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ABSTRACT 1. INTRODUCTION

Services and warranties of larfjeets of engineering assets Managing feet reliability of ndustrial equipmenis avery

is a very profitable business where original equipmentfitablebusiness thdbcuse onservices, maintenanead
manufacturers and independent service providers Offef5 ranties. Contracts carefully designed to accommodate
contracts designed to cover events in-taglay serviceas  minor to major maintenance over the life of the asset

well as majormaintenanceand repairs over the life of 81 ,55)ly sold by botherge original equipment mafacturers
asset. Accurate reliability modeling, as a way to understan(:{he interested reader is referred tBE Aviation

how the complex stochastic interactions between operatingy|aporators. 2017. and Siemens collaborators. 2ot 7
conditions and component capability define useful life, is keyygme examplds as well as independent sieer providers

for services profitability. Thenodelingtask is daunting as (the interested reader is referred@emini Energy Services
factors sub as aggressive mission mixes introduced bygaborators. 2017. and Lufthansa Technik AG
operators, exposure to harsh environment, inadequatgaporators, 201%r some exampldsA key capability for
maintenance, and problems with mass production (bad batefiective operations and maintenancesisability modeling
of materials) can lead to large discrepancies betweegsit gefinestheability to comprehendhardware degradation
designed and observed useful lives. This papiicused on - anq predict remaining useful lifd his gives to operators the
how to quantify the impact of infant mortality in fleets of .y53nce to make decisions that directly impacir theancial

industrial assets. A simple numerical experiment is used t8utcomesthrough asseperformance andvailability levels
address the fundamental question: how does number %eration safety, etc.

observations and fleet size interact with each other in fleet

managerant? The results demonstrate that materiaModern approaches to reliability modeling of industrial
capability, penetration of bad batch of material in the fleetequipment take full advantage gqfhysics through the

and commissioning time can drastically influence fleetunderstanding of machine design, materials, and
unreliability.  Moreover, infant mortality due to Manufacturing, as well as higiuelity computational models
manufacturing  problems/material  capability isa  (BogdanoffandKozin, 1985;Johnsorand Hillberry 2004;
manifestation of amutlier problem. As a consequence, theKapur and Pecht, 2014/ao, 1992 Rausandand Hoyland,
propensity to observe first failures depend on the actual fle@004 and Stephenst al. 200Q. Despite of all the effort in
size. Since failure observations are used to build/update tiesign and quality control, when looking into a large fleet of
reliability models, small fleet operators have to deal withassets (hundreds to thousands of units), it can happen that
large unertainties when quantifying infant mortality. This observed machine performance and hardware reliability
impacts their ability to make provisions for service anddeviate from design intentA(-Dahidi et al. 2016 and
maintenance (inventory, labor, loss of productivity, etc_)_VOlpOI"Ii, 2014).Such deviation is usually attributed to one or
Although the large number of failure observations causes & combination of the following:

financial burden in large fe&& operators, it also allows for
reduced uncertainty in building/updating the reliability
models. In turn, this improves their ability flarecast future
failures andmake provisions for service and maintenance. f Problems related to mass production such as a bad batch
of materials poor quality control of a specific vendor,
assembly, etc.

Aggressive missions (duty cycles) and mission mixes
introduced by operators.

Arinan DouradoThis is an operaccess article distributed under the te

of the Creative Commonhttribution 3.0 United States License, wh 1 Exposure to harsh environmental conditions
permits unrestricted use, distribution, and reproduction in any me l .
provided the original author and source are credited. (Seasona ity, corrosives, dust, etc.)
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1 Inadequatservices ananaintenanc@ractices. deciding whether inspection is wowthile or not). A
dynamic Bayesian network tracks and forecasts fatigue crack
growth and the detection of a crack is modeled through
robability of detection. Information gain per cost of
hspection is used to identifhe optimal option for the next

Infant mortality is a major concern amoargginal equipment
manuficturerand operators of industrial assetd always
increases cost of ownership (maintenance, warrant

