing for MUF (SITMUF), rely heavily on statis-
tical analysis of material balances, necessitating a sufficient
observation period to ensure reliable assessments Shoman &
Moosir (2023). However, these methods often struggle with
issues such as sensor noise and incomplete data, which can
impede their ability to detect nuclear material loss or leaks
in real time. Machine learning (ML) approaches have shown
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promise in enhancing anomaly detection by learning complex
patterns from historical data. Nevertheless, supervised ML
models require labeled loss events, which are frequently un-
available or incomplete in historical records, thereby limiting
their applicability Shoman & Honnold (2022). Unsupervised
ML algorithms present an attractive alternative, as they do
not require prior knowledge of potential safeguard anomalies.
Despite this advantage, previous research has highlighted the
limitations of popular unsupervised algorithms, particularly
their susceptibility to measurement noise in safeguards data
streams Shoman & Honnold (2022).

To address these challenges, we propose MAterial Loss
Tracking via Time Series Sketching (MALTS), a deep
learning-based prediction method designed to detect nu-
clear material loss events across all monitoring inventory
channels in the targeted system. Utilizing time series sketch-
ing, MALTS enhances sensor noise robustness and time
efficiency by reducing the dimensionality of high-frequency
sensor data, enabling real-time inference. It captures essential
patterns while filtering out measurement noise, improving
the model’s ability to generalize to unseen loss events. Addi-
tionally, the model provides insights into detected leak events
by ranking anomalous channels through post-processing with
a pretrained vision-language model (VLM) that considers the
system flow diagram, generating a sorted list of anomalous
channels from upstream to downstream. The initial leak
location is identified as the first upstream channel.

This paper presents the design and experimental results of our
proposed MALTS. We evaluate the model’s performance us-
ing simulated sensor data from Sandia National Laboratories
and demonstrate MALTS’s effectiveness and efficiency in ac-
curately and promptly detecting nuclear material loss events.
The proposed approach aligns with MAYER’s goal of creat-
ing a resilient and adaptable digital twin for enhanced nuclear
safeguards. Our work enables fuel reprocessing operators to
perform real-time tracking of a plant’s nuclear materials in-
ventory, helping to prevent unplanned shutdowns and reduce
the duration of planned shutdowns, potentially saving opera-
tors hundreds of millions of dollars annually.

2. RELATED WORKS

Anomaly detection in time-series data is a critical component
of nuclear material accountability, where timely and accurate
detection of material loss is essential for safety and regula-
tory compliance. Over the years, several deep learning ar-
chitectures, including Recurrent Neural Networks (RNNs),
Temporal Convolutional Networks (TCNs), and Transform-
ers, have been employed to address these challenges. Each
method offers unique strengths and limitations that influence
their suitability for specific tasks within the nuclear domain.

Recurrent Neural Networks (RNNs) have traditionally been
favored for sequential data processing due to their ability to

maintain a hidden state that captures information from previ-
ous time steps. This feature allows them to handle long-term
dependencies within time-series data Hochreiter & Schmid-
huber (1997). However, traditional RNNs suffer from van-
ishing and exploding gradient problems, which limit their ef-
fectiveness in capturing long-range dependencies crucial for
detecting subtle anomalies in nuclear material flows. Variants
such as extended Long Short-Term Memory (xLSTM) Beck
et al. (2024) and Gated Recurrent Units (GRUs) Ravanelli et
al. (2018) were introduced to mitigate these issues, but they
remain computationally intensive and slow during inference,
posing challenges for real-time monitoring in nuclear facil-
ities. Additionally, their high computational requirements
make them difficult to deploy on resource-constrained de-
vices often used in nuclear environments.

The Shallow RNN (ShaRNN), proposed by Dennis et al.
(2019), offers a more efficient approach by using shallow
RNN layers while maintaining accuracy for time-series clas-
sification tasks Dennis et al. (2019). Although ShaRNN re-
duces computational resource usage, it still inherits the limi-
tations of RNNs in handling long-range dependencies and se-
quence length, which are critical for real-time anomaly detec-
tion in nuclear material accountancy Cho et al. (2014); Graves
(2013).

