
Estimating The Health of Helicopter Turbine Engines by Means of
Regression and Classification Using a Probabilistic Neural Network

Tyler Romano1, Nathan Siegel 2, Samuel T. Willis III 3, William Henn4, Rishie Seshadri 5

1,2,3,4,5 Belcan, Windsor, CT,06095,United States
tromano@belcan.com
nsiegel@belcan.com
stwillis@belcan.com
whenn@belcan.com

rseshadri@belcan.com

ABSTRACT

This paper presents team Mad SoftMax’s approach to the
2024 data challenge presented by the Prognostics and Health
Management Society. The competition tasked participants
with estimating the health of helicopter turbine engines by
calculating torque margin via regression and classifying en-
gines as either healthy or faulty. Probabilistic regression was
employed to estimate the torque margin at each measurement,
and a neural network classifier was used to categorize each
observation within the dataset as belonging to a healthy or
faulty engine. Both the regression and classification networks
were developed using open-source libraries such as Tensor-
Flow. These networks were tested in isolation using training
data and evaluated for performance before integration for use
on evaluation data. The team was able to successfully con-
struct a system of models that achieved a final score of 0.849
out of a maximum score of 1.

1. INTRODUCTION

The 2024 PHM Society Data Challenge tasked participants
with estimating the health of helicopter turbine engines
(PHMSociety, 2024). The data for this year’s challenge was
gathered from seven helicopter engines of the same make and
model. These engines each captured metric data such as: out-
side air temperature oat, mean gas temperature mgt, pressure
altitude pa, indicated airspeed ias, net power np, compressor
speed ng, and torque measured trqmeas. The data was split
into three datasets, a training set, a daily test dataset, and a
final validation dataset. The engines in all sets of data were
shuffled and had any asset identifiers removed to anonymize
the data. The initial four engines made up the training dataset
while the remaining three were withheld for the testing and

Tyler Romano et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

validation phases. The test data was available to test against
daily to allow for teams to validate their approach methods
of classifying engine health and determination of torque mar-
gins. The validation data, however, was only available to run
a single time at the end of the challenge.

The teams entered in the challenge were asked to provide
three items for each data point. Teams were asked to classify
the health of the engine as either nominal or faulty, as well
as assigning a confidence to that engine state determination.
In addition, teams were tasked with determining an estima-
tion for torque margin expressed as a probability distribution
for each data point. Daily scoring of models was available
to allow teams to compare against testing data to ensure the
accuracy of their approach.

2. METHODS

Upon entering the competition, the team sought to understand
the importance of each parameter within the dataset. The first
step in this process was to separately learn about the environ-
mental and engine performance parameters to determine if
and how these parameters may influence each other. The en-
vironmental parameter set made up of oat, pa, and ias helped
to understand the flight envelope without additional data such
as weight and true altitude (FAA, 2019). The engine perfor-
mance parameters included: mgt, np, ng, and trqmeas. While
trqmeas and the torque margin trqmar were provided in the
training set, the target torque trqtgt was not. The relation be-
tween the three parameters is shown in Eq. (1), which was
provided in the problem statement (PHMSociety, 2024).

1

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

trqmar(%) = 100 ∗ trqmeas − trqtgt
trqtgt

(1)

trqtgt =
trqmeas

trqmar

100 + 1
(2)

By manipulating Eq. (1) into the form shown in Eq. (2),
trqtgt may be calculated from the parameters provided in the
training dataset.

Figure 1. Calculated torque target vs measured torque for the
training set.

By using the calculated trqtgt values, it is possible to train
a neural network to predict a probabilistic distribution repre-
senting ˆtrqtgt. The neural network structure chosen for this
task was a multi-layer perceptron, or MLP, with output fea-
tures that defined a probability distribution. The classification
model was also chosen to be an MLP, although with a differ-
ent configuration. The classification network was designed to
use the predicted ˆtrqmar generated by the probabilistic model
alongside the given environmental parameters as inputs.

