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ABSTRACT 

We present an anomaly detection method developed for the 

PHM North America 2024 Conference Data Challenge. This 

competition is aimed at estimating the health of helicopter 

turbine engines (PHM Society, 2024). The task includes the 

estimation of the torque margin (regression) and the health 

state (binary classification) of turbine engines. We developed 

an estimation model using a hybrid algorithm that combines 

data-based machine learning and domain knowledge-based 

processing. Our method achieved scores over 0.99 for both 

the testing and validation datasets. based on the calculation 

rules provided by PHM Society. These results were ranked 

first among all the participating teams. 

1. INTRODUCTION 

The Data Challenge was held as part of PHM 2024 (PHM 

Society, 2024). This competition is an anomaly detection for 

the health of helicopter turbine engines, and the authors 

participated as challengers. Turbine engines deteriorate over 

time and require regular maintenance (BHT-407-FM-3, 

2018). However, engine data is rarely collected 

automatically, making time-consuming trend analysis 

difficult. Therefore, early detection of deterioration may not 

be possible, and the timing of maintenance may be missed 

(Bechhoefer, and Kessler, 2022). To address this issue, 

machine learning-based methods such as SVM (Cao, Xu, 

Huang, and Yang, 2022), (Chakraborty, Sarkar, Ray, and 

Phoha, 2010) and Deep Learning (Huber, Palmé, and Chao, 

2023), (Luo, and Zhong, 2017), as well as mathematical 

approaches (Bechhoefer, and Hajimohammadali, 2023),  

(Zhou, Zhou, Li, and Ca, 2023), (Tolani, Yasar, Chin, and 

Ray, 2005), are being tried to monitor the performance and 

health of the engine. We have been working on the 

development of anomaly detection technology and have 

proposed various methods. (Nakamura, Imamura, Mercer, 

and Keogh, 2020), (Nakamura, Mercer, Imamura, and 

Keogh, 2023). At PHMAP 2023 (PHM Society, 2023), The 

Data Challenge was held to detect anomalies in spacecraft 

propulsion systems. Our team proposed a time series 

classification method using the k-NN algorithm and achieved 

a score of 99.05%. This score was ranked third among all 

participating teams. This method primarily relies on machine 

learning algorithms, and we consider that using domain 

knowledge is effective for further improving accuracy (Kato, 

Kato, and Tanaka, 2023). In this Data Challenge, we 

proposed an anomaly detection approach that actively 

leverages domain knowledge. 

2. PROBLEM DESCRIPTION 

In the Data Challenge, the task is to evaluate the health of 

helicopter turbine engines. This chapter presents the tasks and 

datasets of the Data Challenge.  

2.1. Task 

This task involves two problems: torque margin regression 

and the health state classification. The torque margin is an 

indicator of engine health. The health state is classified as 

healthy or faulty. Both regression and classification are 

evaluated separately, with the final score being the average 

of these two. Participants are required to estimate the engine 

health using the testing and validation datasets and submit 

their model's results. They are also required to provide a 

confidence level (class_conf) for their classification results. 

A severe penalty is imposed for high-confidence false 

negatives (instances where the engine is predicted to be 

healthy but is in fact faulty) because overlooking an engine 

failure could lead to expensive repair costs. 
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2.2. Dataset 

The dataset for this competition consists of seven engines 

(assets) of the same model number. Each engine is 

instrumented to capture the outside air temperature (oat), 

mean gas temperature (mgt), pressure altitude (pa), indicated 

airspeed (ias), net power (np), and compressor speed (ng). 

For these operational conditions, there is a design (target) 

torque (trq_target). The real output torque (trq_measured) is 

also measured. The torque margin (trq_margin) calculated 

from equation (1) is assessed by comparing the output torque 

to the design (target) torque. The health state (faulty) is 

labeled into two values (0 = healthy, 1 = faulty). 

𝑡𝑟𝑞_𝑚𝑎𝑟𝑔𝑖𝑛 =  
𝑡𝑟𝑞_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑡𝑟𝑞_𝑡𝑎𝑟𝑔𝑒𝑡

𝑡𝑟𝑞_𝑡𝑎𝑟𝑔𝑒𝑡
× 100 (1) 

Three types of datasets are provided: training, testing, and 

validation. The training dataset is comprised of data from 

four out of seven engines. The remaining three engines are 

used for the testing and validation datasets, with the torque 

margin and the health state hidden. All datasets are shuffled, 

and individual and temporal information is hidden. 

3. PRELIMINARY ANALYSIS 

This chapter presents the results of our preliminary analysis. 

We surveyed the meanings of the variables and domain 

knowledge from related materials. Subsequently, we also 

analyzed the dataset using this domain knowledge. 