Temporal Convolutional Networks (TCNs) have emerged as a
promising alternative to RNNs, offering the ability to model
long-range dependencies without the vanishing gradient is-
sues Bai et al. (2018b). TCNs utilize dilated convolutions to
expand the receptive field, efficiently capturing temporal pat-
terns necessary for monitoring nuclear material flows. Their
parallelization capability during training enhances compu-
tational efficiency compared to RNNs. The ModernTCN
model, introduced by Luo and Wang (2024), represents a
state-of-the-art approach in time-series analysis, enhancing
the basic TCN architecture with a purely convolutional struc-
ture Luo & Wang (2024). This allows ModernTCN to process
long-range temporal dependencies effectively while main-
taining stable gradients during training, making it suitable for
the complex data streams in nuclear facilities.

Despite their advantages, TCNs can be computationally ex-
pensive, especially with high-dimensional or high-frequency
data typical in nuclear monitoring systems, as large kernel
sizes are needed to capture long-range dependencies Lea et al.
(2017). Although ModernTCN and other TCN variants im-
prove performance over earlier models, they still face scala-
bility challenges with massive time-series datasets, a common
scenario in nuclear material monitoring Bai et al. (2018a); Yu
et al. (2024).

Transformers have revolutionized machine learning by
capturing long-range dependencies through self-attention
mechanisms, eliminating the need for recurrent connections
Vaswani et al. (2017). Initially designed for natural language
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processing, Transformers have been successfully applied to
time-series anomaly detection Xu et al. (2021). Their ability
to process sequences in parallel and model both local and
global dependencies makes them well-suited for detecting
anomalies in large-scale datasets, such as those encoun-
tered in nuclear material tracking. Recent works, such as
the Transformer-based model for multivariate time-series
anomaly detection, highlight their potential for capturing
complex temporal patterns Tu et al. (2024).

However, despite their success, Transformer-based models
are computationally expensive and require large amounts of
data for training, posing challenges in resource-limited nu-
clear environments. They also typically require longer train-
ing and inference times, which can be a limitation in scenar-
ios needing fast, real-time anomaly detection. Furthermore,
Transformers are prone to overfitting when dealing with noisy
datasets, making them less reliable in situations where sensor
data is characterized by high levels of noise Tuli et al. (2022);
Zhao et al. (2024).

The rapid evolution of deep learning architectures, includ-
ing RNNs, TCNs, and Transformers, has greatly advanced
the field of anomaly detection in time-series data. How-
ever, these models face limitations, particularly regarding
computational speed, scalability, and their reliance on high-
frequency datasets, which pose challenges in the context
of nuclear material loss tracking. Our proposed method,
MALTS, presents a promising alternative by offering a more
efficient, robust, and interpretable solution for anomaly de-
tection. This makes it particularly well-suited for real-time
applications in nuclear material accountability. By leveraging
time series sketching, MALTS effectively tackles the unique
challenges of noise and data dimensionality inherent in nu-
clear environments, thereby enhancing the reliability and ef-
ficiency of material loss tracking.

3. OUR METHODOLOGY

We aim to monitor nuclear material loss from multi-sensor
time series data using a streaming approach based on time se-
ries sketching techniques Huang et al. (2024). Our method
enhances processing speed and enables real-time monitor-
ing while minimizing the need for extensive historical data
storage. Unlike batch-processing methods that process en-
tire datasets at once, time series sketching operates incre-
mentally on small time series batches, dynamically updat-
ing the sketch to represent observed data in real time. This
approach is not only fundamentally different but also more
efficient than RNN- and CNN-based techniques, which often
incur higher computational overhead or suffer from long-term
memory loss. These distinctions will be explored further in
subsequent sections.

