

1

A Comprehensive Approach to Fault Classification of Helicopter

Engines with Adaboost Ensemble Model

Peeyush Pankaj1, Sammit Jain2, and Shyam Joshi3

1,2MathWorks India, Trillium Building, Blocks I & J, Embassy Tech Village, Bangalore, India 560103

ppankaj@mathworks.com

sammitj@mathworks.com

3MathWorks USA, 5810 Tennyson Parkway Suite 425, Plano, TX, USA 75024

shyamj@mathworks.com

ABSTRACT

This work is based on the PHM North America 2024

Conference Data Challenge’s datasets of Helicopter turbine

engine performance measurements. These datasets were

large and moderately imbalanced. This submission produces

compelling results using MATLAB for all the necessary

visualizations, feature engineering, model exploration,

explainability, and confidence margin estimation. All these

tools will be generally applicable to data-driven AI/ML

modeling and predictions.

 The MathWorks team score on Testing Data was 0.9686 at

the close of competition. This was further improved to

0.9867. The Validation Data submission scores were also

improved. Our approach demonstrates the effectiveness of

combining strategic data processing, feature engineering, and

model optimization. High prediction metrics and

explainability were demonstrated.

1. INTRODUCTION

The health monitoring of helicopter turbine engines is a

critical component in ensuring operational safety and

efficiency. With the increasing availability of large-scale

operational datasets, there is a growing opportunity to

leverage advanced data analytics and machine learning

techniques to enhance predictive maintenance strategies.

Such predictive maintenance strategies traditionally rely on

prognostics data trends over time and comparing these

against performance characteristic curves informed from

domain expertise (Bechhhoefer & Hajimohammadali, 2023).

However, this study addresses the PHM North America 2024

Conference Data Challenge, which involves predicting the

health of helicopter turbine engines by estimating torque

margins and classifying engine health status, where none of

the time-dependent information in the dataset was available.

The approach we used is described in Figure 1 below.

Figure 1. Block diagram representing workflow adopted for

failure prediction modeling on the helicopter engine dataset. Peeyush Pankaj et al. This is an open-access article distributed under the

terms of the Creative Commons Attribution 3.0 United States License,

which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

2

This was structured around a systematic data-driven

workflow that breaks down the analysis into three key stages:

data access & exploration, data preparation, and AI modeling.

2. DESCRIPTION OF THE DATASET

The dataset provided for the 2024 PHM Society Data

Challenge consists of 742,625 observations in the training

set. Additionally, there are 21,436 observations present in

both the test and validation sets each. The training set data

comes from 4 different helicopter turbine engines, but the

same make. Each engine is instrumented to capture the

outside air temperature (oat), mean gas temperature (mgt),

pressure altitude (pa), indicated airspeed (ias), net power

(np), and compressor speed (ng). For these operational

conditions, there is a design (target) torque. The real output

torque is also measured. Engine health is assessed by

comparing the output torque to the target torque. More

specifically, the torque margin (calculated as per Eq. 1 below)

is a key indicator of engine health:

𝑻𝒐𝒓𝒒𝒖𝒆 𝑴𝒂𝒓𝒈𝒊𝒏 (%) = 𝟏𝟎𝟎 ×
(𝑻𝒐𝒓𝒒𝒖𝒆𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅− 𝑻𝒐𝒓𝒒𝒖𝒆𝒕𝒂𝒓𝒈𝒆𝒕)

𝑻𝒐𝒓𝒒𝒖𝒆𝒕𝒂𝒓𝒈𝒆𝒕
 (1)

The participating teams of the data challenge are tasked to

submit 2 types of predictions, a. torque margin estimation,

and b. fault labels (0 for healthy and 1 for faulty). The fault

labels are only provided in the training set.

The observations have though been shuffled and asset ids

have been removed. The test and validation sets represent

data from 3 different helicopter engines, which are not part of

the training set.

3. DATA ACCESS AND EXPLORATION

Initial exploration of the training dataset revealed that the

training dataset is labeled with a roughly 60-40 split between

healthy and faulty engine statuses, and largely distributed into

two major operational clusters as represented in Figure 2

below.

