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ABSTRACT 

This work is based on the PHM North America 2024 

Conference Data Challenge’s datasets of Helicopter turbine 

engine performance measurements. These datasets were 

large and moderately imbalanced. This submission produces 

compelling results using MATLAB for all the necessary 

visualizations, feature engineering, model exploration, 

explainability, and confidence margin estimation. All these 

tools will be generally applicable to data-driven AI/ML 

modeling and predictions. 

 The MathWorks team score on Testing Data was 0.9686 at 

the close of competition.  This was further improved to 

0.9867. The Validation Data submission scores were also 

improved. Our approach demonstrates the effectiveness of 

combining strategic data processing, feature engineering, and 

model optimization. High prediction metrics and 

explainability were demonstrated. 

1. INTRODUCTION 

The health monitoring of helicopter turbine engines is a 

critical component in ensuring operational safety and 

efficiency. With the increasing availability of large-scale 

operational datasets, there is a growing opportunity to 

leverage advanced data analytics and machine learning 

techniques to enhance predictive maintenance strategies. 

Such predictive maintenance strategies traditionally rely on 

prognostics data trends over time and comparing these 

against performance characteristic curves informed from 

domain expertise (Bechhhoefer & Hajimohammadali, 2023). 

However, this study addresses the PHM North America 2024 

Conference Data Challenge, which involves predicting the 

health of helicopter turbine engines by estimating torque 

margins and classifying engine health status, where none of 

the time-dependent information in the dataset was available. 

The approach we used is described in Figure 1 below. 

 

Figure 1. Block diagram representing workflow adopted for 

failure prediction modeling on the helicopter engine dataset. Peeyush Pankaj et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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This was structured around a systematic data-driven 

workflow that breaks down the analysis into three key stages: 

data access & exploration, data preparation, and AI modeling. 

2. DESCRIPTION OF THE DATASET 

The dataset provided for the 2024 PHM Society Data 

Challenge consists of 742,625 observations in the training 

set. Additionally, there are 21,436 observations present in 

both the test and validation sets each. The training set data 

comes from 4 different helicopter turbine engines, but the 

same make. Each engine is instrumented to capture the 

outside air temperature (oat), mean gas temperature (mgt), 

pressure altitude (pa), indicated airspeed (ias), net power 

(np), and compressor speed (ng). For these operational 

conditions, there is a design (target) torque. The real output 

torque is also measured. Engine health is assessed by 

comparing the output torque to the target torque. More 

specifically, the torque margin (calculated as per Eq. 1 below) 

is a key indicator of engine health:  

𝑻𝒐𝒓𝒒𝒖𝒆 𝑴𝒂𝒓𝒈𝒊𝒏 (%) = 𝟏𝟎𝟎 ×
(𝑻𝒐𝒓𝒒𝒖𝒆𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅− 𝑻𝒐𝒓𝒒𝒖𝒆𝒕𝒂𝒓𝒈𝒆𝒕)

𝑻𝒐𝒓𝒒𝒖𝒆𝒕𝒂𝒓𝒈𝒆𝒕
  (1) 

The participating teams of the data challenge are tasked to 

submit 2 types of predictions, a. torque margin estimation, 

and b. fault labels (0 for healthy and 1 for faulty). The fault 

labels are only provided in the training set. 

The observations have though been shuffled and asset ids 

have been removed. The test and validation sets represent 

data from 3 different helicopter engines, which are not part of 

the training set. 

3. DATA ACCESS AND EXPLORATION 

Initial exploration of the training dataset revealed that the 

training dataset is labeled with a roughly 60-40 split between 

healthy and faulty engine statuses, and largely distributed into 

two major operational clusters as represented in Figure 2 

below.  

This clustering is a common characteristic in fleet analytics, 

where variations in operational conditions or engine 

configurations can lead to distinct groupings. The presence of 

these clusters suggests two potential modeling strategies: the 

development of global models that utilize the entire dataset 

and the creation of local models tailored to each operational 

cluster, potentially offering more precise predictions by 

leveraging the unique characteristics within each group.  This 

dual modeling strategy allows for flexibility in prediction, as 

new data received from the field can be evaluated using both 

the global model and the appropriate local model, depending 

on its proximity to the cluster centroids. 

 

Figure 2. Scatter plot of compressor speed (ng) vs 

Torquemeasured reveals 2 major clusters of operation. There’s 

also a decent number of observations outside of these 2 

clusters, but those are largely faulty observations. 