Figure 1. MALTS starts by extracting time series embeddings
(B) with Temporal Convolutional Networks. These embed-
dings incrementally update the time series sketch (U ) via an
attention module. A fully connected layer predicts future
measurements, where high residuals signal potential material
loss and identify relevant inventory channels. A pretrained
vision-language model (VLM), which understands the sys-
tem flow diagram, further analyzes these channels to pinpoint
the initial leak location.

3.1. Our proposed MALTS

MALTS utilizes time series sketching Huang et al. (2024),
a technique that incrementally condenses high-dimensional
time series data X ∈ Rm×n into a more compact latent form
U ∈ Rm×k, where k ≪ n. The compressed representation U
encapsulates all observed data to date and is used to predict
incoming data. High prediction residuals act as indicators of
potential material loss and help identify the associated inven-
tory channels. Unlike traditional batch-processing methods,
this approach continuously updates U as new data arrives, en-
abling efficient real-time monitoring without the need to store
or process the entire historical dataset.

Step 1: Temporal Convolutional Network (TCN). In the
field of time series analysis, capturing complex temporal de-
pendencies is crucial for understanding the underlying pat-
terns and dynamics of the data. To achieve this, we employ
a Temporal Convolutional Network (TCN) Lea et al. (2017),
a robust neural network architecture specifically designed to
handle sequential data with temporal characteristics.

The TCN excels at extracting meaningful patterns from time
series data by processing it through a series of 1D con-
volutional layers. Unlike traditional recurrent neural net-
works (RNNs), which process data sequentially, TCNs uti-
lize convolutional operations to capture temporal dependen-
cies across multiple time steps simultaneously. This capabil-
ity allows TCNs to efficiently model temporal dependencies,
making them particularly well-suited for our subsequent time
series sketching step.

Our approach applies the TCN to sliding windows of time se-
ries data, as illustrated in the bottom left of Figure 1. Each
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sliding window represents a batch of consecutive time steps,
providing a localized view of the data for the TCN to ana-
lyze. By moving the window across the entire time series, the
TCN extracts features that encapsulate the temporal dynam-
ics present within each segment. The output of the TCN is
a set of extracted features, denoted as Bi, where i represents
the index of the batch or window. These features are rich in
temporal information and serve as a compact representation
of the patterns identified by the TCN.

These extracted features Bi are then used as inputs to the sub-
sequent time series sketching process (Step 2). The sketching
process further refines the features, distilling them into a form
that is both computationally efficient and robust to noise.
While the TCN captures short-term fluctuations, the subse-
quent time series sketching step captures long-term trends,
providing a comprehensive view of the data’s temporal struc-
ture.

By utilizing a Temporal Convolutional Network, we effec-
tively harness the power of convolutional operations to cap-
ture and represent complex temporal dependencies in time se-
ries data. This step is crucial for enabling real-time analysis
and decision-making, as it reduces the dimensionality of the
data while preserving its essential characteristics. This foun-
dation sets the stage for the subsequent stages of our frame-
work, ensuring that the extracted features are both informa-
tive and actionable for downstream tasks.

Step 2: Time Series Sketching. In our previous work Huang
et al. (2024), we introduced a streaming time series sketching
algorithm, detailed in Algorithm 1. This algorithm sequen-
tially updates the time series sketch U using new time series
embeddings Bi through the following process:

(1) Positional Encoding: To preserve the crucial tempo-
ral order information in time series analysis, we in-
tegrate a continuous positional encoding mechanism
(Line 2) that maintains computational efficiency. We
utilize Continuous Augmented Positional Embeddings
(CAPE) Likhomanenko et al. (2021), which are recog-
nized for their computational efficiency and robustness
when handling variable-length inputs Zhai et al. (2023).

(2) Initialization: For the first batch (Lines 3–7), the sketch
update operates on (I + 1

b B̃1B̃
T
1 )U1 instead of directly

using 1
b B̃1B̃

T
1 U1 to facilitate stable convergence.