This clustering is a common characteristic in fleet analytics,

where variations in operational conditions or engine

configurations can lead to distinct groupings. The presence of

these clusters suggests two potential modeling strategies: the

development of global models that utilize the entire dataset

and the creation of local models tailored to each operational

cluster, potentially offering more precise predictions by

leveraging the unique characteristics within each group. This

dual modeling strategy allows for flexibility in prediction, as

new data received from the field can be evaluated using both

the global model and the appropriate local model, depending

on its proximity to the cluster centroids.

Figure 2. Scatter plot of compressor speed (ng) vs

Torquemeasured reveals 2 major clusters of operation. There’s

also a decent number of observations outside of these 2

clusters, but those are largely faulty observations.

4. DATA PRE-PROCESSING AND FEATURE ENGINEERING

4.1. Removing Duplicates

In the initial stage of data pre-processing, we identified and

addressed the presence of duplicate observations within the

training dataset. Specifically, 59,600 rows were found to be

exact duplicates. The elimination of these duplicates resulted

in a shift in the distribution of labels, altering the healthy-

faulty split from an approximate 60-40 ratio to a more

imbalanced 67-33 ratio.

4.2. Data Balancing with Upsample Downweight

To address the class imbalance in the training dataset, we

employed an "Upsample Downweight" strategy on the

minority class by padding the dataset with additional

instances of the faulty class. This process ensured that the

dataset achieved an even 50-50 split between healthy and

faulty observations, thereby mitigating the risk of model bias

towards the majority class during training. However, simply

upsampling the minority class could lead to overfitting, as the

model might learn redundant patterns from the duplicated

data. To counteract this, we adjusted the weights of the faulty

class observations, reducing them in comparison to those of

the healthy class. These weights were then incorporated as a

parameter during the training of decision tree ensembles.

There are more strategies for classification of imbalanced

data (MathWorks Documentation: Handling Imbalanced

Data, 2024), for example, using Misclassification Costs

(Zhou & Liu, 2010) or RUSBoost (Seiffert, Khoshgoftaar,

Hulse & Napolitano, 2008), which were explored later at the

AI Modeling stage.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

3

4.3. Feature Engineering

Feature engineering is a critical step in enhancing the

predictive power of machine learning models by

incorporating domain knowledge (FAA, 2019) into the

dataset. In this study, we introduced two new features derived

from domain understanding of the operational parameters

highlighted in Eq. 2 & Eq. 3:

∆𝑇𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = (𝑚𝑔𝑡 − 𝑜𝑎𝑡) 𝑚𝑔𝑡⁄ (2)

𝜔 = 𝑛𝑝 𝑇𝑜𝑟𝑞𝑢𝑒𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑⁄ (3)

As the engines age, one would expect the turbine to generate

lesser work, and monitoring the relative temperature drop can

be an indicator for the same. Whereas angular velocity

computation will be useful compared to rotor speed ‘ng’

which is denoted in percentage terms.

Recognizing the prevalence of second-order terms in

physics-driven equations, we extended this principle to our

feature set by introducing quadratic terms for all seven

original parameters and the two newly engineered features.

This resulted in a focused set of 18 features that were

particularly relevant for training regression models aimed at

predicting design torque.

Feature modeling and machine learning/deep learning model

training are inherently iterative processes. Through multiple

iterations, we identified and incorporated numerous linear

interaction terms among these 18 features. This iterative

refinement expanded our feature set to a comprehensive 242

features. This extensive feature set was crucial for capturing

complex relationships and interactions within the data,

thereby enhancing the models' ability to make accurate

predictions.

4.4. Dimensionality Reduction with Random Noise

Probing

To effectively reduce the dimensionality of our extensive

feature set, we employed a strategy involving the introduction

of random noise and subsequent feature importance analysis

(Stoppiglia, Dreyfus, Dubois & Oussar, 2003). We began by

selecting a subset of 100,000 observations from the full

training dataset to facilitate efficient computation. A baseline

fault classification decision tree model was then trained on

this sample dataset, achieving an initial accuracy of 98%

before any feature reduction was applied.

