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ABSTRACT

Miter gates are vital civil infrastructure components in inland
waterway transportation networks. To provide risk-informed
insights for decisions related to repair and maintenance, sen-
sors have been installed on some miter gates for monitor-
ing. Despite the monitoring system’s ability in collecting a
large volume of monitoring data, accurately diagnosing dam-
age state in such large structures remains challenging due to
the lack of labeled monitoring data, since these structures are
designed with high reliability and for a long operation life.
This paper addresses this challenge by proposing a damage
diagnostics approach for miter gates based on domain adap-
tation. The proposed approach consists of two main modules.
In the first module, Cycle-Consistent generative adversarial
network (CycleGAN) is employed to map monitoring data of
a miter gate of interest and other similar yet different miter
gates into the same analysis domain. Subsequently, a nor-
malizing flow-based likelihood-free inference model is con-
structed within this common domain using data from source
miter gates whose damage states are labeled from historical
inspections. The trained normalizing flow model is then used
to predict the damage state of the target miter gate based on
the translated monitoring data. A case study is presented to
demonstrate the effectiveness of the proposed method. The
results indicate that the proposed method in general can ac-
curately estimate the damage state of the target miter gate in
the presence of uncertainty.

1. INTRODUCTION

Navigational locks in inland waterway are infrastructure that
allows ship and barge traffic to move through different water
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elevations. One critical component in navigational locks is a
miter gate, which seals the chamber during a locking opera-
tion. Many miter gates have been in service for over their 50-
year design life, raising safety and reliability concerns (Foltz,
2017). Therefore, routine structural evaluations are crucial
for early fault detection and timely intervention. Tradition-
ally, the inspection requires expensive and labor-intensive de-
watering process for trained inspectors to get access to dif-
ferent components. Additionally, these inspection results are
often inconsistent due to inevitable human bias from inspec-
tors (Eick et al., 2018a; Wang, Huang, & Du, 2010; Vega, Hu,
Fillmore, Smith, & Todd, 2021). Recently, structural health
monitoring (SHM) have increasingly gained attention as tools
for reducing human-inspection effort in assessing structural
integrity (Estes, Frangopol, & Foltz, 2004; Nemani, Thelen,
Hu, & Daining, 2023; Eick et al., 2018b). It is crucial for life-
cycle management of structures but needs careful design and
implementation to maximize its benefits (Vistasp M. Karb-
hari, 2009).

The current SHM methods for damage diagnostics can be
broadly categorized into three groups, namely (1) data-driven
approaches; (2) physics-based approaches; and (3) hybrid
approaches that combines physics-based method with data-
driven approaches. For instance, one of the most common
used physics-based methods is Bayesian inference method
which leverages computational simulations and Bayesian
techniques to solve inverse problems (Thelen et al., 2022).
Recently, several Bayesian-based SHM approaches have been
developed for detecting damage in inland waterway infras-
tructure like miter gates (Ramancha, Vega, Conte, Todd, &
Hu, 2022; Levine, Golecki, Gomez, Eick, & Spencer, 2023;
Qian, Zeng, Hu, & Todd, 2024; Qian, Wu, Hu, & Todd, 0).
While Bayesian inference is a powerful tool for damage diag-
nostics in SHM, its effectiveness can be compromised by the
quality or availability of monitoring data for a specific miter
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gate in question (Zeng, Zeng, Todd, & Hu, 2024b, 2024a).
Moreover, the accuracy of diagnostics based on Bayesian in-
ference is highly dependent on the accuracy of the simulation
model (Hu, Hu, & Hu, 2024). Uncertainty sources in physics-
based simulations, stemming from model simplifications, as-
sumptions, or incomplete understanding, can result in biased
or incorrect damage estimations. In contrast, data-driven ap-
proaches are much more flexible and rely on fewer assump-
tions, making them very widely used in data-rich applica-
tions. Therefore, data-driven methods can help overcome the
limitations of physics-based methods, particularly for dam-
age modes that are not physically well-understood (Thelen et
al., 2022).