(3) Incremental Update: For subsequent batches (Lines
8–16), the sketch is updated using W0Ui−1U

T
i−1Ui +∑b

j=1 WjB̃i,jB̃
T
i,jUi, where W0 and Wj represent

weights for the prior sketch covariance and each new
sample covariance, respectively. Here i denotes the
batch index and j the sample index within each batch.
The first term in the formula ensures that the histori-
cal information captured in the previous sketch Ui−1 is
preserved, while the second term allows the sketch to in-

corporate new data from the current batch. The weights
W provide a mechanism to control the influence of the
prior sketch and the new data. This weighting is crucial
for balancing the retention of historical information
with the integration of new observations. It allows
the model to dynamically adjust the emphasis on past
versus current data, which can be particularly important
in environments where the relevance of historical data
may change over time.

(4) Attention-Based Weighting: The weights in the in-
cremental update formula are derived via an attention
mechanism. Keys are projected from the prior sketch
and sample covariances (Line 11), while the query is
derived from the new batch covariance (Line 12) to dy-
namically adjust weight assignments.

(5) Normalization for Stability: The normalization steps
(Lines 6 and 15) are implemented to prevent the sketch
magnitudes from increasing, thereby ensuring robust
predictions and stable convergence.

Algorithm 1 Time series sketching

Input: A sequence of time series embedding batches
{B1, B2, ...}, batch size b, starting vector U0 ∈ Rd ∼
N (0, I), positional encoding function pos, key projec-
tion function key, query projection function qry.

Output: Sketch Ui at any time
Initialization : U1 ← U0/∥U0∥2

1: for each Bi do
2: Equip the input batch with their positional information

by B̃i ← Bi + pos(Bi)
3: if i = 1 then
4: while U1 not converge do
5: U1 ← U1 +

1
b B̃1B̃

T
1 U1

6: U1 ← U1/∥U1∥2
7: end while
8: else
9: Ui ← Ui−1

10: while Ui not converge do
11: calculate keys:

K0 ← key(Ui−1U
T
i−1Ui)

K1 ← key(B̃i,1B̃
T
i,1Ui)

...
Kb ← key(B̃i,bB̃

T
i,bUi)

12: calculate query: Q← qry(B̃iB̃
T
i Ui)

13: calculate weights W from query Q and keys K
14: Ui ←W0Ui−1U

T
i−1Ui +

∑b
j=1 WjB̃i,jB̃

T
i,jUi

15: Ui ← Ui/∥Ui∥2
16: end while
17: end if
18: end for

Time series sketching reduces the dimensionality of high-
frequency data, which inherently filters out noise by focusing
on the most significant features and patterns. The attention
mechanism in MALTS is tailored to work with the reduced
data representation, allowing it to focus on the most relevant
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features without being overwhelmed by noise. This contrasts
with the full attention mechanism in Transformers, which can
sometimes amplify noise if not properly regularized.

Step 3: Real-Time Prediction and Leak Detection.

In the dynamic environment of real-time monitoring, accu-
rately predicting system behavior and identifying anomalies
as they occur is crucial for maintaining operational integrity.
This step involves leveraging our predictive modeling to con-
tinuously assess the state of the system and detect potential
leaks.

During each time step of the time series data transfer, the most
recent data representation, known as the sketch Ui, is utilized.
This sketch is a condensed form of the data that captures es-
sential patterns and trends while filtering out noise. It serves
as a compact yet informative input for the predictive model.

The sketch Ui is fed into a fully connected layer, a type of
neural network layer that connects every input to every out-
put, allowing for complex transformations and predictions.
This layer processes the sketch to generate a prediction of the
incoming measurement for the next time step. The prediction
is not limited to a single channel but rather spans the entire
space of monitoring channels, ensuring comprehensive cov-
erage of all areas of interest within the system.

The core of this step lies in the comparison between the pre-
dicted and actual measurements. By calculating the residual,
or the difference between these two values, the system can
assess the accuracy of the prediction. A high residual indi-
cates a significant deviation from expected behavior, which is
flagged as a potential material leak. This deviation suggests
that the system is experiencing an anomaly that could signify
a leak or other malfunction.

