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ABSTRACT 

Onboard monitoring of freight car axleboxes enhances safety, 

reduces maintenance costs, and improves track conditions by 

preventing secondary damage. Installing wireless sensors on 

freight cars without a nearby power source should be cost-

effective, given the large quantities involved. To address this, 

a new wireless smart sensor node has been deployed. The 

sensor automatically recognizes stable operating conditions, 

detects wheel rotational speed from vibrations, performs real-

time condition monitoring, and transmits the results to the 

cloud. This study outlines the smart sensor concept and the 

pilot field test conducted with real freight cars. The results 

demonstrate the ability to estimate wheel rotational speed 

from vibrations and the potential for detecting wheel out-of-

roundness (OOR) using a newly developed condition 

indicator for low-power real-time operations. 

1. INTRODUCTION 

1.1. Condition Monitoring of Freight Car Axlebox 

Railway transport is gaining popularity among land-based 

options due to its low energy consumption. Technological 

efforts are being made to increase speed and load per axle, 

thereby boosting investments in safety improvements, as 

described by Viana et al. (2021). There are two potential 

solutions: wayside and vehicle-side (or onboard). Wayside 

solutions are cost-effective and can monitor the condition of 

axlebox bearings and wheels, as noted by Guedes et al. 

(2023) and Fu et al. (2023). However, they detect failures at 

very late stages, which does not prevent catastrophic 

derailments caused by axlebox bearing failures in the U.S., as 

described by Cohen et al. (2023), or by flat wheel failures in 

the UK, as mentioned by BBC et al. (2023). Onboard 

condition monitoring can be used for axlebox condition 

monitoring if it is cost-effective and wireless, considering the 

high deployment and operational costs. The new smart sensor 

system architecture, discussed in the next section, can offer a 

viable solution. 

1.2. Smart Sensors Concept 

The smart sensor is a wireless sensor node comprising the 

following modules: power source, sensing module, memory, 

data processing, and communication modules. The smart 

sensors conduct condition monitoring directly on the sensor, 

transmitting only the results to the cloud or nearby devices. 

This approach enables fast deployment and cost-effective 

operations and maintenance by eliminating the need for 

expensive data transmission, processing, and storage 

infrastructure. The schematic of the smart sensor is shown in 

Figure 1: 

 

Figure 1. Schematic architecture of smart sensors  

The sensor module includes two vibration sensors and one 

temperature sensor. The first vibration sensor has a low 

bandwidth and is used for wake-up and detection of stable 

train states, avoiding accelerations, decelerations, and curves. 

The second sensor is wideband and used for condition 

monitoring. The sensor module operates in two main modes: 

initial data acquisition and operational mode. During the 

initial mode, data is accumulated for learning purposes, and 

then the sensor is configured for operational use. The power 

module utilizes energy harvesting during operations and 

relies on the battery source during the data accumulation 

period. The installation of the sensor on the axlebox is shown 

in Figure 2. 
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Figure 2. Smart sensor installation example  

 

The smart sensor is designed to provide onboard condition 

monitoring of the following axlebox components: 

• Bearing health conditions 

• Wheel OOR: wheel flat, polygonization, and 

roughness 

• Locked wheel detection 

To achieve this functionality, several research challenges 

must be addressed. This study focuses on the initial 

evaluation of the sensor's capability for wheel health 

monitoring: 

1. Evaluation of the sensor's ability to differentiate 

between healthy wheels and those with early signs 

of OOR 

2. Automatic on-sensor estimation of wheel rotation 

speed using vibrations for wheel and bearing 

condition monitoring 

A pilot field experiment was conducted on a test freight train 

with a wheel with OOR problem to address these challenges. 

1.3. Related Works 

The condition monitoring scope of smart sensors covers the 

health conditions of bearings and wheels in the axlebox. This 

study focuses on wheel health monitoring, based on the 

requirements of the pilot field test. Defective wheels can 

disrupt railway operations, cause significant track damage, 

increase maintenance costs, and potentially lead to 

derailments. Therefore, early defect detection is crucial, 

resulting in long-term cost savings and safety improvements. 

