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ABSTRACT

Current methods for predicting health index and remaining
useful life (RUL) in complex systems struggle to account for
performance dependencies between components, leading to
inaccurate system-level estimates. This research proposes a
novel approach utilizing graph neural networks (GNNs) to
improve system-level health index and RUL estimation. GNNs
excel at capturing complex interdependencies within a sys-
tem, making them ideal for this task. The proposed method-
ology is designed for systems with synchronously sampled
process data. To illustrate the application of the proposed
approach, we will use the Condensate Extraction Subsystem
(CES) of a nuclear power plant (NPP) as a case study. Sensor
data like temperature, pressure, and flow rates will be used
to train GNNs to predict the overall health and RUL of the
CES over time. To evaluate the effectiveness of GNNs, a
custom NPP simulator will be used to model the CES un-
der various realistic fault modes across a variety of compo-
nents. The GNN’s performance will be verified and its ro-
bustness will be tested under diverse scenarios. This research
aims to demonstrate the effectiveness and resilience of GNNs
for system-level prognostics. By providing valuable insights
for maintenance decision-making, this approach can enhance
operational reliability and safety in complex engineering sys-
tems. The proposed framework has the potential to be applied
across various industries, leading to advancements in predic-
tive maintenance practices.

1. PROBLEM STATEMENT

In recent years, significant attention has been drawn towards
prognostics and health management (PHM) techniques for
predicting the remaining useful life (RUL) of complex sys-
tems. This paper aims to address the limitations of exist-
ing methods in integrating RUL information from individual
components to derive accurate system-level RUL estimations.

Ark Ifeanyi et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Current methodologies for RUL estimation often fall short
when it comes to capturing the holistic health state of a sys-
tem comprised of interconnected components. Some tech-
niques employ direct mapping of system inputs to outputs to
estimate system health or RUL, neglecting the nuanced degra-
dation dynamics within individual components (Behera et al.,
2021). Conversely, other methods focus on component-level
prognostics, predicting RUL for each component and aggre-
gating these predictions using tools like fault trees (Gomes et
al., 2013). However, this second approach becomes compu-
tationally intensive for larger systems due to the necessity of
establishing prognostic models for every individual compo-
nent.

The complexity of system-level prognostics is further com-
pounded by the intricate interdependencies between compo-
nents, where the degradation of one component can influence
and be influenced by others. These dependencies can lead
to unique degradation patterns within the system, requiring
a more sophisticated approach that accounts for these inter-
actions (Kim et al., 2021). Moreover, the necessity of con-
ducting system-level prognostics under various fault modes
remains a critical challenge (Kim et al., 2021). Different
fault modes can induce distinct degradation behaviors within
the system, necessitating the development of predictive mod-
els capable of adapting to and accurately forecasting RUL
across these diverse scenarios. Therefore, there is a clear im-
perative to develop novel methodologies that can effectively
integrate RUL information from individual components, ac-
count for system-level interdependencies, and accommodate
diverse fault modes to enhance the accuracy and applicability
of system-level RUL estimation techniques.

This paper seeks to explore these challenges and propose a
Graph Neural Network (GNN) based framework tailored to-
wards system-level RUL estimation, leveraging the inherent
relationships and dependencies between components to achieve
more robust and accurate prognostic outcomes. By address-
ing these limitations, the research aims to contribute towards
advancing the field of PHM and enabling more reliable main-
tenance strategies for complex engineering systems.
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2. NOVEL CONTRIBUTION

To the best of our knowledge, the only application of GNN
to system-level PHM in peer-reviewed literature focused on
fault diagnostics (RuÍz-Tagle Palazuelos & Droguett, 2021).
The researchers used a framework consisting of three key
modules: (1) a system-level module that diagnoses and pre-
dicts the health of the entire system by leveraging learned em-
beddings from a graph convolutional network (GCN); (2) a
component-level module that employs a deep graph convo-
lutional network (DGCN) to diagnose individual component
health states; and (3) a component interactions module based
on a graph convolutional network autoencoder, which identi-
fies and analyzes interactions among components during sys-
tem degradation. The effectiveness of the framework was
demonstrated through a case study involving a chlorine diox-
ide generation system (RuÍz-Tagle Palazuelos & Droguett,
2021).