A major challenge in applying data-driven SHM methods
to miter gates is that data-driven methods usually need la-
beled monitoring data from different damage status. Such
labeled monitoring data is unavailable in practice for many
gates. Although some gates are instrumented with various
monitoring sensors, desired data from different damage sta-
tus still might not existed given small size of miter gate pop-
ulation. However, valuable inspection data from similar yet
different miter gates can be leveraged to alleviate or overcome
the data scarcity for data-driven damage diagnostic approach.
Existing research includes population-based SHM (PBSHM),
which leverages data from groups of similar structures to es-
timate the damage condition of the specific structure (Bull et
al., 2021; Gosliga, Gardner, Bull, Dervilis, & Worden, 2021;
Gardner, Bull, Gosliga, Dervilis, & Worden, 2021). PBSHM
performs domain adaptation (DA) with transfer learning to
adapt measurements from unfamiliar structure to measure-
ments from familiar structures (Whalen & Mueller, 2022;
Huang et al., 2022; Venkateswara & Panchanathan, 2020).
DA is especially useful when a miter gate with an unknown
damage state, leading to limited or no labeled data. Several
studies employing deep convolutional neural networks (Li &
He, 2020; Chen, Wang, Wu, Deng, & Wang, 2023) and Gen-
erative Adversarial Networks (Kwak & Lee, 2023) for DA.
However, quantifying uncertainty in damage diagnostics us-
ing DA remains challenging.

This paper proposes a damage diagnostics framework for
miter gates. This framework overcomes the data scarcity by
DA and quantifies the uncertainties with normalizing flow-
based likelihood-free inference. The proposed method com-
prises two modules: the first module converts observations
from both target and source miter gates into a common do-
main through domain adaptation; the second module con-
structs a probabilistic model to determine the damage state
of the target miter gate, utilizing known damage states from
the source miter gates. The main contributions of this paper
can be summarized as follows:

• This paper pioneers the combination of domain adapta-
tion techniques with a conditional invertible neural net-

work to enable damage diagnostics with quantified un-
certainty.

• The framework employs a domain adaptation method,
Cycle-Consistent GAN (CycleGAN), which effectively
translates information of both source and target miter
gates into a unified domain.

• The proposed framework is demonstrated and compared
using a practical application example of miter gate struc-
tural systems.

The remainder of this paper is organized as follows: Sec. 2
provides an overview of miter gates and the challenges asso-
ciated with damage diagnostics. Sec. 3 outlines the proposed
framework. Sec. 4 presents a case study along with a discus-
sion of the results. Finally, Sec. 5 concludes the paper.

2. DAMAGE DIAGNOSTICS OF MITER GATES

2.1. Miter gates in inland waterway lock systems

A navigation lock is a crucial component of the inland water-
way transportation network, facilitating the passage of ships,
boats, and other watercraft across river elevation changes. In
the United States, the miter gate, illustrated in Fig. 1, is an
essential element of these navigation locks. The potential fail-
ure of miter gates can lead to the unexpected closure of a lock
chamber, resulting in significant economic losses. Therefore,
it is imperative to detect damage early in these structures and
timely perform necessary maintenance.

Figure 1. Miter gates in inland waterway lock systems

2.2. Challenges in damage diagnostics of miter gates

One common type of damage in miter gates is the formula-
tion of ”gap” between the contact blocks that interface the
lock walls and the miter gate, as illustrated in Fig. 2. This
gap can lead to a redistribution of stress within the gate struc-
ture, creating high-stress zones that may exceed acceptable
limits and potentially cause failure. These gaps are often un-
derwater and not easily observed. Although some miter gates
managed by the USACE are equipped with strain gauges for
data collection, most sensor monitoring data are unlabeled,
posing significant challenges for effective damage detection.
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In this paper, we propose a domain adaptation method for
damage diagnostics in miter gates by leveraging monitoring
data from similar yet different miter gates with known dam-
age labels. The historical labeled monitoring data from these
miter gates will be used to inform the damage estimation of a
miter gate of interest, whose damage status is unknown. De-
tails of the proposed method are provided in the next section.

