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ABSTRACT

This research implements Prognostics and Health Manage-
ment (PHM) using multiple linear regression and multivari-
ate time series models to monitor and predict when the per-
formance of a Machine Learning-based cyberattack classifier
might degrade to an unacceptable level, enabling preemptive
maintenance strategies.

1. INTRODUCTION

A Network Intrusion Detection System (NIDS) (Liao et al.,
2013) analyzes network traffic to detect suspicious patterns
or anomalies, alerting administrators to potential threats.
Deep neural networks (DNNs) (Ahmad et al., 2020) are Ma-
chine Learning (ML) techniques often employed in NIDS
for their ability to accurately classify cyberattacks (Lewis,
2002) such as malware infections and denial-of-service at-
tacks. Although DNNs perform well in identifying known
attacks (Baye et al., 2023), their resilience against unknown
activities is less studied.

Problem to be addressed: Past research (Javaid et al., 2016;
Sharma et al., 2019; Wu et al., 2020; Narayana Rao et al.,
2021; Lo et al., 2022) has explored various techniques to en-
hance the robustness of DNNs. However, these techniques
often rely on specific benchmark datasets, leading to incom-
plete representations of real-world network settings, and re-
quire long training times, posing challenges in promptly and
cost-effectively identifying cyberattacks. Furthermore, there
is a lack of quantitative assessment regarding the reliability
of these techniques’ predictions over time. Without predic-
tive models that can monitor classifiers in real-time and fore-
cast future performance, anticipating new threats and adapt-
ing NIDS performance strategies may be challenge.

Expected novel contributions: This research implements
Prognostics and Health Management (PHM) techniques,
including multiple linear regression (Kleinbaum, Kupper,
Nizam, & Rosenberg, 1999) and multivariate time series
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models (Brandt & Williams, 2007) approaches, to monitor
and predict the performance of DNNs based on the prox-
imity of incoming real-time cyberattacks to known classes.
Anticipating the performance of classifiers might streamline
the testing process with new datasets, reducing evaluation
time in the face of unknowns. Additionally, it aids in mon-
itoring and assurance for NIDS, empowering professionals
to gauge NIDS performance trends, proactively address po-
tential performance degradation, and identify optimal main-
tenance strategies to sustain performance.

Proposed research plan: The proposed research, initiated
in Fall 2022 and scheduled for completion by Spring 2026,
encompasses a comprehensive plan within the PhD pro-
gram. The main activities include: (i) model changes
in the performance of cyberattack classifiers with different
PHM techniques (2022); (ii) enhance prediction capabilities
through improved parameter estimation techniques (2023);
(iii) formulate optimization problems to identify resilience
requirements such as maintenance schedules (2024); (iv) re-
train classifiers based on identified resilience requirements
to rapidly and efficiently restore classifier performance after
degradations (2025); and (v) submit manuscript and defense
dissertation (2026). In sum, this PhD dissertation proposes to
ensure the continuous and reliable operation of ML-based cy-
berattack classifiers using PHM techniques, which is crucial
for enhancing system resilience by identifying the best tim-
ing for interventions to effectively mitigate risks and recover
from adversarial attacks.

2. CYBERATTACK CLASSIFIERS

A deep neural network (DNN) consists of interconnected lay-
ers of neurons governed by mathematical functions. In NIDS,
DNNs receive NIDS benchmark payload data - packet sec-
tions transmitting network information often hiding malware
- in the input layer, pass it through hidden layers to extract
features, and make predictions at the output layer. Train-
ing DNNs to learn attack patterns involves refining hyper-
parameters for optimal performance using evaluation metrics
such as the F1-Score. The F1-Score is a reliable measure
of NIDS classifier performance since it measures the overall
model balance between identifying true cyberattacks among
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all instances classified as attacks and detecting all true cyber-
attacks. In live, when new instances are fed into a trained
classifier, it classifies whether each packet is malicious or be-
nign based on the patterns it has learned during training. Af-
ter classification, samples are clustered based on predicted
labels, with distance metrics quantifying data point similar-
ities or differences within clusters. Typical distance metrics
encompass the Euclidean distance, which gauges the straight
distance between a new sample and the closest known clus-
ter’s mean; cosine similarity, which calculates the cosine of
the angle between the new sample and the nearest known
cluster’s mean; and Intra-cluster spread, which evaluates the
dispersion of samples within a cluster, signifying the extent
to which the cluster expands upon receiving new samples.