Wheel defects are primarily characterized by OOR, which 

refers to any deviation from a perfectly round wheel. These 

deviations can be discrete, periodic, or random, leading to 

defects such as wheel flats, polygonization, and wheel 

roughness, respectively. A comprehensive review of wheel 

defects is provided by Iwnicki et al. (2023). Most wheel 

defect detection technologies fall into two categories: 

onboard monitoring systems, as noted by Bernal et al. (2018) 

and Bosso et al. (2019), and wayside monitoring systems, 

reviewed comprehensively by Shaikh et al. (2023). Current 

onboard monitoring systems are mainly deployed on 

passenger trains and locomotives, utilizing vibration, 

acoustic, image detection, and ultrasonic technologies, as 

seen in Bosso et al. (2018) and Cavuto et al. (2016). The high 

cost is the primary reason for the limited use of onboard 

wheel condition monitoring in freight trains, due to the 

significant volumes involved, as described by Cohen et al. 

(2023). The proposed smart sensor concept may help improve 

this situation by eliminating the need for high-cost data 

transmission, storage, and processing in the cloud. 

A comprehensive review of existing methods for detecting 

wheel OOR using vibrations can be found in Gonçalves et al. 

(2023) and Wang et al. (2020), as applied to high-speed 

trains. These methods employ envelope-based analysis and 

wavelet transform, as suggested by Mosleh et al. (2023). 

Envelope analysis emphasizes peaks in time or spectrum 

resulting from local damage or modulation caused by 

distributed damage. The challenge is to filter the correct 

frequency band before using the envelope, utilizing system 

resonance frequencies to improve the signal-to-noise ratio. 

Methods like spectral kurtosis are used to identify the right 

frequency bands, as seen in Mosleh et al. (2021), where 

kurtosis measures the "peakedness" of the spectrum in 

different bands. The disadvantage of using kurtosis is its 

sensitivity to noise and random spikes, which means it does 

not focus on the repetitive peaks typically associated with the 

wheel OOR problem. 

The issue of rotational speed estimation from vibrations in 

industrial IoT has been discussed by Gildish et al. (2023) and 

Gildish et al. (2024). Existing methods rely on identifying 

dominant gear vibrations with peaks in the spectrum, which 

is not applicable to healthy wheels. The use of cepstrum may 

enhance rotation-related signals by consolidating wheel 

harmonics, as proposed by Baasch et al. (2021), which may 

represent an algorithm for wheel speed estimation. 

The literature review clearly indicates that existing systems 

and methods for onboard wheel health monitoring in freight 

trains require improvement. The new cost-effective smart 

sensor concept and new OOR condition indicator will be 

further presented.  

1.4. Contribution 

The new smart sensor concept and OOR condition indicator 

were developed and validated through pilot field tests with 

freight trains. This study introduces the new condition 

indicator for wheel OOR monitoring and presents 

experimental results using smart sensors for onboard 

condition monitoring of axlebox components in freight trains. 
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The recorded vibrations demonstrated the sensor's capability 

to differentiate between healthy wheels and those with OOR 

using the new condition indicator.  

The evaluation dataset was limited to a one-hour run of a 

single train. Further evaluation of the method will be 

conducted using a larger dataset. Additionally, the method 

was evaluated using only stable operating conditions. Testing 

the method under non-stationary conditions will be 

necessary. 

This paper is structured as follows: Section 2 describes the 

methods used for detecting wheel out-of-roundness and 

estimating wheel speed from vibrations. Sections 3 and 4 

present the experimental results. Conclusions and future 

work are summarized in Section 5. 

2. METHODS 

The study focuses on two tasks: detecting early-stage OOR 

wheel problems and estimating wheel speed using vibration 

signals. The analysis assumes stable operating conditions, 

defining a stationary signal environment.  