4. DATA PRE-PROCESSING AND FEATURE ENGINEERING 

4.1. Removing Duplicates  

In the initial stage of data pre-processing, we identified and 

addressed the presence of duplicate observations within the 

training dataset. Specifically, 59,600 rows were found to be 

exact duplicates. The elimination of these duplicates resulted 

in a shift in the distribution of labels, altering the healthy-

faulty split from an approximate 60-40 ratio to a more 

imbalanced 67-33 ratio. 

4.2. Data Balancing with Upsample Downweight 

To address the class imbalance in the training dataset, we 

employed an "Upsample Downweight" strategy on the 

minority class by padding the dataset with additional 

instances of the faulty class. This process ensured that the 

dataset achieved an even 50-50 split between healthy and 

faulty observations, thereby mitigating the risk of model bias 

towards the majority class during training. However, simply 

upsampling the minority class could lead to overfitting, as the 

model might learn redundant patterns from the duplicated 

data. To counteract this, we adjusted the weights of the faulty 

class observations, reducing them in comparison to those of 

the healthy class. These weights were then incorporated as a 

parameter during the training of decision tree ensembles. 

There are more strategies for classification of imbalanced 

data (MathWorks Documentation: Handling Imbalanced 

Data, 2024), for example, using Misclassification Costs 

(Zhou & Liu, 2010) or RUSBoost (Seiffert, Khoshgoftaar, 

Hulse & Napolitano, 2008), which were explored later at the 

AI Modeling stage. 
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4.3. Feature Engineering 

Feature engineering is a critical step in enhancing the 

predictive power of machine learning models by 

incorporating domain knowledge (FAA, 2019) into the 

dataset. In this study, we introduced two new features derived 

from domain understanding of the operational parameters 

highlighted in Eq. 2 & Eq. 3:  

∆𝑇𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =  (𝑚𝑔𝑡 − 𝑜𝑎𝑡) 𝑚𝑔𝑡⁄                   (2) 

𝜔 =  𝑛𝑝 𝑇𝑜𝑟𝑞𝑢𝑒𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑⁄                            (3) 

As the engines age, one would expect the turbine to generate 

lesser work, and monitoring the relative temperature drop can 

be an indicator for the same. Whereas angular velocity 

computation will be useful compared to rotor speed ‘ng’ 

which is denoted in percentage terms. 

Recognizing the prevalence of second-order terms in 

physics-driven equations, we extended this principle to our 

feature set by introducing quadratic terms for all seven 

original parameters and the two newly engineered features. 

This resulted in a focused set of 18 features that were 

particularly relevant for training regression models aimed at 

predicting design torque.  

Feature modeling and machine learning/deep learning model 

training are inherently iterative processes. Through multiple 

iterations, we identified and incorporated numerous linear 

interaction terms among these 18 features. This iterative 

refinement expanded our feature set to a comprehensive 242 

features. This extensive feature set was crucial for capturing 

complex relationships and interactions within the data, 

thereby enhancing the models' ability to make accurate 

predictions. 

4.4. Dimensionality Reduction with Random Noise 

Probing  

To effectively reduce the dimensionality of our extensive 

feature set, we employed a strategy involving the introduction 

of random noise and subsequent feature importance analysis 

(Stoppiglia, Dreyfus, Dubois & Oussar, 2003). We began by 

selecting a subset of 100,000 observations from the full 

training dataset to facilitate efficient computation. A baseline 

fault classification decision tree model was then trained on 

this sample dataset, achieving an initial accuracy of 98% 

before any feature reduction was applied.  

Next, we introduced three random features to the dataset, 

each representing random noise generated from different 

statistical distributions: normal, binary, and uniform. The 

feature values for each of these distributions is shown in 

Figure 3. The decision tree model was retrained with these 

additional noise features, maintaining the same accuracy of 

98%. This step was crucial for utilizing MATLAB’s 

‘predictorImportance’ function(MathWorks Documentation: 

Predictor Importance, 2024), which ranks features based on 

their contribution to the classification decision tree. It does so 

by summing changes in risk due to splits on every predictor 

and dividing the sum by the number of branch nodes.  