While a deterministic neural network can predict a singular
value given a set of inputs, a probabilistic model instead pre-
dicts a distribution that represents that value and an associ-
ated confidence metric. To appropriately characterize that
currently unknown distribution, sources of inaccuracy must
be considered. Identified sources of inaccuracy include sen-
sor noise in the input data, noise inherent to the process that
generated the ground truth trqmar, and inaccuracy present
in the model itself. Unfortunately, no information was pro-
vided in the problem statement regarding sensor accuracy or
the process used to determine trqtgt. The third source, the
model’s inherent inaccuracy, is at least known to be sym-
metrical, given that the distribution chosen to be trained on
in subsection 2.1 is also symmetrical. Since over 740,000
points were provided in the training set, the team decided that

the central limit theorem applied (Rouaud, 2013, p. 10), and
decided to model all the identified sources of noise as a zero-
mean normal distribution with standard deviation σ, as shown
in Eq. (3). Without additional information, it would be diffi-
cult to infer more detail about the distribution, such as bias,
skew, or kurtosis.

ˆtrqtgt = trqtgt +N (0, σ2) (3)

2.1. Probabilistic Model

The probabilistic model was designed using both the base
TensorFlow library’s Keras API (Keras, 2024) as well as Ten-
sorFlow Probability (TensorFlow Probability, n.d.), a sup-
plementary library that allows easy integration of probabilis-
tic elements into standard TensorFlow models. The network
structure chosen, shown in Figure 2, was an MLP architec-
ture made up of the following layers: layer 1, a 6-parameter
input scaling layer, layers 2 & 3, 256-node layers using the
sigmoid activation function described in Eq. (4), layer 4, a
2-node linear scaling layer, and layer 5, an IndependentNor-
mal layer from TensorFlow Probability. This final layer takes
the two outputs from layer 4 and interprets them directly as
the parameters µ̂tgt and σ̂tgt, defined in Eqs. (5, 6), of the
predicted distribution ˆtrqtgt. If this were an otherwise iden-
tical deterministic neural network, layer 4 would be a single
node, and layer 5 would not be present. As a result, the net-
work would only be capable of learning the expected value of
the output feature ˆtrqtgt and could not characterize the error
associated with that prediction.

Layer 1 Layer 2-3 Layer 4 Layer 5

Figure 2. MLP architecture with probabilistic output features
for a regression problem.

ϕ(x) =
1

1 + e−x
(4)

The Adam optimizer, a popular first-order optimizer (Kingma
& Ba, 2014), was used to train the network. The learning rate,
LR, was decreased as training went on, allowing the network
to converge much tighter than if a constant value were set.

2

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

The six chosen input parameters for this network were: oat,
mgt, pa, ias, np, and ng, and the singular output parameter
was a normal distribution predicting ˆtrqtgt. This output dis-
tribution is then converted to torque margin for the final prob-
abilistic output. First, the mean of the predicted torque mar-
gin, µ̂mar, is calculated in Eq. (5) using Eq. (1) and µ̂tgt,
the mean of the predicted torque target distribution, since the
mean value of the target is the expected value.

µ̂mar = 100 ∗ trqmeas − µ̂tgt

µ̂tgt
(5)

The standard deviation of the torque margin, σ̂mar, is calcu-
lated using Eq. (6).

σ̂mar = 100 ∗ σ̂tgt
µ̂tgt

(6)

Both Eq. (5) and Eq. (6) require the observation that the mea-
sured torque satisfies Eq. (7) and Eq. (8) and that the distri-
bution representing ˆtrqmar is scaled relative to the expected
value of ˆtrqtgt.

µmeas = trqmeas (7)

σmeas = 0 (8)

Typically in deterministic approaches for regression, a mean
squared error method is used to fit the model to the
data (Terven, Cordova-Esparza, Ramirez-Pedraza, Chavez-
Urbiola, & Romero-Gonzalez, 2024). This approach is useful
for finding the expected value of each point and making pre-
dictions, however, it does not provide any information about
the distribution around that point. A second approach is to
maximize the likelihood that the training data matches an es-
timated distribution (Adams, 2018). Adams shows that in the
case where the noise is Gaussian and the standard deviation
σ is known and constant, the problem reduces to the least-
squares method to estimate the mean µ̂. To fully predict the
distribution, σ must also be allowed to vary and be fit with a
function. Adams also describes this issue, and his solution is
another maximization problem. By considering both of these
maximization problems both µ̂ and σ̂ may be predicted, fully
defining the probability distribution output by a neural net-
work.

However, it can be difficult to maximize both of these prob-
lems directly. Adams explains how the log-likelihood is eas-
ier to manipulate and compute than the likelihood, and that
the negative log-likelihood is used when a minimization prob-
lem is desired instead (Adams, 2018). For this reason, the loss
function selected was the negative log-likelihood. This way,
the optimizer, in this case Adam (Kingma & Ba, 2014), can

minimize the loss, thus maximizing the probability that the
training sets points are part of the neural network’s distribu-
tion.