2.1. Detecting Wheel OOR 

As discussed in the literature review, the envelope spectrum 

is a well-known method for detecting OOR. This study 

compares OOR detection in both time and frequency domains 

to determine the necessity of spectrum calculation, 

considering the importance of power saving for on-sensor 

operations. The signal envelope can be computed using the 

Hilbert transform or the method described by Gonçalves et 

al. (2023), which involves band-pass filtering, shifting the 

filtered band to zero through complex signal multiplication, 

and low-pass filtering the resultant complex signal, as 

described by Hasan et al. (1983): 

 𝑦(𝑡) = ℎ𝐿𝑃 ∗ (𝑥(𝑡) ∗ ℎ𝐵𝑃)𝑒𝑥𝑝(2𝜋𝑖𝑓0𝑡) (1) 

where 𝑥(𝑡) represents the raw vibration data, ℎ𝐵𝑃  and ℎ𝐿𝑃 

denote the band-pass and low-pass filters respectively, and 𝑓0 

is the center frequency of the filtered band. In this study, the 

filter band is selected to maximize spectral kurtosis, as 

suggested by Mosleh et al. (2021). For low-power real-time 

operations, the filter remains constant for each sensor, and 

decimation may be applied after low-pass filtering to reduce 

computational load. 

Both the signal 𝑦(𝑡) and its spectrum 𝑠(𝑓) can be utilized in 

OOR monitoring, with the latter potentially enhancing signal-

to-noise ratio (SNR) and accuracy. Due to low-power 

constraints, minimal calculations are required. Two condition 

indicators (CIs) will be evaluated, focusing on signal 

peakedness: Kurtosis and the newly proposed Peakindness-

by-Spread (PBS).  

Kurtosis, applicable to both time and frequency domains, is 

computed as: 

 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
∑ (𝑦(𝑡) − 𝜇)4𝑇
𝑡=0

𝜎4
− 3 (2) 

where 𝜇 and 𝜎 represent the mean and standard deviation of 

the time series 𝑦(𝑡). 

Kurtosis is sensitive to noise, random spikes, and does not 

specifically target repetitive peaks typical of OOR wheel 

issues. In contrast, the new PBS indicator is designed to 

enhance robustness against noise and random spikes by 

focusing on repetitive peaks, making it suitable for low-

power real-time calculations. 

The Peakindness-by-Spread (PBS) CI increases when 

repetitive peaks appear in the signal, causing its distribution 

to develop a long-tail shape. In distributions with long tails, 

the mean increases relative to the median. Therefore, PBS is 

defined as the difference between the mean and median, 

normalized to be unitless and independent of train operating 

conditions: 

 𝑃𝐵𝑆 =
|𝑦(𝑡)|̅̅ ̅̅ ̅̅ ̅̅ − 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦(𝑡)|)

𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦(𝑡)|)
 (3) 

where  |𝑦(𝑡)|̅̅ ̅̅ ̅̅ ̅̅  refers to the mean of |𝑦(𝑡)|. 

Both CIs are evaluated by applying them to both the envelope 

and its spectrum, using data from the pilot field test. A 

schematic view of the method is presented in Figure 3. 

 

Figure 3. Wheel OOR monitoring method 
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2.2. Wheel Speed Estimation 

Estimating wheel speed using vibrations becomes 

challenging in healthy wheels without OOR issues, as 

vibration spectrum analysis fails to provide reliable results. 

The cepstrum power transform, detailed by Baasch et al. 

(2021), offers a solution by accentuating peaks at quefrencies 

(in contrast to frequencies) correlated with inverse of wheel 

speed. The power cepstrum is applied to raw vibration data 

and defined as the power spectrum of the logarithm of the 

power spectrum: 

 𝐶(𝑞) = |𝐹−1{𝑙𝑜𝑔(|𝐹{𝑥(𝑡)}|2)}|2 (4) 

where F{}denotes the FFT transform, and 𝑞 represents the 

quefrency axis of the cepstrum. Wheel speed is then 

calculated as the inverse of the distance between peaks in the 

quefrency domain of the power cepstrum. The following 

section details the experimental results of applying this 

methodology to vibration data collected during field tests on 

real freight trains. 