 

Figure 3. Introduction of 3 Random Features based on 

normal, binary & uniform distributions 

The random noise features, by design, should exhibit minimal 

importance scores. Consequently, any features in the original 

set that showed lower importance scores than the mean 

importance of the three random noise features were 

considered insignificant and removed from the dataset. This 

process resulted in a reduced set of 58 features. Finally, the 

decision tree model was retrained using this reduced set of 58 

features. The model's accuracy remained at 98%, confirming 

that the features removed had an insignificant impact on the 

model's performance. 

4.5. Parallel Coordinates Plot 

To further refine our feature set, we utilized a parallel 

coordinates plot, as shown in Figure 4. This technique allows 

for simultaneous comparison of multiple features, providing 

insights to retain features that exhibit a significant normalized 

variance in their coordinate values. Such features help in 

discriminating different classes, making them valuable for 

model training. Conversely, features that demonstrated 

minimal variance were deemed less informative and were 

consequently removed from the feature set. This further 

reduced the feature set from 58 to 35 features. 

 

Figure 4. Parallel coordinates plot showing the normalized 

variance in each feature for failure labels, i.e. healthy (0) 

and faulty (1) 
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5. AI MODELING 

Rather than employing a traditional holdout validation 

approach, which could potentially limit the evaluation of 

model performance to a single subset of the data, we utilized 

5-fold cross-validation. This cross-validation technique 

involves partitioning the dataset into five distinct subsets or 

"folds." During the training process, the model is iteratively 

trained on four folds while being validated on the remaining 

fold. This process is repeated five times, with each fold 

serving as the validation set exactly once. The results from 

each iteration are then averaged to produce a comprehensive 

assessment of the model's performance. 

5.1. Regression Model for Torque Margin Estimation 

In our effort to accurately estimate the torque margin, we 

trained multiple regression models using the dataset with the 

refined set of 18 features, as outlined in the feature 

engineering section. These features were used to predict the 

design torque effectively. The torque margin was 

subsequently calculated using an arithmetic equation detailed 

in Eq. 1. Figure 5 Below depicts the summary of the linear 

regression models trained on one of the local clusters in the 

training dataset as highlighted in the Data Exploration 

section.  

  

Figure 5. Including quadratic terms for each predictors 

(right) significantly reduced the RMSE score. MATLAB’s 

regression learner app is used here for model(s) training in 

parallel over multiple cores 

 

The linear regression model with interaction terms seems to 

be performing better than high fidelity feed forward neural 

networks, so we chose linear regression with interaction 

terms. We used this insight, and further trained a sequential 

linear regression model on the same data. Sequential LM 

choses the right terms to be included in the model based on 

their impact score with each iteration. Following is the 

resulting linear regression equation on one of the data 

clusters. Note that the R2 of most of the trained models are 

1.0, which is only part of measuring the accuracy of the 

regression models. To measure how closely these points fit to 

the ground truth, we should be looking to optimize the RMSE 

(Root Mean Squared Error) or MAE (Mean Absolute Error) 

scores. The coefficients and the terms of the linear regression 

model are tabulated in Table 1, while Figure 6 describes the 

torque margin residuals for the training data. All the residuals 

lie within a consolidated range of +/-0.5% error, and 99% of 

the residuals lie within the range of +/-0.1% error.  

Table 1. Estimated Coefficients for a Linear Regression 

Model from a sequential LM approach 

 

Term Estimate SE tStat pValue 
(Intercept) -179.65 0.69 -259.03 0.00 

trq_measured 0.02 0 34.42 0.00 

oat -1.1 0 -413.58 0.00 

mgt 0.45 0 408.21 0.00 

pa -0.01 0 -223.26 0.00 

ias -0.01 0 -51.83 0.00 

ng 0.98 0.02 44.67 0.00 

oat_sq -0.01 0 -33.12 0.00 

ng_sq -0.01 0 -38.09 0.00 

 

 

 

Figure 6 Histogram(left) and scatter plot (right) of Torque 

Margin Residuals on the training data show the distribution 

between lower bound of -0.4% and upper bound of +0.5%, 

with more than 90% of the observations being predicted 

with +/-0.1% of the ground truth. 
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5.2. Selection of Probability Density Function 

In this year’s data challenge, the goodness of fit is critical to 

getting higher score on the torque margin predictions. 