Over the whole training dataset, models that have accurate
means but wide distributions and models that have inaccurate
means but narrow distributions both have a sub-optimal log-
likelihood. A high log-likelihood, and thus a minimized neg-
ative log-likelihood, is only possible to achieve by matching
the mean and distribution output of the network to the mean
and distribution of the dataset.

2.2. Classification Model

Multiple different methods were used to classify the engines’
fault status, eventually converging on the method yielding
the most performant model. The initial approach solely used
the statistical properties of trqmar, while the subsequent two
used different neural-network structures to approach the clas-
sification problem.

The initial method did not use machine learning and was cho-
sen for its simplicity. As observed in Figure 3, while there is
substantial overlap between trqmar for known nominal and
faulty engines in the training set, most points should still be
possible to accurately evaluate if nominal or faulty. Gener-
ally speaking, significantly positive values for trqmar indi-
cate nominal status, while significantly negative values indi-
cate faulty status.

Figure 3. Fault classification histograms and cumulative
distribution functions for nominal and faulty engine data.

By calculating normal distributions for both fault types, the
probability that any torque margin value t is nominal can be
calculated by the cumulative distribution function in Eq. (9),
and that the variable is faulty by calculating the survival func-
tion as in Eq. (10) where Tn and Tf are normally distributed
random variables for the nominal and faulty engines respec-
tively, and Pn and Pf are the probability density functions

3

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

for those same engine classes. Eq. (9) and Eq. (10) dif-
fer because the probability the engine is nominal increases as
trqmar increases, but the same change causes the probability
the engine is faulty to decrease.

Fn(t) = Pn(Tn ≤ t) (9)

Sf(t) = Pf(Tf > t) (10)

If Eq. (11) is satisfied, then the data point is considered nom-
inal. If Eq. (12) is satisfied, then the data point is considered
faulty.

Fn(t) > Sf(t) (11)

Fn(t) < Sf(t) (12)

To calculate the confidence C of this model, Eq. (13) is used.
This way, the confidence evaluates to 0 when both probabili-
ties are equal and to 1 when one of them is maximized.

C =

∣∣∣∣Fn(t)− Sf(t)

Fn(t) + Sf(t)

∣∣∣∣ (13)

To use this method, the cumulative distribution functions, or
CDFs, are calculated from the training set and Eqs. (11, 12,
13) are evaluated at t = µ̂mar, the mean of the probabilis-
tic regression network’s predicted torque margin distribution.
While this approach provided decent results, there was too
much ambiguity in the region where the two distributions
overlap, resulting in low classification confidence in that re-
gion. A more complex approach involving neural networks
was used to increase the confidence in the overlapping re-
gions.

Layer 1 Layer 2-4 Layer 5

Figure 4. Deep MLP architecture for a classification
problem.

As with the probabilistic model, the neural network classi-
fiers use the Keras API (Keras, 2024) to structure, train, and
run. The second classification architecture that was devel-
oped, shown in Figure 4, followed an MLP architecture and
was made up of the following layers: layer 1, an 8-node in-
put layer using the rectified linear unit, or ReLU, activation
function shown in Eq. (14), layers 2-4, each 20-node hid-
den layers also using ReLU, and layer 5, a single-node output
scaling layer using the sigmoid activation function in Eq. (4).
The deeper configuration was chosen to promote stronger in-
terconnection of the hidden layers compared to the regression
network’s flatter architecture, which is usually desirable for
a classification problem where complex modeling ability is
needed.

R(x) = max(0, x) (14)

The input parameters chosen for this network were ˆtrqmar,
trqmeas, oat, mgt, pa, ias, np and ng. Since the predicted
torque margin by itself was insufficient to fully determine
the fault state of the engine, the assumption was made that
other environmental factors could provide additional infor-
mation, even if the direct influence those parameters had was
unknown.

While Adam was still used as the optimizer for this network, a
binary cross-entropy loss function was chosen as an appropri-
ate loss function for the 1-label output (Terven et al., 2024, p.
13). For nominal engines, the desired output of the network
is 0 and for faulty engines, the desired output is 1. For inter-
mediate values, the closest label was chosen as the identified
label, and the confidence C was calculated from the output
value x using Eq. (15).