Here, we attempt the first application of GNNs to system-
level prognostics in an energy system with synchronous pro-
cess data, considering all the necessary elements of system
prognostics such as aggregation of components’ degradation
and interdependencies. Synchronous sampling ensures that
all sensors collect data at the exact same moments, provid-
ing a perfectly aligned dataset for comprehensive analysis of
simultaneous interactions. Furthermore, we propose a com-
prehensive way to verify the performance of the GNN models
using three different methods. Finally, we suggest two sep-
arate ways to test the robustness of the proposed approach.
The proposed method is demonstrated with a relatively sim-
ple system but is expected to be scalable to more complex
systems and applicable across multiple industries.

3. RESEARCH PLAN

3.1. System-Level Solution

The proposed approach will be demonstrated on the subpart
of a nuclear power plant (NPP) responsible for transporting
the condensate from the condenser to the steam generator in
a useful form and under the right conditions. This system
referred to in the literature as the condensate and feed water
system (CFWS), comprises the condensate extraction subsys-
tem (CES) and the feed water subsystem (FWS) (Wang et al.,
2016).

The CES functions to extract and pump the condensate from
the condenser into the feed water subsystem. It typically in-
cludes a series of pumps designed to handle the condensate
flow efficiently. Additionally, the CES often incorporates a
low-pressure heater, which pre-heats the condensate before it
enters the feed water subsystem (see Fig 1). This pre-heating
helps optimize the overall energy efficiency of the system by
utilizing waste heat from the condenser (Wang et al., 2016).
The CES is the main subsystem of focus in this work given

its crucial role in the power generation function of the NPP.

Figure 1. The Condensate Extraction Subsystem

The FWS receives pre-heated condensate from the CES and
further processes it to prepare feed water for the steam gen-
erator. This subsystem includes pumps to pressurize the con-
densate and a high-pressure heater to increase its temperature
to the required level. Together, the CES and FWS efficiently
transform the condensate into high-quality feed water, opti-
mizing the performance and efficiency of the nuclear power
plant’s steam generation cycle (Wang et al., 2016).

The main subsystem of focus is the CES but the entire plant is
simulated using the Asherah NPP simulator (ANS) (Silva et
al., 2020). ANS is a custom simulation tool designed specif-
ically for performing cybersecurity assessments within nu-
clear power plants. It accurately simulates the operational
behavior of a two-loop 2,772 MWt pressurized water reactor
(PWR), including primary, secondary, and tertiary loops, as
well as the control system. Developed using MATLAB/Simulink,
ANS utilizes simple dynamic models for all its NPP com-
ponents and systems (Silva et al., 2020). For this research,
ANS will be further modified with relevant components for
the system RUL estimation task. Specifically, pump degra-
dation modules for two separate fault modes will be added
to the CES subsystem and random noise will be added to the
simulation to make sensor measurements more realistic.