However, if we use any probability density function which 

has a bell-shaped curve (e.g. normal, cauchy or logistic 

distributions), one will lose some marginal points even when 

the torque margin predictions are few decimal precisions 

away from the ground truth. Thus, in order to get the perfect 

score on the torque margin regression predictions we chose 

“uniform” distribution function with flat-top after ensuring 

that the histogram for the torque margin errors is within a 

bandwidth of 1.0%.  Figure 7 and Figure 8 demonstrate the 

drop in regression scores for different probability density 

functions if the ground truth is away from the predicted value, 

apart from the uniformly distributed probability density 

function. 

 

Figure 7. Comparison of different probability density 

functions when the true target is near the predicted outcome. 

In such scenario, there can be multiple pdf functions which 

will fetch high scores 

 

 

Figure 8. Comparison of different probability density 

functions when the true target is away from the predicted 

outcome. If the torque margin residual (prediction - actual) is 

less than 1%, then uniform distribution with a flat top will 

give the perfect score on regression predictions unlike any 

other pdf with a bell-curve.   

 

The test data submission score was also validated as 0.5 by 

just submitting the regression model predictions (assigning 0 

confidence to all classification predictions). This means a 

perfect score of 1.0 on the torque margin predictions. 

5.3. Fault Class Predictions 

5.3.1. Model selection with Automated Machine 

Learning and ASHA Optimization 

Traditional exploration and hyperparameter optimization of 

Classification models involves exhaustive experimentation 

with different model families and parameter sets – which was 

found to be computationally intensive. Given the time-

sensitive nature of the data challenge and the large number of 

observations in the training dataset, pursuing a hit-and-trial 

approach of model selection or using a Bayesian optimizer 

for automated model selection would consume a lot of time. 

Thus, an automated classification model training (“fitcauto” 

function in MATLAB (MathWorks documentation for 

Automated Classifier Selection, 2024) with ASHA 

(asynchronous successive halving algorithm) optimization 

was employed to determine the best suite of classification 

models for this dataset (Li, Liam, Jamieson, Rostamizadeh, 

Gonina, Hardt, Recht, & Talwalkar., 2020).  The function 

randomly chooses several models with different 

hyperparameter values and trains them on a small subset of 

the training data. If the cross-validation classification error 

(Validation Loss) of a particular model is promising, the 

model is promoted and trained on a larger amount of the 

training data as shown in Figure 9. This process repeats, and 

successful models are trained on progressively larger 

amounts of data. The outcome of this process is to use 

decision tree ensembles as highlighted at the end of Figure 10 

 

Figure 9. fitcauto optimizing for validation loss with 

different types of learners 
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Figure 10. Iterations done with fitcauto function in MATLAB with ASHA optimization indicate use of ensemble models 

 

5.3.2. Experimenting With Different Classifier Models 

and Approach for Down-Selecting the Best 

Classifier 

For modeling a fault classifier, several models were trained. 

Firstly, we set aside 20% of the training data as holdout set 

and trained multiple models, e.g. decision trees, support 

vector machines, neural networks using classification learner 

app in MATLAB. Some of these models, e.g. wide neural 

networks returned with a 99.6% accuracy on the holdout 

validation set and was also submitted for the data challenge 

in initial rounds. Though we learnt that by holding out a 

portion of the training data, the model is missing out on some 

information and is unable to generalize well over the other 

engines in the test data. This made us to use the full training 

data for model training.  

Having over 700,000 observations in the dataset is a 

challenge and requires a higher compute time if the models 

are trained on single core. For this reason, we loaned cloud 

compute and trained deep learning neural network models 

using GPUs. The wide neural network approach faded away 

as the confidence margins for the failure labels were 

inconsistent with the prediction errors on the test data, i.e. the 

neural network model was making highly confident errors. 

Next up, we explored the automated classifier modeling with 

ASHA optimization (detailed in previous section) and 

understood that the ensemble decision trees will perform 

better on this dataset. So, we experimented between different 

types of decision trees with accelerating the model training 

with distributed computing on cloud resource.  

5.3.3. Ensemble Decision Trees Modeling 

After experimenting with the different hyper parameters of 

the bagged tree models, we trained ensemble bagged decision 

trees (Breiman, Friedman, Olshen & Stone, 1984) with 

minimum leaf size as 30 and 150 decision trees. This model 

was in fact used for predicting fault classes at the close of the 

competition. We got a combined score of 0.9686 on the test 

data with this model.  