C = 2 |x− 0.5| (15)

Like in Eq. (13), Eq. (15) evaluates to 0 when the network
is uncertain of the state, occurring when x = 0.5 in this case,
and evaluates to 1 when the network is fully certain of the out-
put state. This network performed much better when tested
against a subset of the training set reserved for verification
than the single-input method, and also performed similarly
well against the test set.

Like the second model, the third also followed an MLP ar-
chitecture. This network, shown in Figure 5, was made up of
the following layers: layer 1, a 7-node input layer, layer 2,
a 32-node hidden layer using the sigmoid activation function
in Eq. (4), and layer 3, a 2-node output layer using the soft-
max activation function shown in Eq. (16). This network was
initially tested with a range of up to 100 hidden nodes, but
significant overfitting was noticed at higher node counts. The
final number of nodes, 32, was chosen as a balance between
potential to over fit the data and overall accuracy.

4

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Layer 1 Layer 2 Layer 3

Figure 5. Shallow MLP architecture for a classification
problem.

ψ(z)i =
ezi

K∑
j=1

ezj
(16)

The input parameters for this network differed from the
deeper architecture. While that network used the measured
torque and the predicted torque margin in conjunction, this
network solely used the torque margin. Thus, the chosen
input parameters were ˆtrqmar, oat, mgt, pa, ias, np, and
ng. This decision was made because ˆtrqmar is derived from
trqmeas and µ̂tgt using Eq. (5). Since the relationship be-
tween trqmeas and ˆtrqmar is already known, it is not nec-
essary to include trqmeas as an input parameter if ˆtrqmar is
provided.

Adam was also used as an optimizer for this network, along-
side the categorical cross-entropy loss function. This choice
was made because there was more than a single identified out-
put label for this network, making the binary cross-entropy
inappropriate for such an application (Terven et al., 2024, p.
14). The nominal label xn was expected to be equal to 1 when
the engine was identified as nominal and the faulty label xf
was expected to be equal to 1 when the engine was identified
as faulty.

Fault labeling and confidence calculation were done similarly
to the first classification approach, as shown in Eqs. (11, 12,
13). If Eq. (17) is satisfied, as with Eq. (11), the data point
is considered nominal. Similarly, if Eq. (18) is satisfied, as in
Eq. (12), the data point is considered faulty.

xn > xf (17)

xn < xf (18)

Like in Eqs. (17, 18), Eq. (13) needs to be adapted to Eq.
(19) to use the new labels to calculate the confidence C.

C =

∣∣∣∣xn − xf
xn + xf

∣∣∣∣ (19)

Both neural-network approaches were developed in tandem
and compared at different points throughout the challenge.
To accurately compare them a subset of the training data that
was not used in training in either network was used. While the
deep network performed better in these tests, both performed
better than the initial approach, so both were tested during
the testing phase. The wide neural network was discovered
to have performed better than the deep network on the test
set, which was unexpected. Because of this, the wide neural
network was selected for final use.

2.3. Model Training and Testing

While both the classification and regression networks were
trained independently, they were combined as shown in the
runtime architecture shown in Figure 6. This architecture
feeds the ˆtrqmar calculated by the regression network into
the classification network in place of trqmar. This allowed
the classification model to make predictions without access
to trqmar, with high accuracy so long as the ˆtrqmar estimate
was accurate.

Inputs
oat, mgt, pa, ias, np, ng, 𝑡𝑟𝑞௦

Output

Regression Model

Calculate Torque Margin

Classification Model

All inputs (minus 𝑡𝑟𝑞௦)

ConfidencePredicted Health
Classification

𝑡�̂�𝑞

All inputs

𝑡�̂�𝑞

𝑡�̂�𝑞௧௧

Figure 6. Integrated system flow for calculating ˆtrqmar and
classifying health state of engine.

The provided training data was split into a training set and
an internal test set using an 80% to 20% batching process.
Both the classification and regression models were evaluated
using the 20% of points reserved for the internal test set after
training had completed. This allowed rapid tests of newly de-
veloped approaches and revisions to existing models without
waiting for the daily score of the test set to be released.

5

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Table 1. Hyperparameters used for training the probabilistic
regression neural network. Adam was always configured

with β1 = 0.9 & β2 = 0.99.