The ability to predict across all monitoring channels is vi-
tal for effective leak detection. It ensures that no part of the
system is overlooked and that any irregularities are promptly
identified. This comprehensive approach allows for the obser-
vation and analysis of all channels, providing a holistic view
of the security and accountability of nuclear materials.

By implementing real-time prediction and leak monitoring,
the system can quickly respond to anomalies, minimizing the
risk of undetected leaks and enabling timely interventions.
This proactive monitoring strategy enhances the reliability
and safety of the system, ensuring that potential issues are ad-
dressed before they escalate into more significant problems.

Step 4: Localizing Initial Leak Location. Once a potential
leak event has been identified, the next crucial step is to pin-
point the initial location of the leak within the system. This
process begins by taking the unsorted list of anomalous chan-
nels, which have been flagged during the leak detection phase
(Step 3), and inputting them into a pretrained vision-language
model (VLM).

The VLM is specifically designed to interpret and analyze
complex system flow diagram, which represent the intercon-
nected pathways and components of the system being moni-
tored. By leveraging its understanding of both visual and tex-
tual data, the VLM can effectively map the relationships and
dependencies between different channels within the system.

Upon receiving the list of anomalous channels, the VLM pro-
cesses this information in the context of the system flow dia-
gram. It evaluates the position and role of each channel within
the overall system architecture, taking into account the direc-
tion of flow and the sequence of operations. This allows the
VLM to generate a sorted list of anomalous channels, orga-
nized from upstream to downstream.

The sorting process is critical because it helps to trace the
path of the anomaly back to its origin. In fluid or process
systems, upstream channels are those that occur earlier in the
flow sequence, closer to the source of the material or signal.
By identifying the first channel in the sorted list, the system
can accurately localize the initial leak location. This channel
is considered the most likely point of origin for the leak, as it
is the first point in the flow where the anomaly was detected.

This method of localizing the initial leak location not only
enhances the accuracy of the detection process but also pro-
vides valuable insights for maintenance and repair teams. By
knowing the exact starting point of a leak, teams can more
efficiently address the issue, minimizing downtime and pre-
venting further damage to the system.

Algorithm 2 MALTS

Input: A sequence of sensor time series batches
{X1, X2, ...}.

Output: Detected leak and its initial location, if applicable.
1: for each Xi do
2: Extract time series features using TCN (Step 1)
3: Update time series sketch using Algorithm 1 (Step 2)
4: Project the updated sketch to predict the incoming sen-

sor reading Ŷi and identify anomalous channels based
on high prediction residuals (Step 3)

5: Utilize a pretrained VLM to sort anomalous channels
from upstream to downstream, accurately pinpointing
the initial leak location (Step 4)

6: end for

The complete MALTS framework is outlined in Algorithm 2
and depicted in Figure 1. By integrating time series sketch-
ing with an attention-based refinement process, MALTS
balances computational efficiency with resilience to sensor
noise, ensuring reliable real-time monitoring of nuclear mate-
rial loss. Additionally, its capability to output sorted anoma-
lous channels and identify initial leak locations enhances de-
tection insights and informs subsequent leak solutions, mak-
ing MALTS well-suited for real-time anomaly detection in
environments with noisy or incomplete sensor data.
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Figure 2. The simulated nuclear material flow diagram in a recycling system.

4. EXPERIMENTS

4.1. Problem and Dataset Description

Problem Introduction. Effective monitoring of nuclear ma-
terial loss within reprocessing facilities is crucial for ensur-
ing both nuclear safety and regulatory compliance. Tradi-
tional methods of Material Control and Accounting (MC&A)
McMath et al. (2024); Taylor & Terentiev (1998) often face
challenges in promptly detecting material loss due to the
complex nature of nuclear processes and the inherent limita-
tions of measurement systems. To address these challenges,
the Multi-Sensor Assimilation Yielding Enhanced Reliability
(MAYER) project MAYER ARPA-E (2023), under the ARPA-
E CURIE program CURIE program by ARPA-E (2022), aims
to develop advanced methodologies for real-time material
loss detection in nuclear facilities. A key component of this
initiative is the development of the Material Loss Tracking
via Sketching (MALTS) model proposed in this paper, de-
signed to enhance the detection and localization of material
loss events by leveraging the observed multivariate time se-
ries data from multiple sensor channels.