Services, etc.) It. can redu.ce asset pe.rformance. and inspection in the future. Haddad et al. (2011) and Haddad et
ava|Ia_b|I|ty. In addition, it can imposdifficulties in meeting al. (2012) discussed a cdsénefitrisk approach to manage
compllan_ce and - regulationsstardards (as _hardware the actions to be taken followirg prognostic model. The
Qegradatlon can b(_a a Iea_d cause .Of . safety standa cussion included important aspects such ocasrall
infringements, elevation of noise and emission levels, etc')'maintenance (cost of unscheduled maintenance, collateral
This work aims at presenting jrobabilistic analgis for =~ damage during repair, fault isolationghortening of
characterization ofemerging fleet issues due to infant remaining useful life, spare parts management, etc..
mortality. We will focus onanswering thefundamental Applications discussed included electronic systems in
questionhow does fleet size and number of failures interact commercial aircraft and gearbanaintenance in wind farms.
with each other when characterizing an infant mortality
problem? We answer this question usingrognosis,
uncertainty quantification, reliability arfteet management.

The remaining of the paper is organized as follows. Section
2 describes the case study that will illustrate the issue of
infant mortality in fleet reliability. Sectiol® presents and
We use physicdased prognosis as a way tdorecast discusses the numerical results. Finadlgction4 closes the
remaining useful life through progression of hardwarepaper recapitulating salient points and presenting concluding
distress by fusingdesign, manufacturing, and services remarks and future work.

information. There is recent debate between edigen and

physicsbased moels for prognosis (not the focus of the 2. CASE STUDY: INFANT MORTALITY IN A FLEET OF ASSETS
current work). The interested readerégerred toBaraldi et DUE TO BAD BATCH OF MATERIALS

al. (2013) andDawn et al. (2015)for further discussion
When using physiebased approaches, one has to focus o
quantifying uncertainty in model formmodel parameters,
and data.Jiang et al. (2013) discussed the issue of bia
correction,with systematic errobeingcorrected by using a a
statistical model for the bias term (e.g., a Gaussian procesRS/]
calibrated with actual experimental data, or througghhi
fidelity simulations. Peherstorfer et al. (2017) reviewed
strategies for handling multifidelity models when performing
computationally intensive uncertainty quantificatidxsher
et al. (2017) and Coppe et al. (2011) discussed how
calibrate importantparameters in fatigue crack growth

applications (initial flaw size and crack growth par"’mmers)missions andwo mission mixesto enulate variation due to

In real world appllqatlons, It 1S also very common that mpdel%ustomer behavior. Finally, we simulate different fleet sizes
are updated while _data IS gathered fo_r a parncula{o understand how failure observations affect overall fleet
instantiation (asset of interesk).et al. (2016) discussed the reliability and detection of emerging issues

use of dynamic Bayesian networks for model updating with '
observed data (including loads). The updated model was us

in diagnosis and prognosis of an aircraft digital twin.

We use a simple numerical experiment to study how fleet size
"UInd number of failures impact the characterization of infant
mortality in fleets of asset®Ve consider @omponentnade
dut of the Al 2024T3 alloy subjected to alternating Ida
d assume that initiation cycles dominate fatigue Tifés
pothetical componerdan bemission critical (its failure
does not affect directly safety afssetoperation. We use
readily available SN curves commonly found in material
handbooksNIMPDS collaborators, 2017) to model low cycle
tfatigue life at different average and alternating stress levels.
hen, we mimic problems with manufacturing (bad batch of
materials) by degrading the-Ns curves.We designed two

Edl Damage accumulationat the component level

We usel thereadily awailable SN curves illustrated ifigure

Accurate prognosis modelare at the core offleet 1 and the following suggested fatigue lif@delas a function
managemen For example, Pattabhiraman et al. (2012)01‘ equivalent stres8IMPDS collaborators, 2017)

discuss how models that are constantly updated using sensors
installed in aircraft structures can aid in condithmsed Ox &€& Q0 & i abha

maintenance. Authors showed that scheduled intéraséd ‘ —iie — —

maintenance can be safely avoidddpending on model

predictions, which directly impact cost of ownership. A Y Y p 7Y Y @)
similar outcome is also the target of the work by Ling et al. — o g— P — w,— THUY

(2017), where information gain theory is used to evaluate the—
usefulness of aircraft component inspection (which helps

. @) W

" Al 2024-T3 is commonly used in aircraft fuselage, flaps,
trim tabs, servo tabs and control surfaces
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where:
1

T * and,
lognormal distribution,

0 is the fatigue life,

“Y is the equivalent stress of a given load cycle,

Y andY are the mean and maximum stress of
given load cycleand

—to— are calibration parameters
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Figurel. S-N curves for the Al 20243 alloy.