Next, we introduced three random features to the dataset,

each representing random noise generated from different

statistical distributions: normal, binary, and uniform. The

feature values for each of these distributions is shown in

Figure 3. The decision tree model was retrained with these

additional noise features, maintaining the same accuracy of

98%. This step was crucial for utilizing MATLAB’s

‘predictorImportance’ function(MathWorks Documentation:

Predictor Importance, 2024), which ranks features based on

their contribution to the classification decision tree. It does so

by summing changes in risk due to splits on every predictor

and dividing the sum by the number of branch nodes.

Figure 3. Introduction of 3 Random Features based on

normal, binary & uniform distributions

The random noise features, by design, should exhibit minimal

importance scores. Consequently, any features in the original

set that showed lower importance scores than the mean

importance of the three random noise features were

considered insignificant and removed from the dataset. This

process resulted in a reduced set of 58 features. Finally, the

decision tree model was retrained using this reduced set of 58

features. The model's accuracy remained at 98%, confirming

that the features removed had an insignificant impact on the

model's performance.

4.5. Parallel Coordinates Plot

To further refine our feature set, we utilized a parallel

coordinates plot, as shown in Figure 4. This technique allows

for simultaneous comparison of multiple features, providing

insights to retain features that exhibit a significant normalized

variance in their coordinate values. Such features help in

discriminating different classes, making them valuable for

model training. Conversely, features that demonstrated

minimal variance were deemed less informative and were

consequently removed from the feature set. This further

reduced the feature set from 58 to 35 features.

Figure 4. Parallel coordinates plot showing the normalized

variance in each feature for failure labels, i.e. healthy (0)

and faulty (1)

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

4

5. AI MODELING

Rather than employing a traditional holdout validation

approach, which could potentially limit the evaluation of

model performance to a single subset of the data, we utilized

5-fold cross-validation. This cross-validation technique

involves partitioning the dataset into five distinct subsets or

"folds." During the training process, the model is iteratively

trained on four folds while being validated on the remaining

fold. This process is repeated five times, with each fold

serving as the validation set exactly once. The results from

each iteration are then averaged to produce a comprehensive

assessment of the model's performance.

5.1. Regression Model for Torque Margin Estimation

In our effort to accurately estimate the torque margin, we

trained multiple regression models using the dataset with the

refined set of 18 features, as outlined in the feature

engineering section. These features were used to predict the

design torque effectively. The torque margin was

subsequently calculated using an arithmetic equation detailed

in Eq. 1. Figure 5 Below depicts the summary of the linear

regression models trained on one of the local clusters in the

training dataset as highlighted in the Data Exploration

section.

Figure 5. Including quadratic terms for each predictors

(right) significantly reduced the RMSE score. MATLAB’s

regression learner app is used here for model(s) training in

parallel over multiple cores

The linear regression model with interaction terms seems to

be performing better than high fidelity feed forward neural

networks, so we chose linear regression with interaction

terms. We used this insight, and further trained a sequential

linear regression model on the same data. Sequential LM

choses the right terms to be included in the model based on

their impact score with each iteration. Following is the

resulting linear regression equation on one of the data

clusters. Note that the R2 of most of the trained models are

1.0, which is only part of measuring the accuracy of the

regression models. To measure how closely these points fit to

the ground truth, we should be looking to optimize the RMSE

(Root Mean Squared Error) or MAE (Mean Absolute Error)

scores. The coefficients and the terms of the linear regression

model are tabulated in Table 1, while Figure 6 describes the

torque margin residuals for the training data. All the residuals

lie within a consolidated range of +/-0.5% error, and 99% of

the residuals lie within the range of +/-0.1% error.

Table 1. Estimated Coefficients for a Linear Regression

Model from a sequential LM approach

Term Estimate SE tStat pValue
(Intercept) -179.65 0.69 -259.03 0.00

trq_measured 0.02 0 34.42 0.00

oat -1.1 0 -413.58 0.00

mgt 0.45 0 408.21 0.00

pa -0.01 0 -223.26 0.00

ias -0.01 0 -51.83 0.00

ng 0.98 0.02 44.67 0.00

oat_sq -0.01 0 -33.12 0.00

ng_sq -0.01 0 -38.09 0.00

Figure 6 Histogram(left) and scatter plot (right) of Torque

Margin Residuals on the training data show the distribution

between lower bound of -0.4% and upper bound of +0.5%,

with more than 90% of the observations being predicted

with +/-0.1% of the ground truth.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

5

5.2. Selection of Probability Density Function

In this year’s data challenge, the goodness of fit is critical to

getting higher score on the torque margin predictions.