Dataset Introduction.

The dataset utilized to evaluate the MALTS model was pro-
vided by Sandia National Laboratories and generated using
the Material Performance Indicator Toolkit (MAPIT) Shoman
& Moosir (2023). The dataset comprises multivariate time
series data from 63 channels, each representing radiomet-
ric measurements at different locations within a simulated
nuclear reprocessing facility (the flow diagram is shown in
Figure 2). These channels collectively capture the dynamic
behavior of nuclear materials as they move through various
stages of the reprocessing workflow. The dataset contains
both ‘no-leak’ and ‘leak’ data, representing normal operation
and three simulated leak scenarios with different initial leak
locations and propagation patterns, respectively. Each time

series is sampled roughly every 30 minutes for 6480 hours,
resulting in about 200,000 timesteps. The training set consists
of 100 normal time series, while the testing set comprises 30
normal and 30 leak time series for each leak type. The data
includes simulated measurement uncertainties and potential
anomalies, providing a comprehensive testbed for evaluating
the MALTS model’s capability to detect and localize mate-
rial loss events. By utilizing this MAPIT-generated dataset,
the MALTS model’s performance can be assessed in a con-
trolled environment that closely mirrors the complexities and
challenges of real-world nuclear fuel recycling systems. This
evaluation is instrumental in demonstrating MALTS’s poten-
tial for enhancing the reliability and efficiency of MC&A pro-
cesses in nuclear facilities.

4.2. Experiment Setup

Baselines and Hyperparameter Setting. We compared our
MALTS model with the following baseline methods: MTCN
Luo & Wang (2024): ModernTCN is a convolution-based
time series model with an enhanced Temporal Convolutional
Network (TCN) architecture, designed for general analysis
with a better balance of performance and efficiency. LSTM
Filonov et al. (2017): The Long Short-Term Memory (LSTM)
model is trained on normal data to regress future values, treat-
ing prediction error as an anomaly degree. TranAD Tuli et
al. (2022): TranAD is a transformer-based anomaly detection
model designed for multivariate time series data, leveraging
self-attention mechanisms to capture long-range dependen-
cies and detect anomalies with high precision. For their hy-
perparameter settings, we adhered to the default structures
specified in their original papers, ensuring a fair comparison
across models.

Evaluation Metrics.

We employed the following metrics to evaluate the perfor-
mance of the models:
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Table 1. The average AUPR (and standard deviation) in leak detection comparisons.

Method
Loss scenario 1 Loss scenario 2 Loss scenario 3

noise = 1e-5 noise = 1e-3 noise = 1e-2 noise = 1e-5 noise = 1e-3 noise = 1e-2 noise = 1e-5 noise = 1e-3 noise = 1e-2

MTCN 1.00(0.00) 0.95(0.01) 0.88(0.07) 1.00(0.00) 0.92(0.02) 0.87(0.09) 1.00(0.00) 0.90(0.03) 0.85(0.09)

LSTM 1.00(0.00) 0.93(0.02) 0.87(0.08) 1.00(0.00) 0.90(0.04) 0.85(0.10) 1.00(0.00) 0.87(0.07) 0.84(0.09)

TranAD 1.00(0.00) 0.96(0.01) 0.92(0.05) 1.00(0.00) 0.95(0.01) 0.90(0.08) 1.00(0.00) 0.92(0.03) 0.87(0.07)

MALTS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.99(0.01)

Table 2. Ranks (and standard deviation) of truth initial leak location by each method.

