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ABSTRACT 

This paper presents a novel ensemble approach that combines 
multiple machine-learning algorithms to deliver robust 
predictions of helicopter turboshaft engine health status 
(nominal or faulty) using operational data. Engine health is 
evaluated through the torque margin, defined as the 
percentage difference between the measured and target 
torque values. A Gaussian process model is used to estimate 
the torque margin as a probability distribution function 
(PDF), and these predictions are incorporated as features into 
various machine-learning models. These models are then 
employed to perform binary classification, determining the 
engine's health state. To enhance performance, a reference set 
is defined for each unseen data point, allowing a comparison 
of the relative performances of the models, with the best 
performer selected for the final prediction. Our ensemble 
method achieves high accuracy in health classification while 
providing precise torque margin estimates. The results 
demonstrate that ensemble models offer superior 
generalization and reliability compared to individual 
machine-learning algorithms, especially when applied to 
complex, multivariate datasets like those from helicopter 
turboshaft engines. 

1. INTRODUCTION 

Helicopter turboshaft engines are complex mechanical 
systems whose health is critical to the safety and performance 
of aviation operations. Effective monitoring and prediction of 
engine health can prevent costly failures and ensure 
operational readiness (Elasha et al., 2021). Traditional 
maintenance practices rely heavily on scheduled inspections, 
which can lead to unnecessary downtime or missed detection 
of early-stage faults (Achouch et al., 2022, Wu et al., 2023). 
To address these limitations, there is a growing interest in 

data-driven approaches (Daouayry et al., 2018,) that leverage 
operational data to assess engine health in real time and 
enable predictive maintenance strategies. A comprehensive 
review of data-driven prognostic methods was provided in 
(Schwabacher et al., 2005). These approaches typically 
involve the fusion of sensor data, feature extraction, and 
statistical pattern recognition. For predicting the health 
condition, techniques such as interpolation (Wang et al., 
2008), extrapolation (Coble et al., 2008), or machine learning 
(Wu et al., 2022) are often employed, among others. 

Machine learning (ML) techniques have shown great 
potential in condition monitoring (Surucu et al., 2023) and 
fault detection (Nelson et al., 2023, Wang et al., 2024, Zheng 
et al., 2024) across various industries. In particular, ensemble 
methods—where multiple machine learning models are 
combined to improve prediction accuracy and robustness—
have proven effective in handling complex, multivariate 
datasets. By leveraging diverse models, ensemble methods 
can capture different patterns and relationships within the 
data, leading to improved generalization on unseen assets 
(Mian et al., 2024). 

In this work, we propose an ensemble machine-learning 
framework for predicting the health of helicopter turboshaft 
engines using operational measurements such as outside air 
temperature, compressor speed, and torque margin. Our 
approach focuses on two key tasks: (1) binary classification 
of engine health state (nominal or faulty) and (2) probabilistic 
regression to estimate the torque margin. This dual-task 
framework provides not only a fault diagnosis but also a 
confidence metric for the torque margin, enhancing the 
interpretability of the predictions. 

The contributions of this paper are twofold: first, we 
introduce an ensemble learning model for engine health 
classification and torque margin estimation; second, we 
validate our approach on a dataset of seven engines, 
demonstrating its generalization capability across unseen 
assets. Our results show that the proposed ensemble method 
outperforms individual machine learning models, offering a 
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reliable solution for predictive maintenance in helicopter 
turboshaft engines. 

2. EXPLORATORY DATA ANALYSIS 

Before applying advanced machine learning techniques, it is 
crucial to perform thorough Exploratory Data Analysis 
(EDA) to verify the quality of the data, uncover underlying 
patterns, and address any inconsistencies. In this study, a key 
aspect of EDA involves analyzing engine performance data 
by examining seven critical measured parameters as well as 
one two important feature engineering parameters. In the 
provided data, all turboshaft engines are equipped with 
sensors that capture these seven parameters: outside air 
temperature (OAT), mean gas temperature (MGT), available 
power (PA), indicated airspeed (IAS), net power (NP), 
compressor speed (NG), and engine torque (Trq_measured).  

Outside Air Temperature (OAT) plays a role in engine 
performance by directly influencing the engine inlet air 
temperature, which in turn affects the thermodynamic 
balance within the engine and may have an impact on overall 
engine health.  