Tuned Parameters Result
Version Nodes Epochs LR Loss
v1.0 64 0-1k 10−4 0.2824
v2.0 128 0-1k 10−5 -0.1218
v3.0 256 0-2k 10−5 -1.1662
v3.1 256 2k-2.1k 10−7 -2.5097
v3.2 256 2.1k-3k 10−6 -2.8252
v3.3 256 3k-3.5k 10−6 -2.8941
v3.4 256 3.5k-4k 10−7 -3.1786
v4.0 300 0-4k 10−5 -2.5140
v4.1 300 4k-5k 10−5 -2.6593
v4.2 300 5k-6k 10−5 -2.7349
v4.3 300 6k-7k 10−6 -4.0981

Inputs
oat, mgt, pa, ias, np, ng

Regression Model

OptimizerTargets
𝑡𝑟𝑞௧௧

Figure 7. Training flow for probabilistic regression neural
network.

The probabilistic regression network was trained with the ar-
chitecture shown in Figure 7. Since the ground truth trqmar

was provided by the training dataset, the exact value of trqtgt
could be calculated, and was used for training. Initially, the
number of nodes was kept small, but the required accuracy
was not reached. As the number of nodes and training epochs
was increased the loss was observed to decrease further and
further. As training progressed and the trained distribution
ˆtrqtgt more closely approximated trqtgt, the learning rate,

had to be decreased in order for further improvements to be
made, as shown in Table 1. Once the network grew above 256
nodes in the hidden layers, the testing batch started to per-
form worse overall despite the loss continuing to decrease.
This was detected by a score decrease in the daily test set
runs despite a decrease in training set loss, which is observed
in Table 3.

This performance issue was thought to be due to overfitting,
so a 256-node model that performed better on both the lo-
cal test batch and the daily test set was chosen for the final
submission.

Inputs
𝑡𝑟𝑞, 𝑡𝑟𝑞௦, oat, mgt, pa, ias, np, ng

Classification Model

OptimizerTarget
Health state

Figure 8. Training flow for fault classification neural
network.

The neural network approach for training the fault classi-
fier underwent a similar process, using a similar architecture,
shown in Figure 8. Since the training dataset provided the
ground truth trqmar, the exact value could used as an input
for training, although that value would not be available in the
main runtime architecture and would be replaced by ˆtrqmar.
By increasing the number of training epochs, nodes, and lay-
ers, lower losses and higher test batch accuracy was achieved,
as shown in Table 2. While both types of network exhibited
good overall performance, the deep neural network achieved
lower loss and higher accuracy on the local test batch so the
assumption was made that the deep neural network would
perform better on the daily test set evaluation.

Table 2. Hyperparameters used for training the classification
neural network. Adam was always configured with β1 = 0.9

& β2 = 0.99.

Tuned Parameters Result
Deep Classifier
Version Nodes Layers Epochs LR Loss
v1.0 20 3 100 10−3 0.0431
Wide Classifier
Version Nodes Layers Epochs LR Loss
v2.0 32 1 10 10−4 0.1016
v3.0 64 2 30 10−5 0.0735
v4.0 64 2 100 10−5 0.0606

6

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

However, that assumption was found to be untrue. The wide
neural network significantly outperformed the deep network
on the daily test set as shown in Table 3, despite having the
highest loss of the networks present in Table 2. Because of
this, the wide network was selected to process the final val-
idation dataset. This network was surprisingly small, with
only 32 nodes, a single layer, and only a few training epochs.
Despite this, the wide neural network performed very well.

2.4. Validation Phase

During the testing phase, a submission could be uploaded and
scored once a day. This meant that the team could train differ-
ent models, decide which one was best to submit to be scored,
and have feedback the next morning to see if improvements
were made over the previous model. For the validation sub-
mission, the set of models that were selected to process the
validation submission was the set that scored the highest of
the team’s attempts, with a score of 0.937 on the test set, some
examples of which are shown in Table 3. The selected com-
bination of models was not the most recent model trained, as
changes made later on in the testing phase ended up resulting
in lower scores.

The team decided to use the combination of models with the
highest score on the test set to run the validation set for final
submission, as shown in Table 3. Since these models per-
formed better on the test set than others, despite not having
the best score on the reserved portion of the training set, it
was believed that these models would generalize better to un-
known engines. The selected combination scored a 0.849 on
the validation dataset.

3. RESULTS

The team was able to successfully produce a probabilistic
MLP that could accurately estimate the torque margin to high
accuracy as well as a classification model that could more ac-
curately predict the health of an engine than the torque margin
alone could.