Damage is accumulated following Palmgitdn ner 6 s
O BYQ B—, @)
where:

1 ©Ois the damage accuttated throughout the life of the

component

1 ¥YQ s the damage accumulated by runningycles at
theith load level

1 €& is the number of cycles run at thil load level
(uniguely defined by mean and maximum stress).

1 O isthe fatigie life at thdth load level, and

1 the threshold for end of life i@ p.

Since fatigue lifdi  follows a lognormal distributiorQ is

a randomvariable with no closeeform expressiorfor its
probability density function. Howeveconsideing that all
YQ have the same variance, th€nhcan be approximated by

O &€ Q0 ¢ i dhg a,
y

., iTQ P 0,

©)

¢ 11BQY —

—, and

YOx a € QG el doa 10 h,

(4)

are the parameters of the fatigue life Since damage is accumulated after each mission, for a given

component the number of missions to failure (MTF) is a
random variable with gaulaive density function defined by
O 0'Yoa 0@ ph where O is the
adamage accumulated up do missiors. This implies that
component reliability 'Y & and unreliability 0 & at
missiond are given by

Ya p 0@
p Y

p hand

. ®)
0 @

0 @ p.
We designedhe two missionsshown inFigure 2 and two
mission mixesdetailedin Tablel. At any given mission, the
load history can be modeledith the mission inde¥

which follows aBernoulli distribution with probability—:

50 0 Qi | MEYW p
0 Qi i c"ﬁé"@’tﬁg (o
0 x6Qi ¢ é¢@am G — , and (6)
. N —h  "Q¢b p
Q 0 h= p —h Q¢ ¢’
where:
1 00 isthe load historjor missiond ,
1 ll) is index that dfines which mission to assign,
rul e .
T T 0 h— is the probability mass function for the

Bernoulli variabled with probability—, and

1

This way, when variations due bwthloads in the form of
mission mixesand material capdlity (spread in SN curves)
are considered, the distribution of fatigue life is illustrated in
Figure3.

—is a calibration parameter

We emulate debit in material capability by shiftingNS
curves to the left (i.e., for the same stress lehel, material
has a shorter fatigue life as compared to the nominal
material). Thiswvay, wemodel relativelythe large deviation
cause by problemsduringmanufacturing (such as problems
in surface treatment and/or microstructure). In other words

(7

where— is a calibration parameter (defining the debit in
material capability).

O xaé&éQUei mmawé&’ h,

Figure 4 illustrates the effects of considered material
cambility debit on the fatigue life distribution for the
aggressive mission mix.
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Figure2. Alternating stress levelSY
two designed missionst the end of each mission, the
accumulated damage distributed around® o p 1t
and aroundp® v p 11 for mission 1 and 2,
respectively. The 50th percentile of fatigue life is
approximately 3,800 and 15,260 missions for mission:

and #2, respectively.

to"Yy ) forthe

Tablel. Missionmix formulation.Every asset in thddet is
expected to operate at or betwegeneven alternating
betweenaggressive and mild mission mixes.

Aggressive Mild
Mission 1 50% 85%
Mission 2 50% 15%
v T prctlb 9230 13360

1.01
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Figure3. Fatigue life distributionn terms of missions to
failure considering both loa¢mission mix)and material
capability variationgspread irSN curve) Mission 1
(aggressive) and mission 2 (mild) bound the life

distributions for the any ragion mix.
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Figure4. Fatigue life distributiorfor aggressive mission
mix and different levels ahaterial capabilityAt the

highest debit considerd@0%), themedianof missions
to failure can be reduced from 9230880 missions.

2.2.Fleet commissioningreliability , and failure
observations

Large flees of assets are usually commissioned over a period
of time f(@s producton follows a backlog of orders,
commissioning ramps up foa while before it starts to
decline).Commissoningschedule determingbe number of
units running(and as a consequendeimpactsthe number

of failure observations In this study we arbitrarily model
commissioning time through a truncated Gaussian
distribution (as illustrated byigure 5). In real life, this
distribution is first estimated based on market analysis and
can be updated as units are sold and commissioned. Different
commissioning time makes the units across the fleet to have
different accumulated service &g (and damage, as a
consequence).
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Figure5. Commissioned unitever time In reality,
commissioning is controlled by backlog of orders; hel
we assumeammissioning time after product launch
2] ®h, C¢® ¢ wandt Y  x (which
implies infleet size of 10,000 units at yeHDd).