However, the bagged trees ensemble model was later revised 

to AdaBoost (adaptive boosting) decision trees ensemble, 

which improved the score on test data to 0.9867. Bagged tree 

model (Bootstrap Aggregation) randomly selects examples 

with replacements. Up to 38% examples are left out of bag 

(not used in training). Hence, cross-validation or holdout 

validation are not needed, and out-of-bag loss (oobloss) 

provides the estimate of generalization error. However, it 

trains on duplicate examples due to bagging and this may 

cause overfitting. Though using the AdaBoost approach 

increases the model training time significantly due to 

adaptive learning as compared to bagged trees where the trees 

formation can be distributed to multiple cores with parallel 

computing. We also tried binning the numerical predictors for 

faster compute time, but this approach loses some 

information. Training an AdaBoost model in MATLAB 

allows for resuming the model training, which allowed us to 

grow the number of trees in batches. The dynamically 

reducing misclassification rate on the training data is shown 

in Figure 12. Here we stopped the training early such that the 

model doesn’t overfit on the training set, and the 

misclassification rate is also within allowable limits (less than 

2%). Adaboost increases the weight of examples that were 

predicted wrongly in previous iterations. This increases the 

penalties for making those mistakes. Each tree in the 

ensemble minimizes loss (weighted cost of wrong 

predictions). All the examples from the training set are used 

in fitting the ensemble model. 
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Figure 11 Confusion Matrix on the Training dataset for the 

AdaBoost model 

 

 

Figure 12. Misclassification rate plotted against the number 

of trees 

The ROC and precision-recall performance curves on the 

training data are shown in Figure 13 and Figure 14 

respectively. The Area Under the Curve (AUC) denotes high 

accuracy, and high values of both precision and recall for 

different thresholds. High precision is achieved by having 

few false positives in the returned results, and high recall is 

achieved by having few false negatives in the relevant results. 

 

Figure 13. ROC (Receiver Operating Characteristic) curve 

for the training data 

 
Figure 14. Recall-Precision curve for the training data 

 

Though on the training set, the AdaBoost model’s 

performance shows ~2% misclassification, we had another 

metric in the form of confidence margins on the test 

predictions as reported by different learners. The Figure 15 

below shows the confidence margin histogram for all the 

predictions on test data being heavily skewed towards high 

nineties. This was not the case when other types of learners 

were overfitting on the training set. 

(a)  

(b)  

Figure 15 (a) Confidence Margins reported by the AdaBoost 

ensemble model with 200 trees on the test set predictions, 

(b) Magnified view of 0.9-1 Confidence Margin 
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5.3.4. Sanity Check for Test Data Predictions 

Along with the confidence margin histogram on the test data, 

we had another sanity check in place based on data 

visualization to ensure that the models are not making highly 

confident false predictions. We visualized the data from 

training and test set on a grouped scatter plot as described in 

Figure 16 below.  

 

Figure 16 Grouped scatter plot on training and test set. 

Grouping is done based on the fault labels. 

 

Model will score better if there’s minimal overlap between 

the test-faulty and train-healthy data points with respect to  

important predictors from the feature ranking section as 

shown in Figure 17 a & b below. 

 

 

 
 

 
Figure 17. Scatter plots showing separation of healthy and 

faulty data between training and test sets 

 

Further, Shapley (Lundberg, Scott, & Lee, 2017) plot was 

used to study the distribution of impact of important features 

on the model output as shown with Shapley boxplots in 

Figure 18.  The median Shapley values in the box plot to the 

left or right of 0 and in some cases the locations of the outliers 

(indicated by circles) help in explaining the faulty predictions 

made by the model 

 

 

Figure 18. Shapley summary plot for Faulty predictions on 

100 randomly sampled query points from the test set 

 

6. CONCLUSION 

In this work, we addressed the challenges of large, 

moderately imbalanced datasets by employing a 

comprehensive suite of MATLAB tools, including feature 

engineering, data augmentation, model exploration, and 

explainability techniques. Our approach demonstrated the 

successful development of predictive models for helicopter 

turbine engine health monitoring, with a focus on data 

integrity, feature selection, and model confidence estimation. 
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These methodologies not only improved accuracy but are 

broadly applicable to real-world engine health prediction and 

data-driven modeling challenges. 

As next steps, we recognize the potential for further 

enhancing our models through hyperparameter optimization, 

particularly for neural networks and ensemble models. This 

process, albeit computationally intensive, promises to refine 

model performance and unlock additional insights. Given the 

constraints of the competition, we deferred this step, but it 

remains on the wish list for future work. 
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