Mean Gas Temperature (MGT) serves as a key indicator of 
engine health by representing the thermal state within the 
engine. Changes in MGT often reflect underlying issues such 
as shifts in combustion quality, which may result from 
inefficiencies or increased engine stress. As such, monitoring 
MGT is essential for assessing whether the engine is 
operating under optimal conditions, with deviations 
potentially indicating reduced fuel efficiency or mechanical 
wear. 

Available Power (PA) reflects the maximum potential output 
of the engine under current operating conditions. While it 
doesn't directly cause changes in performance, discrepancies 
between expected and available power can indicate issues 
such as degraded engine components or suboptimal operating 
conditions, suggesting potential health concerns.  

Indicated Airspeed (IAS) represents the aircraft's velocity, 
indirectly influencing engine workload. At certain airspeeds, 
the engine failure rate may be higher, requiring special 
attention to these conditions to ensure engine reliability and 
safety. 

Net Power (NP), which is the effective power output after 
accounting for system losses, serves as an indicator of overall 
engine efficiency. A significant reduction in net power 
compared to expected values may signal mechanical issues 
or inefficiencies within the engine system, such as frictional 
losses or degraded components, impacting engine health. 

Compressor Speed (NG) reflects the rotational speed of the 
compressor, which regulates airflow and pressure within the 
engine.  

Torque represents the rotational force produced by the engine 
that drives the main rotor. It is a key parameter for assessing 

engine performance, as it directly correlates to the engine’s 
ability to produce the necessary power to lift and maneuver 
the helicopter. 

In addition to directly measured sensor parameters, feature 
engineering is applied. Using the six previous operational 
parameters, a target torque is derived based on empirical 
correlations, representing the designed torque. The 
percentage difference between the designed and measured 
torque, referred to as the torque margin, is calculated using 
Equation 1 and serves as a key indicator of engine 
performance and health. In this study, the health of turboshaft 
engines is classified into two states: healthy or faulty, 
depending on whether the torque margin deviates from 
expected values. 

𝑇𝑟𝑞	"#$%&' = 100 ∗ (($)	"#$%&'#(*($)	)$'*#)
($)	)$'*#)	

)              (1) 

 
Figure 1 Violin plot of parameters by health conditions 

In this study, we utilized operational data and torque margin 
measurements from four identical turboshaft engines, each 
assessed under varying health conditions. The dataset 
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comprises 742,625 operational data points, including 
parameters such as engine performance and torque margins 
under different health states. The target torque value can be 
calculated using Equation 1. To avoid sequence bias, the data 
were shuffled.  Notice that there are 443,207 healthy data 
points and 29,9418 faulty data points within the training 
dataset, indicating that the data imbalance is not significant. 
However, this does not necessarily mean that the data is 
balanced in specific regions, particularly in the testing data 
region. Further investigation is needed. 

Figure 1 presents violin plots illustrating the distribution 
characteristics of various parameters for helicopter engines 
under healthy (0) and faulty (1) conditions in the training 
dataset. It is evident that different torque margin and torque 
target ranges are associated with varying engine failure rates. 
Notably, when the torque margin falls below a certain 
threshold or the torque target exceeds a specified limit, it 
consistently indicates a 100% likelihood of engine failure, 
emphasizing the critical role of torque margin in predicting 
engine health. Additionally, the parameters OAT, PA, and 
torque margin exhibit distinct distribution patterns between 
healthy and faulty engines. These differences in distribution 
further emphasize the significance of these parameters in 
distinguishing engine health states, providing valuable 
insights into the operational conditions that correlate with 
engine failures. 

 
Figure 2 Correlation heatmap of engine health condition 

training dataset 

Analyzing the correlation heatmap of the engine health 
dataset, as shown in Figure 2, reveals significant insights into 
the parameters that influence the binary 'Faulty' condition. 
Notably, 'Faulty' shows a moderate negative correlation with 
outside air temperature at -0.34, suggesting that higher 
temperatures might be linked with fewer faults, or 
conversely, cooler temperatures are associated with increased 

faults. Furthermore, there is a strong negative correlation of -
0.61 with torque margin, suggesting that lower torque 
margins are significantly associated with engine faults. It can 
be observed that neither torque measured, nor torque target 
show significant correlation with engine health condition 
directly. However, the toque margin serves as a critical 
indicator, underscoring that while direct measures of torque 
may not reflect engine health, the torque margin plays a vital 
role in predicting engine health condition. This distinction 
emphasizes the importance of monitoring torque margin as a 
more sensitive and telling metric for assessing engine 
condition and potential failures. Additionally, the correlation 
between 'Faulty' and PA (Available Power) is 0.34, indicating 
a positive relationship where higher available power is 
associated with an increased likelihood of engine filature.  