‘

After commissioning, we assumntbat each unit runs one
mission per dayintegration of asset unreliability, for pristine
and material with debit in capility, up to fleet reliability is
straightforward:

, and

(8

where:

T O and 0 are the fleet unreliability
considering nominal material capabilignd material

with certaincapabilitydebit, respectively, both at time

0 and 0 are the unreliability of

componentCassuming it isnade of pristinenaterialand
material with certairtapabilitydebit respectively, both

at timeo. 0 and 0 only start being

computel if the unit is already commissioned (otherwise
both are null).

T 0 is the final fleet size.

As consequencet time 0, fleet unreliability 0 is:

0

0

P 0 9
where — is a calibration parameter that defines the
penetration of units in the fleet (in terms of fraction of the

fleet) made of material with a certaiebitlevel in capability

With fleet unreliabilitywe canpredict number of fhires at
any year after product launcby usng the binomial
distribution to model number of failures:

@ ¢ 0 N o 0 0
0 . . (10)
5 0 p U ,
where:
1T "Q 8 is the probability density function of the
binomial distribution,
1 0O is the number of observed failurasyearx
17 0 is the fleet areliability at yearsy and
1 0O is the fleet sizat yeara

Conversely, given a number of observed failures, we can
estimate the calibration parameters throughBthges rule:

Q Psi  ho 0 (11)
Q 0 sO Q P,
whered is a function ofP. We write the posterior in its

proportional form as it is the way it is implemented in most
numerical integration methedsuch as Markov chain Monte

. . . .0 .
Carlo).Also, computing théinomial coefficient b is
not necessaryhen estimating fleet unreliability given a
number of failures for a fleet. This is usually cumbersome
and can cause numeridtconditioning depending oih
and(

2.3.Fleet management

We build the fleet managememtodelout of two Bayesian
networks, one for the asset reliability and another one for the
fleet unreliability.Figure6 shows the assapecificdynamic
Bayesian network that relates material properties and loads
with damage accumulatiobH stands for load historyy is

the equivalent stress of a given load cytle, and, are

paraneters of the fatigue life lognormal distributiofQ is
the damage accumulated after running throtigh , and
‘O is the damage accumulated updoThe full-blown
model has seven calibration parameterso —. Here, we
freeze— to — (parameters defining material properti¢s)
the values given by the MMPDS, as shown in Eq.2)
(parameter defining the mission mixjll also be fixed at the
values shown inTable 1. —, which defines the debit in
material capability, will be calibrated with failure
observations (as discussed in Sec8nn
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represenfleet unreliability at timeb. — is thefraction of the
fleet made of material with a certain debit leivetapability.
One more calibration parameter is added to the -list.
penetration of material with low capability, will also be
calibrated with failure observations. Both dynamic Bayesian
network models are used to make inference aboeahd—,

i as well as estimate and forecast fleet unreliablity
i With estimated/forecasted fleet unreliability , one can
i model,estimate/forecasi , the number of failures at time

Mission 1 Mission 2

0, through a binomiatlistribution

6 x6Qd ho , (12)

i m In this contribution, we study the effects of fleet sizes in the
""" K U ability to forecast the number of failures and its implication
b D e e e to fleet managemenErom Ec. (11)and (R), it is expected
fandom v Conctional |:| R that m_ference performed with data fror_n sr_naII fleets will
O variable node node result in large uncertainty about the calibration parameters.
This is problematic as the calibration parameters are then
Figure6. Assetspecific dynamic Bayesian network used to estimate and forec#is¢ number of future failure
Superscriptsd ¢, 0 p,and 0 indicate the time Large uncertainty in number of future failuredrive
stamps in which inference/estimation is performed. Lc conservativeness in the way operators manageflbeis On
histories for missions 1 and 2 are definedrigure?2. the other hand, large operators, large services and

maintenance companies, and original equipment
manufacturer tend to observe a large hanmof failures and
should be able tdenefit from it in terms of uncertainty
networks. [ 4 and g are the  quantification. Regardless of the fleet size, effective fleet

vectors ofdamage accumulated upddor the (s assets Management asks fortontinuous model update as new

in the fleet with and without debit in matdrigapabilities, information is made available throughout service lives
. L L (including revisiting the assumptions about model form,
respectively.|F , and |- 4 are the

failure modes, etc.)