3. EXPERIMENTAL SETUP 

3.1. Goals 

• Evaluation of the proposed condition indicators 

(CIs) for monitoring wheel OOR when one wheel 

exhibits OOR problem. 

• Testing the capability to estimate wheel speed from 

vibration signals by correlating with the train's 

speed. 

• Investigating the sensor's dynamic range across 

diverse operating conditions. 

3.2. Wagons and Sensors Setup 

The pilot study utilized a freight train consisting of 8 wagons. 

A total of 18 smart sensors were installed and distributed 

across the wagons, detailed in Table 1, which indicates that 

the right wheel of Bogie 1 in Wagon 2 exhibited an OOR 

issue. 

Table 1. Installation of Smart Sensors.   

Wagon # Weight, ton Sensors # 

1 65 1 

2 65 3 

3 60 6 

4 60 1 

6 0 (empty) 2 

8 0 (empty) 5 

The empty wagons used in the test demonstrate that the 

method is effective for wagons of any weight. Two sensors 

were installed on the wheelset with the OOR problem. The 

distribution of sensors among wagons was not uniform due 

to mechanical considerations of the bogies during 

installation. For simplicity in comparison, only bogies of the 

same type were selected for the pilot. Sensor locations are 

denoted as follows: W1B1A1-L, indicating Wagon 1, Bogie 

1, Axle 1, left wheel. 

3.3. Train Speed Recording 

Estimating the wheel rotation speed is required for detecting 

bearing faults and identifying consistent operational 

conditions. Smart sensors must estimate rotation speed from 

vibration signals alone, without requiring additional 

measurements. To validate the algorithm for estimating 

wheel rotation speed from vibrations, the average train speed 

was recorded using GPS loggers on two separate phones and 

used as a reference. It was assumed that no wheel slipping 

occurred during the experiment. 

The test involved approximately one hour of driving, 

including stops, conducted in both directions. The recorded 

train velocity profile is illustrated in in Figure 4.   

 

Figure 4. Train Velocity Profile  

The driving profile included accelerations, decelerations, and 

track curves. The timing of each maneuver was recorded and 

subsequently analyzed. 

3.4. Vibration Data Acquisition  

After the smart sensors were installed and activated, 10-

second recordings were stored periodically. Each recording 

included vibrations from two types of accelerometers, 

acquired simultaneously: 

• A 3-axis accelerometer with a 1,200Hz bandwidth, 

sampled at a 3,200Hz rate, and a ±64G range for 

condition monitoring. 
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• A 3-axis accelerometer with a 50Hz bandwidth, 

sampled at a 100Hz rate, and a ±8G range for sensor 

wake-up and detection of train operating conditions. 

The measurement directions were set as follows: Y in the 

longitudinal direction, X oriented towards the ground, and Z 

in the lateral direction, as demonstrated in Figure 2. 

4. EXPERIMENT RESULTS 

4.1. Evaluation of OOR Condition Indicators 

As expected, peaks related to wheel rotations were detected 

in the envelope of the suspected wheel compared to the other 

wheels. The envelopes of the wheel with OOR and a healthy 

wheel are demonstrated in Figure 5. 

 

 

Figure 5. Envelope examples of a wheel with OOR (top) and a 

healthy wheel (bottom). 

The periodic peaks series indicates uneven wear or a wheel 

flat on the specific wheel. Two CIs described in Section 2.1 

are evaluated using the envelope and envelope spectrum. The 

results are shown in Figure 6 and Figure 7. 