Table 3. Selected full-system runs with combined output
score.

Model Versions Score
Regression Classification Dataset
v2.0 CDF Test 0.6319
v2.0 v2.0 Test 0.6532
v3.0 v2.0 Test 0.7327
v3.1 v2.0 Test 0.8764
v3.2 v2.0 Test 0.9358
v3.4 v2.0 Test 0.9370
v4.2 v2.0 Test 0.9247
v4.3 v4.0 Test 0.8861
v3.4 v1.0 Test 0.8543
v3.4 v2.0 Validation 0.8490

Figure 9. Absolute value of the model-calculated torque
margin’s delta with respect to the known torque margin.

Figure 10. Model-predicted standard deviation of the torque
margin.

As stated in subsection 2.4, the team was able to achieve a
test score of 0.937 and a validation score of 0.849 with the
chained neural network system. Since each of the datasets
each have a different mix of engine assets that make up their
data points, the strong performance across datasets indicates
that both the probabilistic neural net and the classifier were
able to generalize well and had not overfit significantly on
any features of the engines in the training set. Figures 9 and
10 show that the final probabilistic regression network was
able to accurately characterize ˆtrqmar, both achieving over-
all high accuracy for µ̂mar and predicting higher σ̂mar where
the model was less accurate, correctly indicating lower con-
fidence. Figures 12 and 11 show the confidence of correctly
and incorrectly classified points, respectively. As can be seen,
the majority of points in Figure 12 have high classification,
while the points in Figure 11 show mid-to-low confidence.

7

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Figure 11. Confidence of incorrectly classified points from
the training set.

Figure 12. Confidence of correctly classified points from the
training set.

4. CONCLUSION

To develop a novel and robust solution, the team opted to ap-
proach the combined problems of probabilistic regression and
fault classifications from multiple angles. Overall, the team
was successful, able to develop accurate and robust models
that achieved the goal set out in the challenge. By properly
training and evaluating the models’ performance, the team
was able to detect and avoid common issues with neural net-
works, such as overfitting.

While more complex methods such as ensemble models, neu-
ral networks comprised of multiple smaller models, have the
potential for higher overall performance, the team found that
the comparatively simpler models chosen for this project pro-
vided good performance without the additional training and
logistical overhead of more complex architectures.

NOMENCLATURE

oat Outside Air Temperature
pa Power Available
mgt Mean Gas Temperature
np Net Power
ng Compressor Speed
trqmar Torque Margin
trqmeas Measured Torque Output
ias Indicated Air Speed
trqtgt Design Torque
µmar Mean of Torque Margin
µtgt Mean of Torque Target
σmar Standard Deviation of Torque Margin
σtgt Standard Deviation of Torque Margin
MLP Multilayer Perceptron
LR Learning Rate
t Any Torque Margin Value
Tn Nominal Normally Distributed Random Variable
Tf Faulty Normally Distributed Random Variable
Pn Nominal Probability Density Functions
Pf Faulty Nominal Probability Density Functions
CDF Cumulative Distribution Function
C Confidence
xn Nominal Label
xf Faulty Label

8

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

REFERENCES

Adams, R. P. (2018, September). Linear regresssion
via maximization of the likelihood. Retrieved
from https://www.cs.princeton.edu/
courses/archive/fall18/cos324/files/
mle-regression.pdf

FAA. (2019). Helicopter flying handbook. U.S. Department
of Defense.

Keras. (2024, Jun). Tf.keras.layers.dense tensor-
flow v2.16.1. Retrieved from https://
www.tensorflow.org/api docs/python/
tf/keras/layers/Dense

Kingma, D. P., & Ba, J. (2014, December). Adam: A
method for stochastic optimization. arxiv. Retrieved

from https://arxiv.org/abs/1412.6980

PHMSociety. (2024, Jun). Phm north america
2024 conference data challenge. Retrieved
from https://data.phmsociety.org/
phm2024-conference-data-challenge/

Rouaud, M. (2013). Probability, statistics and estimation.
Lulu Press, Inc.

Tensorflow probability. (n.d.). Retrieved from https://
www.tensorflow.org/probability

Terven, J., Cordova-Esparza, D. M., Ramirez-Pedraza, A.,
Chavez-Urbiola, E. A., & Romero-Gonzalez, J. A.
(2024). Loss functions and metrics in deep learn-
ing. Retrieved from https://arxiv.org/abs/
2307.02694

9