However, if we use any probability density function which

has a bell-shaped curve (e.g. normal, cauchy or logistic

distributions), one will lose some marginal points even when

the torque margin predictions are few decimal precisions

away from the ground truth. Thus, in order to get the perfect

score on the torque margin regression predictions we chose

“uniform” distribution function with flat-top after ensuring

that the histogram for the torque margin errors is within a

bandwidth of 1.0%. Figure 7 and Figure 8 demonstrate the

drop in regression scores for different probability density

functions if the ground truth is away from the predicted value,

apart from the uniformly distributed probability density

function.

Figure 7. Comparison of different probability density

functions when the true target is near the predicted outcome.

In such scenario, there can be multiple pdf functions which

will fetch high scores

Figure 8. Comparison of different probability density

functions when the true target is away from the predicted

outcome. If the torque margin residual (prediction - actual) is

less than 1%, then uniform distribution with a flat top will

give the perfect score on regression predictions unlike any

other pdf with a bell-curve.

The test data submission score was also validated as 0.5 by

just submitting the regression model predictions (assigning 0

confidence to all classification predictions). This means a

perfect score of 1.0 on the torque margin predictions.

5.3. Fault Class Predictions

5.3.1. Model selection with Automated Machine

Learning and ASHA Optimization

Traditional exploration and hyperparameter optimization of

Classification models involves exhaustive experimentation

with different model families and parameter sets – which was

found to be computationally intensive. Given the time-

sensitive nature of the data challenge and the large number of

observations in the training dataset, pursuing a hit-and-trial

approach of model selection or using a Bayesian optimizer

for automated model selection would consume a lot of time.

Thus, an automated classification model training (“fitcauto”

function in MATLAB (MathWorks documentation for

Automated Classifier Selection, 2024) with ASHA

(asynchronous successive halving algorithm) optimization

was employed to determine the best suite of classification

models for this dataset (Li, Liam, Jamieson, Rostamizadeh,

Gonina, Hardt, Recht, & Talwalkar., 2020). The function

randomly chooses several models with different

hyperparameter values and trains them on a small subset of

the training data. If the cross-validation classification error

(Validation Loss) of a particular model is promising, the

model is promoted and trained on a larger amount of the

training data as shown in Figure 9. This process repeats, and

successful models are trained on progressively larger

amounts of data. The outcome of this process is to use

decision tree ensembles as highlighted at the end of Figure 10

Figure 9. fitcauto optimizing for validation loss with

different types of learners

 6

Figure 10. Iterations done with fitcauto function in MATLAB with ASHA optimization indicate use of ensemble models

5.3.2. Experimenting With Different Classifier Models

and Approach for Down-Selecting the Best

Classifier

For modeling a fault classifier, several models were trained.

Firstly, we set aside 20% of the training data as holdout set

and trained multiple models, e.g. decision trees, support

vector machines, neural networks using classification learner

app in MATLAB. Some of these models, e.g. wide neural

networks returned with a 99.6% accuracy on the holdout

validation set and was also submitted for the data challenge

in initial rounds. Though we learnt that by holding out a

portion of the training data, the model is missing out on some

information and is unable to generalize well over the other

engines in the test data. This made us to use the full training

data for model training.

Having over 700,000 observations in the dataset is a

challenge and requires a higher compute time if the models

are trained on single core. For this reason, we loaned cloud

compute and trained deep learning neural network models

using GPUs. The wide neural network approach faded away

as the confidence margins for the failure labels were

inconsistent with the prediction errors on the test data, i.e. the

neural network model was making highly confident errors.

Next up, we explored the automated classifier modeling with

ASHA optimization (detailed in previous section) and

understood that the ensemble decision trees will perform

better on this dataset. So, we experimented between different

types of decision trees with accelerating the model training

with distributed computing on cloud resource.

5.3.3. Ensemble Decision Trees Modeling

After experimenting with the different hyper parameters of

the bagged tree models, we trained ensemble bagged decision

trees (Breiman, Friedman, Olshen & Stone, 1984) with

minimum leaf size as 30 and 150 decision trees. This model

was in fact used for predicting fault classes at the close of the

competition. We got a combined score of 0.9686 on the test

data with this model.