 

Figure 6. Kurtosis (blue) vs. PBS (orange) OOR indicators 

applied to the envelope for all wheels  

 

 

Figure 7. Kurtosis (blue) vs. PBS (orange) OOR indicators 

applied to the envelope spectrum for all wheels  

The figures depict the average CIs per sensor location, 

calculated using the entire dataset that includes various 

operating conditions of the train. The new PBS indicator is 

more robust to noise and random spikes compared to 

Kurtosis, and it can operate on both the envelope and its 

spectrum. The spectrum-based results demonstrate improved 

performance, as the transform reduces the impact of random 

spikes in the envelope. High PBS values are observed not 

only in a wheel with OOR but also in the corresponding 

wheel on the same axle, due to their shared axis location. 

4.2. Wheel Speed Estimation 

The evaluation of the capability to estimate wheel rotation 

speed from vibrations was performed using train speed data 

as a reference, assuming no wheel slipping due to bearing or 

brake faults. An example of the spectrum and the power 

cepstrum, detailed in section 2.2, from a sensor installed on 

the wheel with OOR, driving at 56 km/h, is shown in Figure 

8. 
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Figure 8. Vibration spectrum (top) and its cepstrum 

transform (bottom) of a wheel with OOR 

The vibration spectrum up to 120 Hz, with vertical lines 

indicating potential harmonics of the wheel rotation speed, is 

shown in the bottom graph. Recognizing the corresponding 

harmonics of the wheel rotation speed proves challenging. 

The use of cepstrum for wheel speed estimation is 

demonstrated in the bottom graph, compared to reference 

vertical lines calculated based on the train's speed. The 

cepstrum-based algorithm helps highlight the harmonics 

associated with wheel rotation speed, assuming no wheel 

slipping due to bearing or brake faults. Further investigation 

is needed to quantitatively evaluate the algorithm's accuracy 

across wheels of varying health conditions and compare it 

with other existing methods. 

4.3. Dynamic Range Estimation 

To assess the sensors' dynamic range, the peak-to-peak (P2P) 

values of recorded vibrations were plotted against driving 

time. A clear correlation emerged between the train's 

accelerations, decelerations, and the variations in P2P values. 

In loaded cars, the P2P values were lower compared to empty 

cars, as depicted in the example figure. Only a few sensors on 

the empty cars, under specific travel conditions, reached the 

maximum dynamic range of ±64G. For the remaining 

sensors, the range was lower. This example is illustrated in 

Figure 9. 

 

 

Figure 9. Example of Sensor dynamic range for a 65-ton 

wagon (top) and an empty wagon (bottom) 

In the upper graph, the sensor was installed on a 65-ton 

loaded car, while in the lower graph, it was installed on the 

last empty car. Vibrations from both types of wagons are 

illustrated for two types of sensors: those with a 100 Hz 

sampling rate (dashed lines) and those with a 3200 Hz 

sampling rate (solid lines), across three axes with axis X 

oriented towards the ground. The maximum peak-to-peak 

(P2P) range of 125G was observed during train operations. In 

such cases, the sensor's range can be extended up to ±200G 

for further testing to prevent saturation in the event of 

failures. 

5. CONCLUSION AND FUTURE WORK 

The study illustrates that smart sensors have the potential to 

enhance onboard condition monitoring of axlebox 

components in freight cars. Their ease of deployment and 

cost-effective operation at scale are notable advantages. The 

newly proposed OOR monitoring condition indicator and 

pilot field test results demonstrate the ability to distinguish 

between healthy wheels and those with OOR. The robustness 

of the new CI to noise and random spikes suggests potential 

application in various other PHM (Prognostics and Health 

Management) applications, where kurtosis has traditionally 

been used to detect repetitive peaks in signals. The successful 

operation of wheel speed estimation from vibrations was 

demonstrated on wheels with OOR, but not on healthy 

wheels, indicating the need for further research in this area.  

To ensure accurate monitoring and potentially reduce false 

alarm rates, further research should focus on developing 

methods to automatically detect stable train operating 

conditions and mitigate the influence of track irregularities 

on diagnostic decisions. Further investigation is necessary to 

validate the sensors' capability for axlebox condition 

monitoring in operational trains. The evaluation dataset 

should be significantly expanded, and further assessments 

should include non-stationary conditions. 
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