Figure 7 shows he fleet dynamic Bayesian

vectors of unreliability at timed. 0 and 0

(t)

1..N, . .
Fleetlprestine LoNrteet | popir toNrteetlprestine

Q(f'l)

L-NFloet | prostine

Random Functional
variable node
Figure?. Fleet dynamic Bayesian networl&uperscriptsd p , and 0 indicate the time stamps in which

inference/estimation is performegigure6 illustrates the dynamic Bayesian network that models damage accumulal
the asset level.



The estimad number ofailurescan be usetb build a risk  Again, this assumes thét . is an accurate estimator
metric associated with the forecast. One very straightforwargs . Although can be obtained in this numerical

measure of risk is the uncertainty about the forecaSteQxample(through Eq. (12) since fleet reliability for known

number of failures (i.e., companies have to be prepared {g,qscan be obtainedt any point in time), we avoid using it
absorb that variation from a financialrppective). There are o<t is not available in real life though

a number of ways to quantify variation in number of failures
One can simply use the standard devigtighich might not
be convenient given the asymmetric nature of Ghe
estimator. Alternatively, risk can be definedtasdifference  In order to evaluatthe effect ofleet size in number of failure
between th®7.5 and 2.5 percentiles of the forecasted numbegbservations, we defined two distinct fleets:

of failures.Small operators can usdgshange to support the q
decision to either sefferform or buy a contractuakrvice
agreement from a third party company. Small operators tend
to have difficulties in aliwbing large variations in forecasted § a small fleet of 1,000 units emulating a small fleet
number of failures due to liability associated with it (both in ~ operator. This units come from the larger 10,000 unit
terms of inventory, labor, etc., as well as in terms of tdss fleet, which also means that the large fleet operadsr h
revenue). This can make small operators to be over zealous Vvisibility into what happens with this small fleet

and perform excessive inspection and services in the hope %o

. . . 0
prevent costly maintenance or catch serious problems wh oth fIGEt‘:’ are Elat%ged with a.n:aterlﬁl debit ée_vte!boft l(;étﬁ

units are still under manufacturer warranty (minimizingf (_leever, omathe ﬂlngt]S m%r(;,\hlnt?rr]es |ng,”v¥|e ,:S rl uf he
impact of unschedet removals and cost of ailures across the fleet such that the small fleet operator has

: a penetration ©20% of units plagued with material of
repairs/replacementdyor largefleet operatorsthe problem = "~ L )
shifts from unexpected downtime to excessive number Olpferlor capability (i.e., 200 out of 1,000 unise plagued),

; L . While the larger fleet has an overall 10% penetration (i.e.,
costly maintenance and contractual obligations regardin . e N
availability and reliability. ,000 out of 10,000 unitare plagued). The implications in

fatigue life distribution arel®wn inFigure8.

3. RESULTS AND DISCUSSIONS

a large fleet 0f10,000 units: emulating aoriginal
equipment manufacturer a large service provideand

We compare results from a athand a large fleet to mimic . . . L
b ry - iAs discussed in sectigh2, commissioning has an effect on

portion of the case studye assume that the large service egt unreliabilit_y as the; flegrows biggewith asynchron(_)us
provider is more likely to provide ambiased andccurate aging As an |Ilustr.at|<.)'n,F|gure 9 ShOYVS a comparison

estimation of the number of failures. Hat is the case, the between fleet “”r?“?b"'.ty over time W'th. and W'th.OUt th_e
difference in forecasted number of failures can help usjudg%ffGCt of commissioning. The drastic reduction in

whether selperforming is a good decision or not unreliability values result in a delay in rising failures
Mathematically " observations. Most industrial engineering assets (focus of this

pager) are commissioned over a period of tinhe.the
reminder of this section, we will discuss the results

Y'OYuo o (13) following commissioning detailed in section2.2. The
3 3 interested reader can find the case of simultaneous
where 0 and v are  the commissioning of the entire fleet in the appendix.

estimatedbrecaséd number of failures on the small fleet
coming from the large service provider and the sritedt
operatomodels respectively.