3. PROGNOSTICS AND HEALTH MANAGEMENT OF
CLASSIFIERS

Prognostics and Health Management (PHM) of cyberattack
classifiers involves implementing techniques to monitor, as-
sess, and sustain the performance of these classifiers over
time. For example, Figure 1 illustrates the performance (P )
of a cyberattack classifier trained on a dataset containing var-
ious types of cyberattacks. Initially, after training and testing
the classifier, it achieves a F1-Score of P = 0.9, indicating
a high performance at classifying cyberattacks. Over time,
new network packets with patterns and characteristics differ-
ent from the original training data begin to emerge. Conse-
quently, the classifier’s ability to accurately classify these new
packets as benign or malicious starts to decline, reducing the
F1-score from its initial high value of P = 0.9 to a lower
value, such as P = 0.6. This lower value indicates a warn-
ing state where restorative actions are necessary in order to
maintain the classifier’s usability. At this point (tm1

), with an
explanatory diagnostic, maintenance techniques such as re-
training the DNN including information learned from the new
threats or updating the classifier parameters to improve its ef-
fectiveness could restore the classifier’s performance, as illus-
trated by the dashed line. Otherwise, the system will continue
to operate with low performance only during its remaining
useful life (RUL) until it degrades to an unacceptable level,
illustrated as P = 0.5, where the DNN is no longer reliable.

4. PREDICTIVE MODELS

Regression and time series models are suitable techniques
for predicting the performance (P ) of DNNs, defined as
the F1-score. By forecasting the F1-score, these models
can aid decision-makers in optimizing cyberattack detection
while minimizing false alarms and missed detections, which
is crucial for network security. Regression models predict
the F1-score by analyzing its linear relationship with covari-
ates representing the distance between new instances and
known classes of cyberattacks. Techniques include multi-
ple linear regression (MLR) and multiple linear regression

Figure 1. Performance analysis of cyberattack classifiers

with interaction (MLRI), both assuming normally distributed
residuals for reliable conclusions and generalization. Multi-
variate time series models, such as multivariate vector auto-
regressive (MVAR) and multivariate vector auto-regressive
moving average (MVARMA), forecast F1-score changes over
time based on past F1-scores and distances between known
and new samples. These models require data to be stationary,
which can be confirmed through time sequence graphs.

Table 1 presents each predictive model discussed above to
predict F1-score at time interval i. In each equation shown
in the Table, β0 is the average value of F1-score, Xj are the
j = 1, . . . ,m covariates representing the distances between
new threats and the centroid of the known classes that the
DNN was trained on, βj is the covariates impact on F1-score,
βj(m+k) represents the interaction between covariates Xj and
Xk, βk describes the F1-score relationship to intervals (i −
ℓ) ≤ (i−k) ≤ (i−1)), βj(ℓ+k) is the impact of the distances
of samples in the previous (i − k) intervals, and θk is the
coefficient associated with k times steps before the present
time step of a sequential white noise process (ε), which are
statistically independent, and normally distributed with zero
mean and finite variance.

Model fitting is performed with least squares estimation
(LSE) (Pham, 1999), which minimizes the discrepancy be-
tween the actual and predicted F1-score data to estimate all
parameters present in the models shown in Table 1. Eval-
uating a model’s performance on the given dataset involves
computing various goodness-of-fit measures, including: (i)
sum of squares error (SSE), (ii) Predictive mean square er-
ror (PMSE), (iii) adjusted coefficient of determination (r2adj),
and (iv) confidence intervals to establish a range for estimated
values based on a user-specified level of confidence.

5. PRELIMINARY RESULTS

The proposed modeling approaches are illustrated using ex-
periments of a classifier pre-trained on 70% of randomly se-
lected samples of 10 classes from the NIDS benchmark CIC-
IDS2017 dataset (Rosay, Cheval, Carlier, & Leroux, 2022),
which contains 1,410,255 samples under 15 different classes
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Table 1. Regression and Time Series Models to Predict F1-score

Approach Model Equation

Regression
MLR P̂ (i) = β0 +

∑m
j=1

(
βjXj(i)

)
MLRI P̂ (i) = β0 +

∑m
j=1

(
βjXj(i)

)
+

∑m
j=1

(∑m
k=j+1

(
βj(m+k)Xj(i)Xk(i)

))
Time Series

MVAR P̂ (i) = β0 +
∑ℓ

k=1

(
βkP (i− k)

)
+

∑m
j=1

(∑ℓ
k=1

(
βj(ℓ+k)Xj(i− k)

))
MVARMA P̂ (i) = β0 +

∑ℓ
k=1

(
βkP (i− k)

)
+

∑m
j=1

(∑ℓ
k=1

(
βj(ℓ+k)Xj(i− k)

))
+
∑ℓ

k=1

(
θkε(i− k)

