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ABSTRACT

Photovoltaic systems are essential in the renewable energy
sector, addressing global energy needs. Photovoltaic (PV) in-
verters, which convert direct current (DC) from solar panels
to alternate current (AC) for grid use, are the most failure-
prone components in these systems. This study aims to de-
velop a degradation indicator based on energy efficiency for
PV inverters to enhance their reliability and lifetime manage-
ment. Through analysis of data from 35 PV plants in central
Europe, involving eight inverter brands and fourteen models,
this research identifies trends in inverter efficiency degrada-
tion. Despite literature suggesting minimal efficiency impact
over time, our findings demonstrate measurable efficiency
degradation, providing a new key performance indicator for
proactive maintenance and replacement strategies.

1. INTRODUCTION

Photovoltaic (PV) systems have become a cornerstone in the
renewable energy landscape, providing a sustainable solution
to the increasing global energy demands. Central to the op-
eration of these systems are PV inverters, which convert the
direct current (DC) produced by solar panels into alternating
current (AC) for grid use. Despite their critical role, PV in-
verters are the most failure-prone components in solar energy
systems, significantly affecting overall system performance
and reliability (Gunda et al., 2020; Lindig et al., 2022). Fur-
thermore, their failure can lead to the shutdown of the entire
system.

Unscheduled interruptions of the system operation will de-
crease production, increase operational costs and reduce the

Jorge Ruiz Amantegui et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

quality of service, and profitability. Predicting the lifetime of
the devices allows better scheduling of maintenance interven-
tions to avoid unexpected downtime. Reliability is a concept
that is difficult to measure and quantify, current techniques to
predict wear-out failures include model-based lifetime pre-
diction methods or data-driven methods (Rahimpour et al.,
2022). This is quite a challenging task; it requires an initial
lifetime analysis, which consists of investigating the failure
mechanisms of different components of the system along with
identifying the failure data for the assessment (Abuelnaga,
Narimani, & Bahman, 2021). It is followed with a lifetime
prediction, evaluating failure rates at the component level.
Then the provided failure rates are summed to generate the
system-level lifetime estimation. This process requires the
estimation of both the random failure behavior and the pre-
diction of wear-out failures. The latter includes several steps,
such as collecting data from the mission profile (any possible
stressors to the components), test data, and field data. The
next step is to translate the data to a thermal profile using
an electro-thermal model. After a cycle counting process, a
proper lifetime model should be chosen to provide the num-
ber of cycles to failure (Rahimpour et al., 2022).

Given the complexity and amount of required data of current
methods to develop a lifetime prediction model, this article
proposes to simplify the process of lifetime management via
the measurement of the trend of efficiency of the inverters as
a Key Performance Indicator (KPI). This work will present in
which manners the different failures and performance of the
inverter are related, and how using appropriate methods, the
trend of efficiency of the inverter can be measured.

Inverter efficiency degradation is a topic that has not been
much explored yet in the literature. Current literature sug-
gests that the inverters do not degrade enough over time to
impact the performance of the system significantly. How-
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ever, that does not mean that the trend of efficiency can not
be measured. In this paper, we propose an innovative method
for measuring the trend of inverter efficiency. In that way,
this paper presents some significant findings from over thirty-
five PV plants located in central Europe, eight different in-
verter brands, and a total of fourteen different inverter mod-
els. Our investigation shows the degradation of the inverters’
efficiency over time, which can then be used as a KPI for the
lifetime management of the component.

The organization of this paper is as follows. Section 2
presents the main operating principles of an inverter, followed
by an explication of the basic electrical losses found in the
inverter. The relationship these losses have with temperature,
failure modes, and performance and why they matter to de-
velop a new health indicator are explored in this section. Sec-
tion 3 presents the current position the literature has on the
long-term degradation of the efficiency of inverters, followed
by a new proposed methodology to measure the trend of effi-
ciency on inverters. Section 4 presents the dataset employed
for the development of this article and the results found re-
garding the measurement of the trend of degradation in in-
verters. Finally, the conclusions are presented in section 5.

2. OVERVIEW OF PHOTOVOLTAIC INVERTERS AND
LIFETIME MANAGEMENT

Grid-connected PV systems are composed of PV modules,
inverters, and transformers. The first of these generates DC
power from the incoming irradiance. This DC power needs
to be transformed into AC power to be fed into the grid, this
is the job of the inverter, it converts the DC power into AC
power among other responsibilities. Before entering the grid,
the transformer raises the voltage of the AC power to mini-
mize conduction losses.