Gap

Figure 2. Illustration of ”gap” on miter gate structures

3. PROPOSED METHOD

In this section, we first provide an overview of the proposed
framework. Following that, we will introduce the domain
adaptation methods and probabilistic damage inference tech-
niques employed in this study in detail.

3.1. Overview

Fig. 3 presents an overview of the proposed framework. The
fundamental concept is to utilize inspection and monitoring
data from similar (in a nominal design sense), though differ-
ent, miter gates to create an approach for estimating the dam-
age state of a target miter gate using data-driven approaches.
As illustrated in this figure, the proposed framework consists
two main modules, which are outlined as follows:

1. Domain adaptation based on CycleGAN: This mod-
ule is dedicated to translating observations from both the
target and source gates into a unified domain. This pro-
cess is crucial for establishing a relationship between the
damage state of the target miter gate and the inspection
and measurement data from the source miter gates.

2. Probabilistic damage inference using normalizing
flow after domain adaptation: This module involves
constructing a model to infer the damage state of the
target miter gate based on observation data, utilizing the
labeled damage states of the source miter gates within
the translated domain.

In the following subsections, we provide a detailed explana-
tion of each of these modules.

3.2. Domain adaptation based on CycleGAN

CycleGAN, introduced by Zhu et al., addresses unpaired
image-to-image translation challenges by transforming im-
ages from one style to another, such as horses to zebras or
summer to winter scenes. This method effectively learns re-
lationships between different unpaired domains (Zhu, Park,
Isola, & Efros, 2017). Fig. 4 shows the CycleGAN architec-
ture used for domain adaptation of monitoring data from the
source miter gates and the target miter gate of interest.

A crucial feature of CycleGAN is its cycle consistency loss,
which ensures that an image can be translated to the other do-
main and back to the original domain, retaining its content
and structure. Therefore, its architecture includes two main
components: two generator networks and two discriminator
networks. Each generator-discriminator pair facilitates im-
age translation between two domains: Domain A: DA (source
miter gate) and Domain B: DB (target miter gate). The first
generator, FX→Y (x ∈ X), translates monitoring data from
source miter gates to the target miter gate as (Zhu et al., 2017)

FX→Y (x) = Convout ◦σ ◦Norm ◦Convn
◦σ ◦Norm ◦ · · · ◦ Conv1(x),

(1)

where ”◦” represents function composition, which indicates
that each layer in the network is applied sequentially, with
the output of one layer becoming the input to the next layer.
Convi represents convolution layers, σ represents activation
functions, ”Norm” represents normalization layers. Sim-
ilarly, the second generator, FY→X , translates monitoring
data from the target domain (i.e., target miter gate) to the
source domain (i.e., source miter gates).

The next part consists of two discriminators, PY (y′) and
PX (x′). Those discriminators have the ability to distinguish
between real and translated monitoring data in their respec-
tive domains. In this paper, PatchGAN discriminators are uti-
lized to evaluate smaller patches of the monitoring data rather
than assessing the entire datasets as ”real” or ”fake” globally
(Demir & Unal, 2018). PatchGAN is designed to focus on
local image structures, making it effective for tasks that re-
quire preserving texture and detail, such as image-to-image
translation in this miter gate scenario (Demir & Unal, 2018).

The loss functions in CycleGAN are essential for facilitating
effective monitoring data translation between two unpaired
domains. The loss components include adversarial losses,
cycle consistency loss, and identity loss. For the genera-
tor FX→Y (·) and discriminator PY (·), the adversarial loss
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Figure 3. Overview of the proposed framework
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Figure 4. The structure of CycleGAN

is given by (Zhu et al., 2017)

Ladv (FX→Y ,PY , X, Y ) = Ey∼Y

 1

N2

∑
i,j

logPY (y)i,j


+Ex∼X

 1

N2

∑
i,j

log
(
1− PY (FX→Y (x))i,j

) ,

(2)

where N is the number of data in the dataset, E [·] stands
for expectation operation, the first term maximizes the prob-
ability for real monitoring data y ∈ Y and the sec-
ond term minimizes the probability for the generated data
FX→Y (x) to be identified as fake by PY . Similarly, we have
Ladv (FY→X ,PX , Y,X).