However, the bagged trees ensemble model was later revised

to AdaBoost (adaptive boosting) decision trees ensemble,

which improved the score on test data to 0.9867. Bagged tree

model (Bootstrap Aggregation) randomly selects examples

with replacements. Up to 38% examples are left out of bag

(not used in training). Hence, cross-validation or holdout

validation are not needed, and out-of-bag loss (oobloss)

provides the estimate of generalization error. However, it

trains on duplicate examples due to bagging and this may

cause overfitting. Though using the AdaBoost approach

increases the model training time significantly due to

adaptive learning as compared to bagged trees where the trees

formation can be distributed to multiple cores with parallel

computing. We also tried binning the numerical predictors for

faster compute time, but this approach loses some

information. Training an AdaBoost model in MATLAB

allows for resuming the model training, which allowed us to

grow the number of trees in batches. The dynamically

reducing misclassification rate on the training data is shown

in Figure 12. Here we stopped the training early such that the

model doesn’t overfit on the training set, and the

misclassification rate is also within allowable limits (less than

2%). Adaboost increases the weight of examples that were

predicted wrongly in previous iterations. This increases the

penalties for making those mistakes. Each tree in the

ensemble minimizes loss (weighted cost of wrong

predictions). All the examples from the training set are used

in fitting the ensemble model.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

7

Figure 11 Confusion Matrix on the Training dataset for the

AdaBoost model

Figure 12. Misclassification rate plotted against the number

of trees

The ROC and precision-recall performance curves on the

training data are shown in Figure 13 and Figure 14

respectively. The Area Under the Curve (AUC) denotes high

accuracy, and high values of both precision and recall for

different thresholds. High precision is achieved by having

few false positives in the returned results, and high recall is

achieved by having few false negatives in the relevant results.

Figure 13. ROC (Receiver Operating Characteristic) curve

for the training data

Figure 14. Recall-Precision curve for the training data

Though on the training set, the AdaBoost model’s

performance shows ~2% misclassification, we had another

metric in the form of confidence margins on the test

predictions as reported by different learners. The Figure 15

below shows the confidence margin histogram for all the

predictions on test data being heavily skewed towards high

nineties. This was not the case when other types of learners

were overfitting on the training set.

(a)

(b)

Figure 15 (a) Confidence Margins reported by the AdaBoost

ensemble model with 200 trees on the test set predictions,

(b) Magnified view of 0.9-1 Confidence Margin

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

8

5.3.4. Sanity Check for Test Data Predictions

Along with the confidence margin histogram on the test data,

we had another sanity check in place based on data

visualization to ensure that the models are not making highly

confident false predictions. We visualized the data from

training and test set on a grouped scatter plot as described in

Figure 16 below.

Figure 16 Grouped scatter plot on training and test set.

Grouping is done based on the fault labels.

Model will score better if there’s minimal overlap between

the test-faulty and train-healthy data points with respect to

important predictors from the feature ranking section as

shown in Figure 17 a & b below.

Figure 17. Scatter plots showing separation of healthy and

faulty data between training and test sets

Further, Shapley (Lundberg, Scott, & Lee, 2017) plot was

used to study the distribution of impact of important features

on the model output as shown with Shapley boxplots in

Figure 18. The median Shapley values in the box plot to the

left or right of 0 and in some cases the locations of the outliers

(indicated by circles) help in explaining the faulty predictions

made by the model

Figure 18. Shapley summary plot for Faulty predictions on

100 randomly sampled query points from the test set

6. CONCLUSION

In this work, we addressed the challenges of large,

moderately imbalanced datasets by employing a

comprehensive suite of MATLAB tools, including feature

engineering, data augmentation, model exploration, and

explainability techniques. Our approach demonstrated the

successful development of predictive models for helicopter

turbine engine health monitoring, with a focus on data

integrity, feature selection, and model confidence estimation.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

9

These methodologies not only improved accuracy but are

broadly applicable to real-world engine health prediction and

data-driven modeling challenges.

As next steps, we recognize the potential for further

enhancing our models through hyperparameter optimization,

particularly for neural networks and ensemble models. This

process, albeit computationally intensive, promises to refine

model performance and unlock additional insights. Given the

constraints of the competition, we deferred this step, but it

remains on the wish list for future work.