The inverters’ main goal is to convert DC power into AC
by controlling the use of insulated gate bipolar transistors
(IGBTs) or metal-oxide-semiconductor field-effect transis-
tor (MOSFET) that act as switches. Power MOSFETSs are
used for low operating power and higher switching frequen-
cies, whereas IGBTs are used for higher operating power and
lower switching frequencies (Nagarajan, Thiagarajan, Re-
pins, & Hacke, 2019). There operating principles remain
the same, they are both voltage controlled devices. These
switches control the direction of the current, and the time it
passes through the load to simulate a sinusoidal wave typical
of AC current. The whole process receives the name of pulse
width modulation (PWM)

Inverters are a critical component of the PV system because
a failure or malfunction means that the production of every
module connected to it will be lost, impacting the profitabil-
ity of the PV system. This is especially true for large invert-
ers that have a large amount of modules connected to them.
Furthermore, PV inverters are the most prone to failure com-

ponents in the system (Lindig et al., 2022; Jordan, Marion,
Deline, Barnes, & Bolinger, 2020; Filho, Zuiiiga, Fernandes,
Branco, & Pais, n.d.). Not surprisingly, given the key role
of the inverter in the system, its failures account for very im-
portant energy losses, up to 36 % in (Golnas, 2013). The
high frequency of inverter failures is attributed to the multi-
ple subsystems (with little redundancy in power electronics)
that support a multitude of functions in harsh environments
(Gunda et al., 2020).

2.1. Losses and cycles to failure

The lifetime of an inverter can be studied through a physics
of failure assessment (Nagarajan et al., 2019). A physics-of-
failure assessment is understood through the fail mechanism
of the components of power converters and external physical
stressors, such as ambient temperature, solar irradiance, and
relative humidity (Wang et al., 2014; Chung, Wang, Blaab-
jerg, & Pecht, 2015; Y. Yang, Sangwongwanich, & Blaab-
jerg, 2016). Possible and common failures that occur at the
grid-connected inverter include IGBT failure, such as open
circuit (OC) or short circuit (SC), or DC link capacitor failure
(Kurukuru, Khan, & Malik, 2021; Kurukuru & Khan, 2022).

The failure modes of the power electronics are complicated
and are affected by many factors, but thermal cycling is one of
the most critical failure causes in power inverters (Nagarajan
et al., 2019). The switching devices can suffer several types
of losses, such as switching losses, conduction losses, or re-
verse conduction losses. This power losses lead to tempera-
ture fluctuations within devices, leading to different materials
having mismatched coefficients of thermal expansion (CTE),
causing disconnection in the contacting areas after certain cy-
cles, and ending in the failure of the devices. Furthermore,
the short lifetime of power electronic devices is mostly due
to thermal stresses in their switching devices (such as the
IGBT), and these wear-out failures affect the device’s long-
term performance (Rahimpour et al., 2022).

Conduction losses in a MOSFET or IGBT are an example of
how temperature and losses are related to each other. Eq. (1)
defines the power conduction losses, P,,,q, in a MOSFET:

Peona = I}y X Rpson (D

where Ipp corresponds to the drain current and Rpg(oy) is the
on-state resistance between the drain and the source. The
Rps(on) parameter is dependent on the junction temperature
of the power MOSFET and is given in the specification sheet
from the manufacturer. The variation of the on state resis-
tance against junction temperature for a given MOSFET can
be seen in Fig. 1. This means, an increase in temperature
translates to an increase in conduction losses. The other main
source of losses in a switch are the switching losses, which
are also increased as the junction temperature increases. This
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can be seen in the data-sheet of any IGBT, an example is pro-
vided in Fig. 2.

Temperature cycling is also one of the main causes of fail-
ures in the inverter. A popular model used to predict fail-
ures caused by cracks or deformations due to thermomechan-
ical stresses in electronic components is the Coffin-Manson
model. It predicts the number of kilocycles to failure, Ny, as
seen in Eq. (2):

kT
Np=ax (AT)) ™" x e 2)

where a is the experimental coefficient, AT; are the different
junction temperatures, n is the Coffin-Manson coefficient, E,
is the activation energy, k is the Boltzmann constant and 7;,
is the mean junction temperature. What this equation tells
us is that the more temperature swings in the junction, the
sooner the component will fail. Other models like the Norris-
Landsberg or the Bayerer model expand the above equation,
but in all cases, the number of cycles to failure is decreased
with the increase in junction temperature fluctuations.