Two specific fault modes to be simulated are "Loss of Net
Positive Suction Head (NPSH)" and "Pump Blockage." The
loss of Net Positive Suction Head (NPSH) occurs when a
pump fails to maintain the necessary fluid pressure at its suc-
tion inlet, leading to the formation of cavitation—a phenomenon
where vapor bubbles form and collapse within the pump due
to low-pressure conditions. This cavitation may cause the
pump to draw in air or gas along with the fluid, which can
further impair operation. In severe cases, excessive cavita-
tion can trigger automatic shut-off mechanisms or prevent the
pump from starting due to insufficient fluid supply. (Lee et al.,
2014). In the simulation, this behavior will be replicated by
setting the pump’s on/off command to 0 (or equivalent), in-
dicating that the pump is not operating due to loss of NPSH.
Pump blockage can lead to reduced flow rates or increased
pressure within the pump system. This fault mode will be
simulated by reducing the pump’s speed (expressed as a per-
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centage of maximum speed) to mimic decreased efficiency or
capacity resulting from blockage. A blockage could be due
to foreign objects in the pump or impeller fouling (Adams,
2017). The subsystem of interest shown in Fig 1 highlights
that the input to the system is the input to the pumps and the
system output is the output of the heater. The properties of the
system to be monitored include the flow rates (kg/s), speed
(%), differential pressure (Pa), enthalpy (J/kg), and tempera-
ture (K) of each CES component. Health parameters for each
pump will be derived from these properties and their aggre-
gated degradations will be monitored from the system output
flows. The system RUL over time will be calculated from the
system’s health index and used as the target in one version of
the experiment whereas in another version, the derived sys-
tem health index will be the target variable.

The CES in an NPP presents a compelling case for utilizing
GNNs, particularly temporal GNNs, for system-level RUL
estimation. The strength of GNN lies in modeling the in-
tricate relationships between components (Wu et al., 2020).
Within the CES, the health of each pump directly impacts the
others. A failing pump can reduce the flow rate, putting stress
on the remaining pumps and potentially affecting pressure
readings throughout the system. These interdependencies of
the pumps are highlighted by the bi-directional dashed lines
in Fig 1. GNNs excel at capturing these interdependencies
(Wu et al., 2020), considering how changes in temperature,
pressure, and flow rates from each pump influence the over-
all health of the CES and the Low-Pressure (LP) heater. In
addition, temporal GNNs are adept at handling time-series
data. Sensor readings from each pump, including tempera-
ture, pressure, and flow rates, could provide crucial insights
into their health and degradation over time. Temporal GNNs
can analyze how these metrics evolve (Cao et al., 2020), lead-
ing to more accurate RUL predictions. For example, the model
could learn that a sudden drop in flow rate from one pump,
coupled with a rise in temperature from another, might indi-
cate a cascading fault mode. This capability to capture com-
plex temporal dependencies between components, based on
sensor data, makes temporal GNNs a potentially powerful
tool for estimating the health state and RUL of the entire CES.

GNNs are employed to capture intricate system relationships
by processing data in a structured manner (Wu et al., 2020).
In this context, each component within the system is denoted
as a node within the GNN framework. The interdependen-
cies and interactions between these components are repre-
sented by edges that connect the corresponding nodes. Ev-
ery node is associated with a feature vector containing spe-
cific information pertinent to that component, including sen-
sor readings (such as temperature, pressure, and flow rate in
the case of the CES), historical performance data, and other
relevant attributes. Additionally, edges may possess features
that indicate the nature or strength of the connections between
connected nodes. Two principal input matrices are typically

utilized by GNNs to process this data effectively (Wu et al.,
2020):

Node Feature Matrix: This matrix is of dimension (number
of nodes) x (feature vector size), where each row corresponds
to the feature vector of a specific node in the system. For
instance, in the CES context, each row in this matrix encap-
sulates sensor data or historical records associated with indi-
vidual pumps or the LP heater.

Adjacency Matrix: The adjacency matrix captures the net-
work’s structure by representing node connections. This ma-
trix is of dimension (number of nodes) x (number of nodes),
where a value of 1 at a particular position (i, j) indicates a con-
nection between node i and node j. The adjacency matrix can
be binary (1 for connected, 0 for not connected) or weighted
(reflecting connection strength). In the CES example, this
matrix would illustrate the connections between pumps and
the LP heater.