3.1. Density altitude (da) 

We estimated the density altitude (da), which is not included 

in the disclosed data, using explanatory variables. Density 

altitude is defined as the pressure altitude corrected for 

ambient temperature. A higher temperature increases the 

density altitude, thereby affecting aircraft performance. The 

density altitude is approximated using the following equation, 

which incorporates the pressure altitude and outside 

temperature from the disclosed data. 

𝑑𝑎 =  1.2376 ∗  𝑝𝑎  +  118.8 ∗  𝑜𝑎𝑡 −  1782 (2) 

3.2. Relationship between variables 

According to related materials (Airplane Academy, 2024), 

the explanatory variables for the disclosed data have a 

relationship shown in Figure 1. Pilots operate helicopters by 

adjusting the engine output according to external conditions, 

and by managing the output torque and propeller rotation 

speed. The target torque is determined by physical conditions 

such as outside air temperature, pressure altitude, airspeed, 

and altitude. Additionally, we formulated the following 

hypotheses about the relationships between these variables, 

based on domain knowledge. 

 

 

Hypothesis 1. The outside air temperature (oat) and 

pressure altitude (pa) change gradually over time. In 

other words, they do not change suddenly or abruptly. 

Hypothesis 2. Faulty engines tend to have a small torque 

margin. On the other hand, healthy engines also have a 

reduced torque margin under high density altitude 

conditions. 

 

 

Figure 1. The relationship among explanatory variables 

 

 

Figure 2. The Training Dataset (oat – pa) 

 

Figure 3. The sequence of faulty assets  
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3.3. Analysis of the dataset 

Figure 2 shows the relationship between outside air 

temperature (oat) and pressure altitude (pa) in the training 

dataset. From Figure 2, the faulty data points continue 

linearly. Based on "Hypothesis 1", we inferred that these data 

were measured as the same individual. Also, as shown in 

Figure 3, we estimated that this sequence of fault assets is 

classified into two assets. Figure 4 shows the relationship 

between density altitude (da) and torque margin (trq_margin) 

in the training dataset. From Figure 4, we found two assets 

and estimated the following relationships. 

⚫ "Hypothesis 2" is valid for "Asset 1". 

⚫ "Hypothesis 2" is not valid for "Asset 2". 

Similarly, Figure 5 shows the relationship between the 

density altitude (da) and the torque margin (trq_margin) in 

the testing and validation datasets. Based on Figure 5, we 

estimated that both the testing and validation datasets support 

"Hypothesis 2". Due to the differing characteristics of the 

assets in the training dataset and the testing/validation 

datasets, we anticipated a decline in the performance of data-

based machine learning. As a countermeasure, we 

hypothesized that incorporating domain knowledge-based 

processing into machine learning would be effective. 

 

 
Figure 4. The Training Dataset  

(da - trq_margin) 

 
Figure 5. The Testing and Validation Datasets  

(da - trq_margin)  

4. PROPOSED ALGORITHM 

This chapter presents the hybrid algorithm combining data-

based machine learning and domain knowledge-based 

processing. The steps in the regression and classification 

process are shown in the flowchart in Figure 6. Details of 

each step are explained in the corresponding sections. 

 

 

 

Figure 6. flowchart of Anomaly Detection 
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4.1. Regression algorithm 

We hypothesized that estimating target torques determined 

by physical conditions would provide greater accuracy than 

estimating torque margins directly from domain knowledge. 

Therefore, the regression algorithm is structured to estimate 

the target torque (trq_target_pred) using a second-order 

polynomial regression based on the data. The torque margin, 

calculated from equation (3), is assessed by comparing the 

output torque (trq_measured) to the estimated target torque 

(trq_target_pred). In our regression algorithm, density 

altitude is not utilized as an explanatory variable. We 

hypothesized that the linear regression model could 

compensate for the density altitude linearly using other 

explanatory variables. 

𝑡𝑟𝑞_𝑚𝑎𝑟𝑔𝑖𝑛 =  
𝑡𝑟𝑞_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑡𝑟𝑞_𝑡𝑎𝑟𝑔𝑒𝑡_𝑝𝑟𝑒𝑑

𝑡𝑟𝑞_𝑡𝑎𝑟𝑔𝑒𝑡_𝑝𝑟𝑒𝑑
× 100 (3) 

4.2. Classification algorithm 

The classification algorithm is structured to estimate the 

health state (faulty or normal), using a combination of data-

based algorithm and domain knowledge-based processing. 