2.2, Failure modes & performance loss of PV inverters

IGBT failure can be classified in wear-out failures and catas-
trophic failures. The first are experienced due to long-time
operation of the device and power cycling (Gao, Cecati, &
Ding, 2015), the latter occur due to over-stress events such as
a sudden rise in voltage, current or temperature. The failure
of the power switching devices can also be divided into chip-
related failure mechanism and package-related failure mech-
anism (S. Yang et al., 2010). Most of the chip-related failures
are catastrophic failures since they may permanently damage
the module . Chip-related failures occur due to excessive
electrical, thermal or mechanical stress. Module packaging
failures are more associated with wear-out failures that occur
due to thermomechanical fatigue stress and do not necessar-
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Figure 1. Rpg(oy) variation with junction temperature, 7; for
an NTB5860NL MOSFET
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Figure 2.  Switching losses vs temperature in IGBT
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ily mean the complete failure of the system but can impact
performance.

The failure mechanism that are most frequently observed in
power devices are due to thermomechanical fatigue stress ex-
perienced by the packaging materials (S. Yang et al., 2010).
These failures occur mostly due to the mismatch in the CTE
of the materials used for the chip and the packaging. Some
examples of these failures are bond wire liftoff and solder fa-
tigue.

(I) Bond Wire Liftoff: Bond failures are mainly caused by
crack growth at the bond wire/chip interface due to tempera-
ture swings and the different CTE between Si and Al (Held,
Jacob, Nicoletti, Scacco, & Poech, 1997; Kurukuru et al.,
2021). The strain difference between the two materials causes
stress, and that depends on the temperature.

(1I) Solder Fatigue: solder fatigue is one of the major causes
of wear-out failure in IGBT (Kurukuru et al., 2021). Sol-
der fatigue generates a cracking between the module sub-
strate and the base plate and/or the device chip and substrate
(Ratchev, Vandevelde, & DeWolf, 2004). This failure arises
because the silicon die and copper substrate have different
CTE, resulting in stress in the solder layer and eventually
cracks (voids) (S. Yang et al., 2010). These voids reduce the
effective area for heat to escape by conduction from the die;
therefore, extremely localized heating occurs in the die due
to increased thermal resistance, and the process accelerates as
the voids grow (Koziarz & Gilmour, 1995; Ciappa & Castel-
lazzi, 2007). The severe localized heating due to increased
thermal resistance can damage the chip (S. Yang et al., 2010).

These failures can have a significant impact on the reliabil-
ity and performance of the inverter. Bond-wire liftoff is one
of the main causes of failure mechanisms in power electronic
devices. Solder fatigue is an example of how a wear-out fail-
ure can turn into a catastrophic failure.
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Regarding the impact on performance, a study (Kaplar et al.,
2011) tested the performance of IGBT devices under normal
and extreme operating conditions. These devices were tested
by supplying the maximum rated current for 45 minutes while
controlling the temperature. Most inverters showed negligi-
ble degradation, however, a few devices degraded consider-
ably even under rated conditions. Several defects appeared
during these tests, such as an increase in leakage current and
increased gate oxide leakage current. The first failure does
likely not cause the failure of an inverter but can degrade per-
formance. Gate oxide leakage current will mean the device
will no longer be able to control the current. The inverter will
not be able to operate correctly under this conditions.

The AC stress that the IGBTs are subject to were also tested
to emulate the conditions found inside an inverter. Due to the
PWM technique employed by the inverter the IGBT operates
under current levels that exceed rated operating conditions
(only for very short periods of time). Damage resulting from
this scenario could potentially be cumulative, as the device
will be subject to numerous on-off cycles.

In summary, electrical losses in the semiconductors can be
translated to an increase in temperature, which leads to a re-
duced number of cycles to failure or a reduced remaining use-
ful life (RUL) of the component. Not only that, the increase in
temperature also increases the chance of wear-out failures oc-
curring, which reduces the performance of the inverter. This
is illustrated in Fig. 3. These relationships indicate the same
mechanism impacting the efficiency of the inverter and its
RUL. Therefore, it is sensible to believe that the RUL and
the efficiency of an inverter are related.

Temperature
Increase

Wear-out

failures

Figure 3. Relationship between electrical losses, temperature,
remaining useful life and performance

3. ENERGY EFFICIENCY-BASED HEALTH INDICATOR
3.1. Inverter efficiency and degradation

The efficiency of the inverter (7;,,) is defined as the output
AC power divided by the input DC power.