With the fleet unreliability over time, wean forecast the
number offailure. Figure 10 highlights the contribution of
each subpopulation by material type (pristine and with debit
'Y 'O"Yhecomes an indicator of whetr the smallfleet  in capability) in the resulting failure observations. Besides the
operator is likely tosaveor lose money by sefperforming  obvious penetration of material with poor capability (10%
services and maintenance versus 20% for the large and small fleet, respectively),

Y OYL I dicts fail hich commissioning also affectberelative contributiorof each
T LT Small operator over predicts failures, Which \aria| 1o the number ofailures. Early on, most failures

drivesallocation qf more resources thar_m needed. In,mheéome from components plagued by material with poor
words, thebehavior isconservativeand ittranslates in

. q ‘ded heduled ) capability. Over time, the unreliability for pristine material
savings due to avoided unscheduled maiNtenance,..eases (sefeigure9), and the relative contribution of each
reduced downtime, etc.

popuhtion starts to change. Around th& @ear after the

1 Y'O"YOTt small operator under predicts failures, whichProduct launch, at least for the large fleet, failures are
drive allocation of less resources than needed (operat§iominantly coming from components made out of pristine

loses money due to unscheduled maintenancénaterial (although contribution from subpopulation with
dowrtime, etc). plagued material is still substal).
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—: penetration of units with poor material capability in the
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(a) Impact of naterial debitn fatigue life wherentire ) 7 " p : ™
fleetis plagued years after launch
Figure9. Commissioning effect inverall fleet unreliability

Asynchronousleetaging is manifested in delayed increase
in fleet unreliability, which delays failure observations

101 — small Fleet

= Pristine
0.8 = Large Fleet

0.6

cumulative density function

250 { —#— Pristine
== Small Fleet
0.41 200 *®" Matl with Deb. [
0.2 A 3
& 1501 [
: L] ]
10° 100 102 10° 10°  10° 10 g1 I I 1
missions 2 E i
50 1
(b) Pristine (expected) and actual (large and small) fl: ola @& i ;
unreliability at aggressive mission mix. 3 3 b : "
Figure8. Fleet characterization of fgte life distribution years after launch
(withoutthe effects oEommissioning)Load history is (a) Small fleet
exclusively coming from aggressive mission mix. There is
considerable shift in fatigue life if the entire fleet is plagued 2000 { =@ Pristine I
with material of poor capability. Nevertheless, givea ‘:‘ tqaa’tgl’;'l’t':eéeb |
10% and 20% penetration levels for the large and small 2 1500 - ’
fleet, respectively, the effeatostly manifestedh the lower E} )
tail of fatigue life distribution. 2 :
© 1000 f :
At the 3% year after product launch, we assume the following £ r B
number of failure observations: = 500 il 1 . ¢
[ ]
1 Smal fleet: 17 failures (lower tail of predicted number -~ ¥ i e °*
of failures). 0 : ‘ ! . ]
2 4 6 8 10
1 Large fleet: 127 failures (roughly BOpercentile of years after launch
predicted number of failuresPbviously, the small fleet (b) Large fleet
failures are contained in this set. Figure10. Estimated number o&flure ineach fleetError

bars represent the 95% prediction intesv@ivo factors
contribute to the breakdown of failure observations. First,
the asynchronous aging due to commissioning, and second
1 —: debit in material capability with uniform prior the difference in penetration of material with poor
between 1% to 30%, and capability. h the small fleet, 20% of units are plagued as
opposed to only 10% in the large fleet.

We use these failure observations ancetflenreliability
(from known load histories) to calibrate:
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Figure 11 and Figure 12 detail the calibration results with
regards to both calibration parameters and estimatederumb
of failures for the small and large fleets, respectivElen

for small fleet operator, there is considerable uncertainty z
. . . . c
reduction and failure estimates are much improved as g
compared with noinformative priors. E
2
0.40 s
| o
0.35 4
2 0.30
g
Z 0251 100 125 150 175 200 225 250 275
w It 1
= | Number of failures
o 0.20 .
> | . . . . .
5 0154 (a) Prior distribution of number of failures.
o |
= 0.104
0.05 1 035
.030 _
0.00 .025.9
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(b) Posterior distribution of calibration parameters.
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Debjr %13 9200.00 <<

(b) Posterior distribution of calibration parameters

100 125 150 175 200 225 250 275
Number of failures

(c) Posteriodistribution of number of failures.
Figure12. Calibrationresults forthe largefleet. Failure
observations at the 3rd yeafter product launchnd

uniform priors feed the Bayesian update.
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As we mentioned before, the larfleet operator has full
visibility into what happens with the small fleet. In this