Method
Loss scenario 1 Loss scenario 2 Loss scenario 3

noise = 1e-5 noise = 1e-3 noise = 1e-2 noise = 1e-5 noise = 1e-3 noise = 1e-2 noise = 1e-5 noise = 1e-3 noise = 1e-2

MTCN 1.00(0.00) 1.08(0.28) 1.11(0.32) 1.00(0.00) 1.12(0.32) 1.15(0.37) 1.00(0.00) 1.30(0.46) 1.50(0.59)

LSTM 1.00(0.00) 1.10(0.30) 1.15(0.35) 1.00(0.00) 1.13(0.34) 1.22(0.42) 1.00(0.00) 1.50(0.47) 1.70(0.90)

TranAD 1.00(0.00) 1.05(0.21) 1.08(0.28) 1.00(0.00) 1.09(0.30) 1.14(0.36) 1.00(0.00) 1.30(0.45) 1.40(0.49)

MALTS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.03(0.17)

1. Leak Detection: We use the Area Under the Precision-
Recall Curve (AUPR) as a metric, which is not sensitive
to class distribution and ranges from 0 to 1, with 1 indi-
cating perfect detection. This metric is particularly use-
ful in scenarios with imbalanced data, such as rare leak
events.

2. Initial Leak Localization: We report the ranking of the
true initial leak channel within the sorted channel array
for each algorithm. Ideally, a rank of 1 indicates that the
method successfully identifies the true initial leak chan-
nel as the highest-ranked.

We conducted 60 trials for each setting and documented the
average performance and standard deviation to ensure statis-
tical reliability of the results. These metrics provide a com-
prehensive assessment of the models’ ability to not only de-
tect leaks but also accurately localize the initial leak source,
which is critical for timely intervention and mitigation in nu-
clear facilities.

4.3. Analysis Comparison

Leak Detection. We first report the performance of each al-
gorithm in detecting material leaks. All baselines (MTCN,
LSTM, TranAD) and our proposed MALTS train a regres-
sion model using leak-free data and identify time series with
high prediction residuals during inference as anomalies or
leaks. To evaluate the anomaly detection results, we use
the Area Under the Precision-Recall Curve (AUPR), which
ranges from 0 to 1, with 1 indicating perfect detection. AUPR
is chosen because it is not sensitive to class distribution, mak-
ing it particularly suitable for scenarios with imbalanced data,
such as rare leak events.

Table 1 presents the leak detection performance for the three
types of leaks using different algorithms. We observe that

when the noise level is small (i.e., 1e-5), all algorithms ex-
hibit comparably high accuracy. However, as the noise level
increases, our proposed MALTS demonstrates significantly
better accuracy and stable performance with a low standard
deviation. On average, MALTS achieves up to 10% better
AUPR when the noise level is 1e-3, and 18% better AUPR
when the noise level is 1e-2. This superior performance is at-
tributed to MALTS’s ability to effectively filter out noise and
capture essential patterns in the data by using the advanced
time series sketching technique, enhancing its robustness in
challenging conditions. This robustness is crucial for real-
world applications where sensor noise can obscure critical
signals.

Initial Leak Localization. Besides evaluating leak detec-
tion, another critical aspect is to find the initial material leak
location to take subsequent action to resolve the issue. Ta-
ble 2 presents the quality comparison of initial leak localiza-
tion. Each method generates a sorted list of anomalous chan-
nels, and we recorded the rank of the ground truth initial leak
channel for each method. Table 2 reveals that our proposed
MALTS exhibits the best average performance, outperform-
ing all other methods across the three leak cases. Overall,
MALTS shows a 20%+ average improvement, consistently
ranking the true initial leak location as the highest score in
almost all cases and settings.

Figure 3 illustrates an output example of our MALTS from
both the data-driven part and the VLM part. The data-driven
neural network provides an unsorted list of detected anoma-
lous channels, which is then fed into the VLM that takes into
account the prior-known system flow diagram, and outputs a
sorted list from upstream to downstream. The initial leak lo-
cation is identified as the first upstream channel of the sorted
list. This two-step process not only enhances the accuracy

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Figure 3. Output example of our MALTS.

((a)) Training time comparison. ((b)) Inference time comparison.