By processing these matrices, GNNs can discern how infor-
mation propagates through the system, guided by the inter-
connections between components. The node features provide
insight into individual component health and performance,
while the adjacency matrix enables the GNN to grasp how
these components influence one another (Wu et al., 2020).
This holistic approach potentially empowers the GNN to de-
liver precise predictions regarding the overall health and RUL
of the system.

3.2. Performance Verification

To evaluate the performance of the GNN model, three dis-
tinct approaches will be employed. Based on their recorded
success in PHM for complex systems (Ifeanyi et al., 2024),
initially, a deep neural network (DNN) model will be con-
structed and provided with all system inputs, including de-
rived health indices of the components. This DNN will be
trained to predict the target variable. Suppose the perfor-
mance of this DNN matches that of the GNN, it suggests that
the GNN might not be effectively utilizing the added informa-
tion regarding component connections and interdependencies
to make its predictions.

Secondly, a multi-DNN strategy will be implemented. One
DNN will be designed to learn the degradation of an indi-
vidual component, essentially mapping component inputs to
their respective degradation or RUL. Simultaneously, another
DNN will be developed specifically to understand how the
individual degradations of components aggregate at the sys-
tem level. This approach is challenging to scale due to the
increasing number of DNNs required to train as the system’s
component count grows. If the GNN achieves comparable
performance under this scenario, it will be favored due to its
potential scalability.

Lastly, ablation studies will be conducted on the GNN model.
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In these studies, specific connections within the GNN will
be selectively removed, and the model’s performance will be
tested under these altered conditions. A significant decline
in performance following connection removal would indicate
that these connections significantly contribute to the GNN’s
predictive accuracy. This analysis will shed light on the im-
portance of component connections in enhancing the GNN’s
effectiveness for prediction tasks.

3.3. Robustness Test

The effectiveness and robustness of the GNN will be rig-
orously tested across various fault modes and under condi-
tions of data scarcity, with a particular focus on ensuring reli-
able performance under challenging scenarios. For the multi-
fault-mode tests, the GNN will be evaluated under different
fault configurations. This includes scenarios where a sin-
gle pump experiences different faults sequentially, multiple
pumps simultaneously experience the same fault type, and sit-
uations where multiple pumps concurrently exhibit different
fault modes. By investigating these diverse fault scenarios,
we aim to assess the GNN’s capability to accurately diagnose
and predict system degradation amidst complex operational
challenges.

In terms of data scarcity, the GNN’s performance will be as-
sessed under decreasing sample sizes of input data. Initially,
a large dataset will be used to train and test the model, en-
suring optimal performance. Subsequently, the input sample
size will be systematically reduced to examine the impact of
limited data availability on the GNN’s predictive capabilities.
The study will identify the minimum sample size required
for the GNN to maintain acceptable predictive performance,
providing insights into the network’s resilience against data
constraints and its adaptability to real-world scenarios where
comprehensive data may not always be readily available. These
robustness tests are critical for validating the GNN’s effec-
tiveness and reliability as a predictive tool in practical appli-
cations. By systematically challenging the model with vary-
ing fault scenarios and limited data conditions, we aim to en-
hance the GNN’s practical utility and ensure its applicabil-
ity in dynamic and resource-constrained environments com-
monly encountered in industrial settings.

Expanding upon the investigation into data scarcity, future ad-
vancements in this research could involve augmenting avail-
able data using a sequence-to-sequence Variational Autoen-
coder (VAE). This approach would aim to enhance the quality
and diversity of the dataset, particularly in scenarios where
run-to-failure data is limited or unavailable. By leveraging
the sequence-to-sequence VAE, which can generate synthetic
data sequences representative of real operational conditions,
we can enrich the dataset used for training the GNN. Subse-
quently, the augmented dataset’s impact on the GNN’s perfor-
mance in predicting system-level degradation could be rigor-
ously tested. This evaluation will provide valuable insights

into the effectiveness of synthetic data augmentation tech-
niques in improving the GNN’s predictive capabilities under
practical, real-world conditions characterized by data scarcity.
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