0007100 125 150 175 200 225 250 275 ) . g :
Number of failures numeical example the relative number of failure with
respect to the fleet size can be used to map the posterior
(c) Posteriodistribution ofnumber offailures. distribution of number of failures at the large fleet into the
Figure11. Calibration results fothe small fleet Failure small fl_eet, as '"“S”f?‘ted byigure 13, T_able2 summarizes
the estimates regardinige number of failure.

observations at the 3rd year after product lauered
uniform priors feed the Bayesian update
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The models with updated calibration parameters can be us: 5,
to forecast the number of failures over tifhggure 14 shows Median for debit=15%
how these forecasted valuesHdike for the small fleetThe 250 penetration=20%

. . . . K . . == Forecast small fleet
uncertainty in posterior distribution of calibration parameters —— Forecast large fleet
for the small fleet modeKigurel1-(b), is larger than the one I
for the large fleet modelk-igure 12-(b). The result is the
larger uncertaintythat the small fleet model exhibitvhen
compared to the large fleet model.

[
(=]
o

number of failures
(= [
[=] wu
o o

é?EP

50
0.30
0- T T T T
5023 7 8 9 10
g years after launch
2 0.20
g
v 015 Figure14. Forecasted number of failures for the small fleet
E 010 as estimated by both small and large fleet models. Error bars
™ represent the 95% predictiorténvals. Expected
0.05 observations represent the expected number of failures when
debit and penetration assume actual (unknown) values of
OO0 o 135 150 175 200 235 250 295 15% and 20%At the 3% year, both models are unbiased.
Number of failures Over time thesmall fleet modetlevelop ever increasing

Figure13. Posterior distribution of number of failures at the ~ Uncertaiies andhelarge fleet model becomes biased

3year after product launch femall fleet as estiated by
the large fleet operatowhen compared tigure11-(c), Figure 15 illustrates the estimated/forecastedfleet
the uncertainty ifFigure13is much smaller and clearly  unreliability and forecasted number of failures over time for
attributed to the much richer information available at the the small fleetFigure15-(a) shows thtafter the entire small
large fleet level. fleet is recommissioned from the aggressive to the mild
mission mix, theestimated fleet unreliabilitywith the
updated modefalls between the estimates ftre entirely
pristine fleet and the actual fleet compositimth operatiry
at the aggressive mission mix. This means that although there
is significant improvement in unreliability, the levels are still

Table2. Estimates fomumber offailures at the3™ year after
product launch fosmall fleetcoming from updated models
Small fleet observed 17 failures.

Percentile . . . ST ;
Model 55 50 : 975 above design intentInterestingly, the distribution in
. - forecasted fleet unreliability might still be useful for
Small fleet | 4 14 30 estimating nmber of failures.Figure 15-(b) shows the
Large fleet | 11 16 22 g 19

forecasted number failures coming out of the unreliability
estimates ofigure 15-(a). The aggressive mission mix and
Once the infant mortality issue is quantified, operatorgristine material represents the designrihtdhe estimated
undergo a number of risk mitigation actions to reduce costgenetration and material debit represent the foredaste
associated with unscheduled maintenance, ass#eet keeg operating at the aggressive mission mix. Visual
unavailability, etc. Since thisumerical example explores comparison between the two cases makes it clear that the
failure modedue to a manufaaring problem, itis hard to  number of failures could be potentially much larger thaatwh
identify the problem at an asset level purely by looking awas intended. Recommissioning the fleet knocks down the
operation (i.e., through sensors and performance). A massiveimber of failures and make the prediction interval overlap
fleetwide inspection can be considetdulit it can be costly with the one from the design intent.

due to fleet size andssociatedlowntime.Another option is

to recommission the fleet by changing the mission mix to a

mild one. This can also be costly, as mild mission mixes are

usually associated with some loss in performance or

productivity. In this study, we show results for

recommissioning r#d leave the investigation of inspection

and maintenance for future work.
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(a) Small fleet unreliability after recommissioning. (a) Large fleet unreliability after recommissioning.
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(b) Small fleetforecasted numbeif dailures. (b) Large fleet failure observations intervals.
Figure15. Small fleet ecommissioningRecommissioning Figure16. Large flee recommissioningRecommissioning
curves show the 30percentile and the 95% prediction curves show the 30percentile and the 95% prediction
interval.Error bars represent the 95% prediction intervals. interval. Error bars represent the 95% prediction intervals.
Although uncertainty in fleet unreliability iarge, Small uncertainty in fleet unreliability implies in great
recommissioning makes the forecasted number of failures tagreement between forecasted number of failanelsdesign
overlap with design intent (cyan versus blue error bars). intent (cyan versus blue error bars).