While these primary parameters show significant impacts, 
other variables such as IAS (Indicated Airspeed) and NP (Net 
Power) also exhibit correlations that, though minor, suggest 
a complex interaction affecting the engine's healthy 
condition. Multi-collinearity was observed in several 
parameters, indicating that the relationship between these 
variables and engine health could be nonlinear and 
interdependent. These interactions may complicate the 
predictive modeling but also offer deeper insights for more 
robust fault prediction and prevention strategies.  These 
insights underscore the importance of closely monitoring 
temperature, torque settings, and available power to predict 
and prevent potential faults in engine operations. This 
comprehensive analysis also suggests the necessity of 
considering a wider range of operational parameters to fully 
understand and optimize engine health and performance. 

3. METHODOLOGY 

To classify the health condition of helicopter turboshaft 
engines, we initiate the process with Exploratory Data 
Analysis (EDA) to thoroughly examine and understand each 
feature of the dataset. Engine health is evaluated using the 
torque margin, defined as the percentage difference between 
the measured and target torque values. We employ Gaussian 
Process Regression (GPR) to predict the target (design) 
torque based on the turboshaft engine data. To efficiently 
train the GPR model, we introduce a space-filling strategy 
through sequential sampling, which conditionally selects a 
representative subset of the data, ensuring comprehensive 
coverage of the input space without using excessive training 
data. The GPR model not only predicts the target torque but 
also provides confidence intervals for these predictions. 
Using the predicted target torque, we calculate the torque 
margin, which serves as a key indicator of engine 
performance and health. This torque margin is then added as 
a new feature to the dataset. To classify the engine’s 
condition as either faulty or not, we develop an ensemble 
learning method. This involves creating four ML models to 
predict the binary class, followed by the implementation of a 
stacking architecture that trains on the residuals to improve 
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prediction accuracy. This structured workflow, illustrated in 
Figure 3, ensures a robust and reliable machine-learning 
framework for helicopter turboshaft engine health 
monitoring. 

 
Figure 3 Flowchart of framework development 

3.1. Regression with Space Filling 

In our methodology, we focus on selecting an appropriate 
probability density function (PDF) for our predictions. GPR 
provides predictive mean and variance estimates, making it 
ideal for uncertainty quantification. Since GPR inherently 
treats each prediction as a distribution rather than a single 
point, the normal distribution is a natural fit. Therefore, we 
selected the normal distribution as our PDF for predictions, 
leveraging the inherent probabilistic nature of Gaussian 
Processes. However, GPR model is typically well-suited for 
small datasets and face significant computational challenges 
when dealing with large volumes of high-dimensional data. 
In our case, we need to model a complex system with over 
720,000 data points in a 7-dimensional space, making it 
impractical to train a GPR model using the entire dataset. To 
efficiently select a representative subset of data points, we 
adopted a space-filling strategy, which ensures 
comprehensive coverage of the input space without risking 
overfitting and excessive computation load. Specifically, we 
used the Max-min approach (Jin et al., 2002, Fillmore et al., 
2022), which adaptively determines new training points by 
maximizing the minimum distance between a new point and 
all existing points. Formally, the new training point is 
identified as, where represents all current training points and 
is the L2-norm of a vector. This method ensures that the new 
points are located at most “blanked” area in the training 
space, thus uniformly sampling the design space and 
avoiding clustering of points. The Max-min approach is 

particularly advantageous when iterative model evaluation is 
time-consuming or infeasible, as it does not rely on model 
performance but purely on spatial relationships among 
points.  

3.2. Ensemble Model for Classification 

In this study, we utilize an ensemble learning approach to 
address a binary classification problem. Ensemble models are 
well-known for enhancing prediction accuracy and 
robustness by leveraging the strengths of multiple algorithms 
with diverse mechanisms. By integrating these algorithms, 
the model compensates for individual weaknesses and 
produces more reliable and generalized predictions. This 
method allows for better handling of varying data patterns 
and reduces the risk of overfitting, ultimately improving 
overall performance. The main advantage of ensemble 
methods lies in their ability to reduce variance, bias, or both, 
depending on the specific algorithms used. 