The second part is the cycle consistency loss, which is given
by

Lcyc (FX→Y ,FY→X)

= Ex∼X [∥FY→X (FX→Y (x))− x∥1]
+ Ey∼Y [∥FX→Y (FY→X(y))− y∥1] ,

(3)

where this term ensures x → y → x and y → x → y map-
pings approximate the original monitoring data.

The last part is the identity loss and is given by

Lidentity (FX→Y ,FY→X) = Ey∼Y [∥FX→Y (y)− y∥1]
+Ex∼X [∥FY→X(x)− x∥1] ,

(4)

where this term maintains identity mappings when y ∈ Y or
x ∈ X are passed to their own domain generators.

Therefore, the total loss is expressed as:

L = Ladv + λcyc Lcyc + λidentity Lidentity , (5)

in which λcyc and λidentity are weighting factors for cycle con-
sistency and identity losses, respectively.

The objective is to find optimal generators and discriminators
by solving a minimax optimization problem that balances the
adversarial, cycle consistency, and identity losses. We can
express this as

F∗
X→Y ,F∗

Y→X = arg min
FX→Y ,FY →X

max
PX ,PY

L. (6)

Let the monitoring data of the source miter gates be x1:nt
∈

X and the damage state be θ, that of the target miter gate be
y1:nt ∈ Y , after the training of the CycleGAN model, we
can map monitoring data of the target miter gate to that of the
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source miter gates as

x̂sy,1:nt ≈ FY→X(y1:nt), (7)

where x̂sy,1:nt
represents the equivalent synthetic monitoring

data for the source miter gates, which corresponds to the ac-
tual monitoring data of the target miter gate.

3.3. Probabilistic damage inference using normalizing
flow after domain adaptation

As described in Sec. 3.1, after mapping the monitoring data
y1:nt of the target miter gate to the source miter gates, we
construct a damage inference model using data of the source
miter gates. The damage inference model is then employed to
predict the damage state of the target miter gate based on its
synthetic monitoring data x̂sy,1:nt

in the source domain after
domain adaptation.

In this section, normalizing flow is used to approximates the
damage posterior distribution p(θ|x1:nt

) using a parameter-
ized approximate posterior distribution pϕ(θ|x1:nt

) as accu-
rately as possible:

p(θ|x1:nt
) ≈ pϕ(θ|x1:nt

). (8)

This approximation is achieved by starting with a underlying
standard normal distribution f(z) and applying a series of
bijective transformations. As shown in Fig. 5, there are two
types of flow transformation, namely generative direction and
normalizing direction. In the former, the underlying standard
normal variables z are mapped to the target variables θ, i.e.,
θ = f−1

ϕ (z;x1:nt
). This allow us to generate the samples

of θ from the posterior distribution p(θ|x1:nt
) by sampling

z from f(z). In the latter, the target variables θ are mapped
back to the underlying standard normal variables, i.e., z =
fϕ(θ;x1:nt). fϕ and f−1

ϕ are a pair of invertible functions.

𝑓(𝛉|𝐱1:𝑛𝑡
) 𝑓(𝐳)

𝐳 = 𝑓𝜙(𝛉; 𝐱1:𝑛𝑡
)

𝛉 = 𝑓𝜙
−1 (𝐳; 𝐱1:𝑛𝑡

)

Figure 5. Illustration of Normalizing Flows

In practice, fϕ and f−1
ϕ are often intractable since the tar-

get posterior distribution p(θ|x1:nt
) is highly irregular and

strongly non-Gaussian. An alternative way is to learning the
invertible mapping relationship by training conditional invert-
ible neural networks (cINN) based on data. As illustrated in
Fig. 6, the basic building block of cINN is the affine coupling
block. Each block consists of two complementary affine cou-

pling layers that split the input vector into two halves. Then,
the split inputs are transformed into inputs of the next block
by an affine function. Also, the inverse direction operation
can also be easily implemented by an affine function. By
stacking multiple blocks together, cINN can approximate fϕ
and f−1