As expectedFigure16 shows that recommissioning as a risk Besides recommissioning, the small fleet operator can also
mitigation measure is much more effectivata large fleet consider contracting out services and maintenance from a
level. Coincidently, the fleet unreliability after large service provider as a way to reduce financial exposure
recommissioning converges to design intent. Obviously, ilue to upcoming high numbef failures. In real life, it is
comes at the cost of a mild mission mix (which, again, couldiifficult to forecasthe cost associated with such option, as
imply in reduced performance)Figure 16-(a) shows the small operator does not know the outcomes of the large
uncertainty levels in fleet unreliability after recommissioningfleet operator model (and model form, assumptions, etc. also
are much smallghanthose shown ifrigure15-(b). This has tend to baunknown. Nevertheless, wean study thain this
direct implications in the forecasted number of failures, asynthetic exampld=igurel7shows the forecasted rifd the
illustrated Figure 16-(b), to the point that there is good small fleet, as defined by Eq. (13). The small operator is
overlap between estimated and intended error bars. likely to lose moneyby selfperforming services and
maintenancewhen the risk is neg&e (since unbiased
predictions from large operator tend to be larger than the ones
from the small operator). Conversely, the operaaves
moneyby selfperforming when risk is positivézigure 17-

11
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(&) and (b) show the forecadteisk before and after fleet With that in mind,Figure 18-(a) showsthat selfperforming
recommissioning, respectively. Although the median risk igs reasonable in the short term. For how ldrniga reasonable
relatively small up to the '5or 8" year, depending on optionreally depends on the operator attitude towards risk. If
recommissioning, the uncertainty about it tends to be larga threshold ob 1 £'¥5O"YOT 1@ is imposed, then the

andcontinuouslyincreasing.

(a) Before recomnssioning.

(b) After recommissioning.

small operator could sustain the aggressive mission mix until
almost the end of thd™ year (without having to buy a
services and maintenance contraéthhe operator decides to
recommission the fleeat the third year then, with the

01 &¥50"YOm m& threshold, selperforming is
reasonable until theyear.

Now, let usassume that the small operator is willing to accept
the risk of under estimating failure of 10 units. ThEigure
18-(b) shows the probability thétie operator will have to pay
for extra 10 units (unplanned failuredj. a threshold of

01 &€Y30'YO pm m& is imposed, then the small
operator could sustain the aggressive mission mix until the
middle d the 4" year(without having to buy a services and
maintenance contractpwitching to a mild mission mix early
on, extends that window to the middle of tifey&ar.

4. CONCLUSIONS AND FUTURE WORK

In this work, we studieéarly life failuresas applied tdleet
managementDepending on the scale of the problem, early
failures can have significant impact in safety, availability,
and operational profit of industrial equipment. We designed
a simple numerical experiment where:

9 debit in material capability is ed to characterize infant
mortality, and

1 fleet commissioning is a function of time.
We have studied:

1 The effect of debit in material capabititye learned that
it can dramatically impact fleet udiability.

1 Fleet commissioning distributed over timge learned
how it can retard the overall increase in fleet
unreliability.

Figurel7. Risk associated with sgberforming
maintenance (as opposed to buying a contract from largeq
fleet operator) for small fleet. Continuous and dotted lines
represent the median a@8% prediction intervals,
respectivelyRisk is defined by Eq. (13). When risk is
positive thesmall operator is likely tsave money bgelf-
performing maintenanc&Vhen risk is negative, operator is
likely to lose money by sefferformingmaintenance

Another way of looking at the riskssociated with self
performing maintenands through the probability of reward
and lossWith risk defined by Eq.(13)here are three things
to keep in mind: (1) when risk is positive, thmall operator
saves money ly selfperforming services and maintenance
(2) conversely, when risk is negative loss of money is more
likely; and finally, (3) unbiasedumber of failure estimates
imply thatthe expected value of risk zero.

The role of fleet size in the number of observed failures:
we verified that observing early life failures in smaller
fleets is hard (due to the actual number of potentially
affected urtis). We also found that characterizing the
extent of poor material quality ishallenging(even in
larger fleets).
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