)
of cyberattacks. The remaining 30% of the data was used
for validation and testing. To predict the F1-score of the
pre-trained DNN using the models discussed in Section 4,
a new dataset was collected through various experiments de-
signed to assess the algorithm’s performance across diverse
scenarios. Each experiment involved testing the classifier on
a fresh, balanced dataset containing instances from the 10
known classes and the remaining 5 unknown classes, which
were not part of the training set, to gauge how well the clas-
sifier performed with previously unseen data. In each exper-
iment, the F1-score was computed to evaluate the classifica-
tion performance. Additionally, distance metrics discussed in
Section 3 were calculated, representing the average distances
from all new samples to their respective nearest known class.
These metrics were recorded as input data for the predictive
models, with the F1-score designated as the performance to
be predicted (P ), and the distance metrics as candidate co-
variates (X) of the model. By estimating the model param-
eters using the data gathered from these experiments, fore-
casting the future F1-score of a classifier involves computing
the distance between new real-time instances and the known
attack patterns stored in the historical data.

The model development follows these steps: (i) Create initial
regression and time series models with all (no) covariates and
correlated lag identified from autocorrelation function (ACF)
and partial autocorrelation function (PACF). (ii) Use least
squares estimation with 80% of data, compute goodness-of-
fit measures, and validate models using the remaining 20%
data for prediction accuracy assessment. (iii) Add or remove
covariates using forward and backward stepwise procedures
until minimizing PRMSE. (iv) Increase lags for F1-score
and covariates following ACF and PACF, repeat steps (ii)-(iv)
until no improvement in PRMSE. (v) Choose the model
with the lowest PRMSE for predicting F1-score.

Table 2 reports the covariates (X) included in each model,
where (X1) is the Euclidean distance, (X2) is the cosine dis-
tance, and (X3) is the intra-spread distance, as well as the
number of homogenous number of lags (ℓ) of all features that
minimized the PRMSE, indicating for example that MVAR
model includes 3 lags of the previous performance P , as well
as 3 lags of each covariate X3 and X1. Table 2 also shows
the number of parameters (p) contained in each model, and

Figure 2. MLRI model fit and its 95% confidence interval

the associated goodness-of-fit values achieved, which are pe-
nalized for the number of parameters in the model. The best-
performing model, highlighted in bold in Table 2, is the re-
gression model with covariate interactions. This model out-
performed others in all goodness-of-fit measures, indicating
its superior ability to monitor and predict the F1-score trend
effectively. While time series models offered a comprehen-
sive framework and capture small changes in performance,
simpler models like MLRI could capture essential data char-
acteristics with fewer parameters, making them more practi-
cal and easier to interpret for future F1-score predictions.

To visualize the best model fit, Figure 2 shows the empirical
data as well as the fitted MLRI model and its 95% confidence
intervals (grey region), where the dashed vertical line at 80%
of the data marks the end of model fitting and the start of pre-
dictions. Since all but 1 of the 27 data points fell within the
confidence interval, the empirical coverage is 96.29%, which
indicates that the MLRI model was able to monitor and pre-
dict both decreasing and increasing trends of the F1-score
well, aiding in understanding new sample attributes. This
result suggest that MLRI is suitable to identify maintenance
strategies to address unknown cyberattacks. The dashed red
line represents a hypothetical warning threshold, part of the
ongoing research in this dissertation to pinpoint the best time
for classifier maintenance.
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Table 2. Validation of Model’s Prediction

Model Covariates Lags (ℓ) Parameters (p) RMSE PRMSE r2adj
MLR X3, X1, X2 0 4 0.0687 0.0685 0.7344
MLRI X3, X1, X2 0 7 0.0409 0.0488 0.9077
MVAR P, X3, X1 3 10 0.0441 0.0506 0.7829
MVARMA P, X1, X2, X3 1 12 0.0911 0.1164 0.4115

6. CONCLUSION AND FUTURE DIRECTION

This research proposes to apply Prognostics and Health Man-
agement (PHM) methods using statistical models to monitor
and predict the performance of cyberattack classifiers against
new threats. Two regression models and two multivariate
time series models were tested, aiming to accurately pre-
dict the F1-score based on real-time distances between new
threats and known cyberattacks. Preliminary results indi-
cate that while time series models can adjust to data fluc-
tuations, simpler regression models can effectively capture
data characteristics, potentially offering sufficient insights for
F1-score predictions without added complexity. Specifically,
multiple linear regression with interaction between covari-
ates showed a high empirical coverage of 96.29%, suggesting
accurate predictions of future observations. This approach
may support NIDS researchers and practitioners to optimize
classifier performance against specific threats by identifying
and adjusting training methods or detection strategies. Fu-
ture work will explore additional features in models to en-
hance F1-score predictions and integrate these predictions
into decision-making for optimal classifier maintenance and
replacement strategies against new cyber threats.
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