Domain knowledge-based processing involves the k-NN 

algorithm and the rule-based processing. In the training of the 

classification algorithm, the explanatory variables include the 

density altitude and the torque margin, which is estimated by 

the regression algorithm. As data-based algorithm, we 

experimented with deep learning, k-NN, logistic regression, 

and LightGBM (Ke, Meng, Finley, Wang, Chen, Ma, Ye, and 

Liu, 2017). Among these, LightGBM exhibited the highest 

testing data score. Through visualizing this high scored 

estimation result, we were able to recognize that "Hypothesis 

2" is valid for the testing data. Therefore, we adopted 

LightGBM as a data-based algorithm and were able to 

improve the accuracy through rule-based processing 

described later. In LightGBM, the parameters are optimized 

using Optuna (Akiba, Sano, Yanase, Ohta, and Koyama, 

2019). The dataset is randomly divided into five subsets. Four 

of these subsets are used for training, and the remaining one 

is used for validation. This process is repeated five times, 
each time with a different validation set. Based on 

"Hypothesis 1" from the preliminary analysis, it is postulated 

that contiguous points are likely to share similar health states. 

Therefore, in the k-NN regression (k=5), each of the divided 

datasets is adjusted to account for temporal continuity. The 

results from these five sets are averaged (ensembled) to 

estimate the health states. Each dataset is not standardized. In 

the rule-based processing, the machine learning results are 

corrected as necessary based on domain knowledge of 

"Hypothesis 2". From "Hypothesis 2" it is postulated that 

faulty engines tend to have a small torque margin or healthy 

engines also have a reduced torque margin under high density 

altitude conditions. Therefore, we designed our rule-based 

processing with a threshold based on density altitude and 

torque margin. 

 

Table 1. Rule-based processing 

No conditions consequence  

1 (da < 500) and (trq_margin < -0.01 da + 2.5) faulty 

2 (da ≧ 500) and (trq_margin ≧ -0.01 da + 2.5) healthy 

 

 

Table 2. Score for the testing dataset 

No 
Classification  

Algorithm 

Addition of 
explanatory 

variables 

Class 0  
conf 

Testing 
Data  
Score 

1 LightGBM No 0.7 0.7973 

2 LightGBM  Yes 0.7 0.8636 

3 LightGBM + k-NN Yes 0.7 0.8641 

4 
LightGBM + k-NN 

+ rule based 
Yes 0.7 0.9016 

5 
LightGBM + k-NN 

+ rule based 
Yes 1.0 0.9990 

 

 

 

5. ESTIMATION OF THE HEALTH STATE 

Through machine learning based on the training dataset and 

processing based on domain knowledge, we estimate the 

health status of the testing dataset and the validation dataset.  

Table 1 shows the rule-based processing applied to the testing 

and validation datasets. Table 2 shows the testing data score 

obtained for the classification algorithm, explanatory 

variables, and confidence level. In Table 2, "Addition of 

Explanatory Variables" marks "Yes" for those including "da" 

and "trq_margin". Those not including them are marked as 

"No". "Class 0 conf" refers to the setting value for 

"class_conf" for data estimated to be healthy. Initially, the 

reliability was maintained at 0.7, considering the impact of 

false-negative penalties when the accuracy was low. 

However, it was adjusted to 1.0 when we determined that 

sufficient accuracy had been achieved. From Table 2, an 

improvement in the score has been achieved through 

processing based on domain knowledge. Figures 7 to 9 show 

the classification results of the LightGBM, k-NN, and rule-

based algorithm, which were trained on explanatory variables 

including "da" and "trq_margin". For the validation dataset, 

we applied the same algorithm as the testing dataset to 

estimate the health status. The results are shown in Figure 

10." 
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Figure 7. LightGBM result for the testing dataset 

 

Figure 9. LightGBM + k-NN + rule-based result  

for the testing dataset 

6. RESULTS AND DISCUSSION 

Our method achieved scores over 0.99 for both the testing 

and validation datasets based on the calculation rules 

provided by the PHM 2024 Society. These were the highest 

scores among all teams. The preliminary analysis showed 

differences in asset characteristics between the training and 

testing/validation datasets. The health of the testing and 

validation datasets were estimated by combining the results 

of machine learning based on the training dataset and the 

rule-based processing derived from domain knowledge. We 

consider that even when estimating for new assets, it is 

possible to achieve a highly adaptable estimation of health by 

using data from past similar assets. 

7. CONCLUSION 

In the PHM North America 2024 Conference Data Challenge, 

the task was to estimate the torque margin (regression) and 

the health state (binary classification) of helicopter turbine 

engines. This paper proposes an estimation model using a 

hybrid algorithm that combines data-based machine learning 

and domain knowledge-based processing. Our method 

achieved scores over 0.99 for both the testing and validation 

datasets. These results were ranked first among all 

participating teams. 

 

Figure 8. LightGBM + k-NN result for the testing dataset 

 

Figure 10. LightGBM + k-NN + rule-based result  

for the validation dataset 
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