ϕ well (Zeng, Zeng, et al., 2024b, 2024a).
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Figure 6. Illustration of conditional invertible neural network
(cINN)

According to the probability density transformation law, the
approximate posterior pϕ(θ|x1:nt) can be re-parameterized
in terms of fϕ as follows:

pϕ(θ|x1:nt
) = p(z = fϕ(θ;x1:nt

))

∣∣∣∣det(∂fϕ(θ;x1:nt
)

∂θ

)∣∣∣∣ .
(9)

During the training of cINN, one is desirable to minimize
the Kullback-Leibler (KL) divergence between the target
posterior distribution p(θ|x1:nt

) and the approximate one
pϕ(θ|x1:nt

) as (Radev, Mertens, Voss, Ardizzone, & Köthe,
2020)

ϕ̂ = argminEx1:nt∼p(x1:nt )
[KL(p(θ|x1:nt

)||pϕ(θ|x1:nt
))]

= argmax

∫ ∫
log pϕ(θ|x1:nt)p(θ|x1:nt)dθdx1:nt .

(10)

By substituting Eq. (9) into Eq. (10), we have:

ϕ̂ = argmax

∫ ∫
{log p(z) + log |det Jfϕ |}

× p(θ|x1:nt)dθdx1:nt
,

(11)

where ∂fϕ(θ;x1:nt
)/∂θ is abbreviated as Jfϕ .

For a batch of M simulated data {(θ(j),x
(j)
1:nt

)}Mj=1 from the
source miter gates, Eq. (11) can be computed by means of
Monte Carlo simulation (MCS) as (Radev et al., 2020)

ϕ̂ = argmax
ϕ

1

M

M∑
j=1

log p(fϕ(θ
(j);x

(j)
1:nt

)) + log |det J (j)
fϕ

|

(12)
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Since log p(z) ∝ − 1
2 ||z||

2
2 for Gaussian distribution, Eq. (12)

can be rewritten as:

ϕ̂ = argmin
ϕ

L(ϕ), (13)

with

L(ϕ) = 1

M

M∑
j=1

||fϕ(θ(j);x
(j)
1:nt

)||22
2

− log |det J (j)
fϕ

|. (14)

where L(·) is the loss function which can be minimized with
any stochastic gradient descent method.

Denoting the resulting normalizing flow model after training
as H(·), it can be used to obtain the posterior samples of the
damage state θ of the target miter gate as

θ̂
(i)

≈ H(FY→X(y1:nt
), z(i)),∀i = 1, · · · , NMCS, (15)

where z(i) is the i-th MCS sample of the multivariate Gaus-
sian distribution f(z).

4. CASE STUDY

4.1. Problem description

To demonstrate the feasibility of the proposed framework, we
tested it on a scenario involving two different yet similar miter
gates. Fig. 7 shows the two miter gates, one located upstream
and the other downstream within the same water basin. Al-
though these two miter gates share inherent similarities due to
their similar operational conditions and structures, they also
exhibit differences in their detailed structural designs.

Source miter gate Target miter gate

Figure 7. Illustration of source and target miter gates on a
river.

In this paper, the data for the two miter gates are hypothet-
ically generated by simulating the reality and modifying the
operational conditions and structural responses of a miter gate
previously studied in our research (Vega et al., 2021; Raman-
cha et al., 2022). It is assumed that each miter gate has eight
strain gauges. Using surrogate models constructed based on
finite element simulations, we generate 200 sets of strain ob-
servations for the source miter gates, and 180 sets of strain

observations for the target miter gate with unknown dam-
age states. Each set of strain observations consists of eight
strain gauges over twenty time steps (i.e., nt= 20). The dam-
age states (i.e., gap length) corresponding to the source miter
gates are different and are available from historical inspec-
tions. Their counterparts of the target miter gate are unknown
and are to be estimated (Zeng, Zhao, Qian, Todd, & Hu,
2024).