 
Figure 4 Flowchart of ensemble learning model 

As shown in Figure 4, the ensemble model designed for this 
study consists of a set of base learners and a meta learner, 
strategically selected to optimize classification performance. 
The base learners include Convolutional Neural Networks 
(CNN), Multi-Layer Perceptrons (MLP), XGBoost, and 
AdaBoost, each contributing unique capabilities to the 
overall model. CNNs, known for their ability to capture 
spatial hierarchies, are used to process structured and image-
like data. MLPs are leveraged for their universal 
approximation ability in handling non-linear relationships. 
XGBoost is included for its powerful gradient-boosting 
framework, offering efficiency and accuracy in structured 
data tasks, while AdaBoost provides adaptive boosting to 
improve model performance on difficult samples. At the top 
level, a logistic regression model serves as the meta learner, 
aggregating the predictions from the base models. This 
choice of meta learner is motivated by its simplicity and 
interpretability, making it an effective tool for combining 
outputs and generating final predictions. The ensemble 
architecture, thus, harnesses the complementary strengths of 
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each learner while maintaining a balance between complexity 
and interpretability. 

4. RESULT AND DISCUSSION 

4.1. Prediction of Torque Margin  

For regression, we randomly selected 2,000 points as initial 
training data, followed by the sequential selection of an 
additional 18,000 points using the Max-min criterion. The 
torque margin, calculated using Equation 1, is a key feature 
for indicating the health state of a turboshaft engine. During 
the training phase, we use the intermediate torque target as 
the output for the regression model. This choice is motivated 
by the direct relationship between the intermediate torque 
target and the input features. By predicting the target torque 
first and then calculating the torque margin using the 
equation, we can reduce information loss and better capture 
the relationship between input and output features, thereby 
reducing error. For the GPR model, we employed a Matérn 
kernel with a smoothness parameter µ = 3/2. The Matérn 
kernel which is a type of covariance function particularly 
popular due to its flexibility in modeling data with varying 
smoothness. The result shown in Figure 5 demonstrate the 
efficacy of our approach. By employing the Max-min space-
filling strategy, we ensure that our GPR model is trained on 
a well-distributed subset of data points, leading to more 
accurate predictions of the target torque. Consequently, when 
calculating the torque margin, the reduced error and 
improved capture of input-output relationships validate the 
effectiveness of our methodology. The prediction shows high 
accuracy and extremely low bias. This comprehensive 
approach not only enhances the predictive performance of the 
GPR model but also ensures robust estimation of the torque 
margin, which is crucial for monitoring the health state of the 
turboshaft engine. 

 
Figure 5 Regression model performance 

4.2. Prediction of Engine Health Condition 

In this study, 24,160 data points (3.25%) were selected as the 
test dataset and excluded from model training. These points 
were chosen because, in the subsequent task, the developed 
model will be used to predict the health conditions of 20 
thousand data points with unknown states. To closely 
replicate this application scenario, we selected the same 
number of test points that were closest in Euclidean distance 
to the unknown points. If the trained model performs well on 
the test set, it provides strong justification for expecting 
stable predictions on the future unknown data points. 
However, some limitations need to be considered regarding 
this assumption. Although the testing dataset is selected by 
identifying the most relevant data points in relation to the 
unknown validation dataset, if the validation dataset 
represents a different high-dimensional operational space 
with distinct embedded physics, the trained model may still 
struggle to extrapolate the most accurate relationships. 