7. ACKNOWLEDGEMENT

The authors acknowledge support and encouragement from

MathWorks for participating in PHM Data Challenge 2024.

Extensive technical computing resources, software tools, IT

infrastructure and the collaborative support of fellow

MathWorkers are thankfully acknowledged.

8. REFERENCES

Bechhoefer, E., & Hajimohammadali, M. . (2023). Process

for Turboshaft Engine Performance Trending. Annual

Conference of the PHM Society, 15(1).

https://doi.org/10.36001/phmconf.2023.v15i1.3490

MathWorks, “Handle Imbalanced Data or Unequal

Misclassification Costs in Classification Ensembles”,

MathWorks Documentation. [Online].

Available:

https://in.mathworks.com/help/stats/classification-with-

unequal-misclassification-costs.html

Zhou, Z.-H., and X.-Y. Liu. “On Multi-Class Cost-Sensitive

Learning.” Computational Intelligence. Vol. 26, Issue 3,

2010, pp. 232–257 CiteSeerX.

Seiffert, C., T. Khoshgoftaar, J. Hulse, and A. Napolitano.

"RUSBoost: Improving classification performance when

training data is skewed." 19th International Conference

on Pattern Recognition, 2008, pp. 1–4.

Federal Aviation Administration, Helicopter Flying

Handbook, FAA-H-8083-21B, U.S. Department of

Transportation, 2019. [Online]. Available:

https://www.faa.gov/sites/faa.gov/files/regulations_poli

cies/handbooks_manuals/aviation/faa-h-8083-21.pdf.

[Accessed: 20-Sep-2024]

Stoppiglia, Hervé, Gérard Dreyfus, Rémi Dubois, and Yacine

Oussar. "Ranking a random feature for variable and

feature selection." The Journal of Machine Learning

Research 3 (2003): 1399-1414.

MathWorks, "Predictor importance for ensemble models,"

MathWorks Documentation. [Online]. Available:

https://in.mathworks.com/help/stats/classreg.learning.cl

assif.compactclassificationensemble.predictorimportanc

e.html

MathWorks, “Automated classifier selection with Bayesian

and ASHA optimization,” MathWorks Documentation

[Online].

Available:

https://www.mathworks.com/help/releases/R2024b/stat

s/automated-classifier-selection-with-bayesian-

optimization.html

Li, Liam, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina

Gonina, Moritz Hardt, Benjamin Recht, and Ameet

Talwalkar. “A System for Massively Parallel

Hyperparameter Tuning.” ArXiv:1810.05934v5 [Cs],

March 16, 2020. https://arxiv.org/abs/1810.05934v5.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J.

Stone. Classification and Regression Trees. Boca Raton,

FL: Chapman & Hall, 1984.

Lundberg, Scott M., and S. Lee. "A Unified Approach to

Interpreting Model Predictions." Advances in Neural

Information Processing Systems 30 (2017): 4765–774.

https://in.mathworks.com/help/stats/classification-with-unequal-misclassification-costs.html
https://in.mathworks.com/help/stats/classification-with-unequal-misclassification-costs.html
https://www.faa.gov/sites/faa.gov/files/regulations_policies/handbooks_manuals/aviation/faa-h-8083-21.pdf
https://www.faa.gov/sites/faa.gov/files/regulations_policies/handbooks_manuals/aviation/faa-h-8083-21.pdf
https://in.mathworks.com/help/stats/classreg.learning.classif.compactclassificationensemble.predictorimportance.html
https://in.mathworks.com/help/stats/classreg.learning.classif.compactclassificationensemble.predictorimportance.html
https://in.mathworks.com/help/stats/classreg.learning.classif.compactclassificationensemble.predictorimportance.html
https://www.mathworks.com/help/releases/R2024b/stats/automated-classifier-selection-with-bayesian-optimization.html
https://www.mathworks.com/help/releases/R2024b/stats/automated-classifier-selection-with-bayesian-optimization.html
https://www.mathworks.com/help/releases/R2024b/stats/automated-classifier-selection-with-bayesian-optimization.html
https://arxiv.org/abs/1810.05934v5