4.2. Domain adaptation using CycleGAN

CycleGAN is utilized to perform domain adaptation on the
data from the target miter gate, leveraging the data from the
source miter gates. The preprocessing for the CycleGAN
model includes several key steps:

1. Sort the data by the highest strain response values.
2. Normalize the data to constrain its range.
3. Convert the data into image format, with dimensions rep-

resenting time steps and sensor indices.

This image-formatted data is then used to train the Cycle-
GAN, ensuring it accurately learns the relationships between
the source and target domains. Once the CycleGAN is
trained, we evaluate its performance by visualizing the trans-
lation through scatter plots of sensor data from the source do-
main versus the target domain, both before and after apply-
ing the CycleGAN. Figure 8 compares the strain data from
sensors on both the source and target miter gates, highlight-
ing significantly different distributions for the same sensors
across these different structures. Figure 9 illustrates a com-
parison between strain data from sensors on source miter
gates and translated strain data from sensors on target miter
gates after domain adapatation. The figure demonstrates that
the synthetic source data, generated from the target miter
gate using CycleGAN, closely aligns with actual observations
from the source miter gates. This indicates that the Cycle-
GAN has successfully adapted the target miter gate data to
match the characteristics of the source miter gate data.

4.3. Damage inference after domain adaptation

After mapping the observations of the source and target miter
gates into the same domain using CycleGAN (see Figs. 8
and 9), as discussed in Sec. 3.3, we proceed to train a nor-
malizing flow model with the cINN method. This training
is based on the observations of the source miter gates and
their corresponding damage labels. Subsequently, we employ
the trained normalizing flow model to perform likelihood-free
inference for the target miter gate and thereby estimating its
damage state under uncertainty. Figure 10 presents the com-
parison between the prior and posterior distributions of the
gap length for five different scenarios. As depicted in this fig-
ure, the proposed approach in general provides accurate esti-
mates of the true damage state of the targe miter gate. How-
ever, in scenario 3, a bias is observed between the estimated
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Figure 8. Scatter plot comparison of measurement data be-
tween the source and target miter gates

posterior distribution and the true damage state. Following
that, Fig. 11 compares the estimated damage state (measured
as gap length) to the actual damage state across 180 cases,
covering all possible damage regimes. In the figure, the red
line represents the true damage state, while the blue error bars
indicate the estimated damage state, with a four-sigma uncer-
tainty interval. Consistent with the results presented in Fig.
10, the results indicate that the proposed damage inference
method—utilizing normalizing flow and domain adaptation
with CycleGAN—can accurately estimate the damage state
of the target miter gate, despite the lack of labeled monitor-
ing data for the gate.

5. CONCLUSION

This paper presents a novel damage diagnostics approach for
miter gates with unlabeled monitoring data. In order to infer
the unknown damage state of a gate, we first employ a do-
main adaptation approach based on CycleGAN, which maps
the monitoring data from the target miter gate to data from
source miter gates. Subsequently, by leveraging the mapped
data, we propose a probabilistic inference method based on
normalizing flow to efficiently estimate the damage state in
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Figure 9. Scatter plot comparison of measurement data be-
tween the source and target miter gates after domain adapta-
tion using CycleGAN

the presence of uncertainty. A case study demonstrates the
efficacy of the proposed method.

This paper focuses on mainly damage diagnostics through in-
formation fusion between two miter gates using domain adap-
tation approach which is a data-driven approach. The integra-
tion of this purely data-driven approach with a physics-based
damage inference method is worth studying. Such an integra-
tion has been explored in our other work in Ref. (Zeng, Zhao,
et al., 2024).
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Figure 10. Posterior distribution of gap length obtained using
cINN and CycleGAN-based domain adaptation

Figure 11. Errorbar plot of the posterior distribution of dif-
ferent gap length estimates (CycleGAN-based domain adap-
tation)
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