Figure 4. Training and inference runtime comparison with
different model sizes.

of leak detection and localization but also provides action-
able insights for operators to quickly address the source of
the leak.

4.4. Running Time Comparison

To demonstrate the running efficiency of our MALTS, Fig-
ures 4(a) and 4(b) present comparisons of training and test-
ing times on a logarithmic scale. For a fair and comprehen-
sive comparison, we evaluate the running time of all meth-
ods across varying model sizes based on parameter count.
Specifically, we implement three versions of each algorithm,
approximately with 100k (small), 300k (medium), and 500k
(large) parameters. Our MALTS outperforms LSTM by a fac-
tor of three in terms of speed and is approximately twice as
fast as TranAD and 50% faster than MTCN. This significant
reduction in computational time is achieved without compro-
mising accuracy, making MALTS a practical choice for real-
time applications in nuclear material loss tracking. The ef-
ficiency gains are particularly crucial in operational settings
where a rapid response to detected leaks is essential for main-
taining safety and compliance, thereby broadening the appli-
cability of MALTS in various nuclear safeguarding scenarios.

5. DISCUSSION

The core architecture of MALTS—particularly its use of time
series sketching for noise-robust, efficient streaming anomaly
detection—is inherently adaptable to other Prognostics and
Health Management (PHM) domains such as aerospace, en-
ergy systems, and advanced manufacturing. The integration
of a vision-language model (VLM) for physics-informed lo-
calization could similarly be extended to any system with
known topology (e.g., pipeline networks, power grids). Fu-
ture work will explore MALTS’s performance on public
PHM benchmarks, including the NASA Turbofan Degrada-
tion dataset and the IMS Bearing dataset, to assess cross-
domain applicability.

We are working toward releasing a de-identified version of
the dataset and open-sourcing a modular implementation of
MALTS post-publication. To support adaptability across fa-
cilities, we are developing a transfer learning framework that
allows fine-tuning MALTS with minimal data from new con-
figurations, reducing retraining burden. We also intend to
study repeatability under varying operational conditions, in-
cluding maintenance cycles and human operator interactions,
as part of ongoing field testing within the MAYER digital
twin environment.

6. CONCLUSION

In this paper, we introduced the MAterial Loss Tracking via
Time Series Sketching (MALTS) model, a novel approach
designed to enhance the detection and localization of nu-
clear material loss events in reprocessing facilities. Our work
is part of the broader MAYER project under the ARPA-E
CURIE program, which aims to improve nuclear safeguards
through advanced methodologies.

The MALTS model leverages time series sketching to effec-
tively filter out sensor noise and capture essential patterns in
multivariate sensor data, thereby improving the robustness
and accuracy of anomaly detection. Our experimental re-
sults, conducted using a comprehensive dataset from Sandia
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National Laboratories, demonstrate that MALTS outperforms
popular machine learning models in both leak detection and
initial leak localization, particularly under challenging condi-
tions with high sensor noise levels.

Furthermore, MALTS exhibits significant computational ef-
ficiency, achieving faster training and inference times com-
pared to baseline models. This efficiency, combined with its
high accuracy, makes MALTS a practical solution for real-
time monitoring and safeguarding of nuclear materials, po-
tentially reducing operational costs and enhancing safety.

The integration of MALTS into the MAYER digital twin
framework represents a significant step forward in the devel-
opment of resilient and adaptable systems for nuclear mate-
rial accountancy. By enabling real-time tracking and local-
ization of material loss events, our approach supports facility
operators in maintaining continuous operations and minimiz-
ing the impact of unplanned shutdowns.

Future work will focus on further refining the model’s ca-
pabilities, including its adaptability to different facility con-
figurations and its integration with other predictive mainte-
nance tools. Additionally, we aim to explore the application
of MALTS in other nuclear domains where real-time anomaly
detection is critical.

In conclusion, the MALTS model offers a promising advance-
ment in nuclear safeguards, providing a robust, efficient, and
scalable solution for the complex challenges of material loss
tracking in nuclear reprocessing facilities.
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