OAT, MGT, PA, IAS, NP, NG and the torque margin 
obtained by previous regression process were selected as 
model input and the final output is the binary class of engine 
health condition. For both the MLP and 1D CNN models, the 
Adam optimizer is employed with a learning rate of 0.001 
and a loss function of binary cross-entropy. The MLP model 
features three hidden layers with 50, 100, and 50 neurons, 
using the ReLU activation function. In contrast, the 1D CNN 
architecture consists of two convolutional layers with 32 and 
64 filters, respectively, each using a kernel size of 3, followed 
by a flattening layer and a dense layer with 50 neurons. The 
output layers for both the CNN and MLP model have a single 
neuron with a sigmoid activation function for binary 
classification. Early stopping is implemented for both models 
with a patience of 10 to automatically determine the best 
number of training epochs, allowing both models to 
effectively learn patterns in the data. In the XGBoost model, 
a learning rate of 0.1, 500 estimators, and a maximum tree 
depth of 5 are configured, with the evaluation metric set to 
'logloss.' For the AdaBoost model, a decision tree base 
estimator with a maximum depth of 4 is used, along with 300 
estimators and a learning rate of 0.1, applying the 'SAMME' 
algorithm for ensemble learning. The logistic regression 
model is configured with a regularization strength parameter 
CCC set to 0.9, using the 'liblinear' solver for optimization, 
and allowing a maximum of 400 iterations for convergence. 
The random state is fixed at 42 to ensure reproducibility of 
results. 

During the model training and testing process, we observed a 
noticeable impact of the total number of training data points 
on model performance. The subset of the training dataset was 
also selected based on the rule of filtering points with the 
smallest Euclidean distance at certain level. Figure 6 to 
Figure 8 illustrate the model's performance scores, number of 
wrong prediction and number of false negative prediction on 
the test dataset across different input sizes used in several 
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experiments, clearly highlighting how varying the dataset 
size influenced predictive accuracy. All three plots 
demonstrate that when the training dataset size reaches 
approximately 190,000, the trained model achieves the 
highest prediction accuracy, with the lowest prediction error 
and the fewest false negatives. This condition may indicate 
another data imbalance concerning the operational space, 
suggesting that a large portion of the training dataset may 
consist of data points from a different operational space than 
the real unknown data. Training the model on too many 
biased data points could lead to overfitting, reducing the 
model's generalization ability. Therefore, it is crucial to select 
the most appropriate portion of the original full dataset as the 
realistic training dataset. 

 
Figure 6 Prediction score Vs. No. of training points 

 
Figure 7 Prediction errors Vs. No. of training points 

 
Figure 8 No. of false negative Vs. No. of training points 

Finally, the ensemble model was trained on 189,782 filtered 
data points and tested on 24160 data points, as depicted in the 
prediction confusion matrix in Figure 9. The model achieved 
a high prediction accuracy of 99.52%, with a recall of 
98.79%, precision of 98.71%, and an F1 score of 98.76%. 
These results indicate a robust predictive capability, as 
evidenced by the low number of misclassifications: only 56 
false negatives and 58 false positives. This performance 
demonstrates the model's effectiveness in correctly 
identifying both healthy and faulty conditions, making it a 
valuable tool for proactive maintenance and fault detection in 
operational settings. However, there are 58 prediction results 
that reported false negatives. Since type II errors can be fatal 
for a helicopter engine, there is still room to improve the 
model to minimize these errors. 

 
Figure 9 Confusion matrix of prediction 

The Receiver Operating Characteristic (ROC) curve 
displayed shows an Area Under the Curve (AUC) of around 
1.0, which represents an ideal scenario where the model 
perfectly discriminates between the positive and negative 
classes without any misclassification. 

  
Figure 10 Receiver operating characteristic (ROC) curve 
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This section confirms the effectiveness of the ensemble 
model in predicting engine health conditions, showing robust 
performance across various training data sizes. The optimal 
results, reflected in confusion metrics and an ideal ROC 
curve, demonstrate the model's precision in turboshaft engine 
health conduction detection, making it a valuable tool for 
predictive maintenance in aviation turbine operations. 

5. CONCLUSION 

In this study, an ensemble machine learning framework is 
presented which delivers robust predictions of helicopter 
turboshaft engine health status. By combining Gaussian 
process regression for torque margin estimation and a stacked 
ensemble of classification models, the proposed approach 
achieves high accuracy in distinguishing between nominal 
and faulty engine conditions. The results demonstrate the 
superior generalization and reliability of the ensemble 
method, providing precise torque margin estimates to enable 
informed predictive maintenance decisions. The use of a 
space-filling strategy for efficient data sampling ensures the 
scalability of the framework to large, high-dimensional 
datasets. Future work should explore the generalization of the 
model across a broader range of engine types and the 
integration with real-time monitoring tools to enhance the 
practical utility of this approach. 
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