P,
Ninv = % (3)

The efficiency of the inverter is affected by several factors,
and it is shown in (Boyson, Galbraith, King, & Gonzalez,
2007) that voltage and load level have the most impact on
efficiency. Load level () is defined as the ratio between the
output AC power and the nominal power of the inverter.

o — Pyc @)

Pnom

Fig. 4 shows how, using these two parameters , manufactur-
ers describe the efficiency curve of an inverter for different
voltage and load level values. Manufacturers also provide a
single numeric value to estimate the overall efficiency of the
inverter, the euro-efficiency or Californian Energy Commis-
sion (CEC) efficiency of the inverter. The Euro-efficiency of
an inverter is defined as:

Neuro = 003775% + 0067110% + 0~137120%+
0.1m309% +0.487n509 +0.2M100%  (5)

It is an estimation of what percentage of operating time will
an inverter be functioning under certain load levels. Those es-
timations are for an inverter installed in central Europe, which
is the case for the dataset handled in this article.

Most of the work regarding PV inverters has to do with failure
modes or failure rates. There seems to be little work done in
measuring the degradation of the efficiency, but there is some.
Work done towards studying the PV fleet degradation (Jordan
et al., 2022) suggests there is no inverter efficiency degrada-
tion. When both AC and DC data from one PV plant were
available, performance loss ratios (PLRs) for both were com-
puted and compared. AC and DC PLR are centered on zero,
indicating that changes in inverter performance over time do
not generally contribute to system PLR.

Further work comparing the efficiency of inverters installed

Efficiency Curve

100%
99%

98%
97%
96%

95%
94%
93%
92%
91%
90%

880V

1080V
1220V
1300V

Efficiency

0% 20% 40% 60% 80% 100%

Load

Figure 4. Efficiency curves of Huawei SUN2000-100KTL-
HI



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

in 2014 and 2019 (Lightfoote, Wilson, & Voss, 2021) found
them to perform almost exactly the same and arrived at the
conclusion there is no inverter efficiency degradation. In a
similar manner, work studying different performance metrics
of a PV plant over 10 years found no significant degradation
on the efficiency of the inverter, however, elevated ambient
temperature left a negative impact on the inverter efficiency
(Mishra, Rathore, Varma, & Yadav, 2024).

Another article studied the factors affecting the efficiency of
the inverter in the lower northern region of Thailand (Ketjoy,
Chamsa-ard, & Mensin, 2021). This work points to tem-
perature as a factor affecting the efficiency of the inverter,
and when the ambient temperature rises above 37°C, the ef-
ficiency is decreased by 2.5%. However, by maintaining the
installed inverters at a controlled temperature of 25°C during
the four-year study, the efficiency of the inverter did not de-
crease during the whole test period.

Work studying the efficiency of switching devices did not
identify any trend in long-term efficiency degradation of the
inverter. However, it states that high frequency of switch-
ing contributes to a decrease in efficiency, albeit minimum
(0.2 %), and an increase in the temperature of the case of the
switches (Anthon, Zhang, Andersen, & Franke, 2015).

Overall, the literature suggests the efficiency of inverters do
not degrade, or not enough to impact the production signif-
icantly. There is also consensus that high temperatures im-
pact the efficiency of the inverter. This is not surprising, by
recalling section 2 it is clear that temperature and losses in
the inverter are correlated. Additionally, an increase in mean
junction temperature or temperature swings will decrease the
lifetime of the inverter , and increase conduction and switch-
ing losses. For these reasons, it is sensible to believe that
inverters that show a decrease in efficiency will also be more
prone to failure than those that do not.

It is possible that the efficiency of the inverter does not de-
grade enough to significantly impact the production while
there still could be a measurable (although not significant for
the performance) degradation of the inverter. The next section
will present a method to measure the efficiency of an inverter
over time.

3.2. Construction of energy efficiency-based health indi-
cator

The proposed method for the construction of inverter health
indicators based on energy efficiency features is divided
into three steps: (1)-data cleaning and pre-processing; (2)-
efficiency curve construction, and (3)-degradation trend test-

ing.

3.2.1. Data cleaning and pre-processing

Simple pre-processing techniques are employed to remove
unwanted data and allow the necessary computations to be
performed. In the first place, the nominal power from each
inverter is assumed by using the data of the top power-
producing moments. Data is then normalized between 0 and 1
using this value. The efficiency and load level are computed
at every timestamp according to Eq. (3) and Eq. (4). Effi-
ciency values over one are removed since they are physically
impossible.

3.2.2. Efficiency curve construction

To measure the trend on inverter efficiency, the collected data
for each inverter is divided by month, and the efficiency curve
(as seen in Fig. 4) is generated from data. To compute the
curve, every data point is floored and grouped to an integer
value. The median value of that group is chosen to be the rep-
resentative of the efficiency for that load level in that month.
A visualization of this method can be seen in Fig. 5, where
the blue data points represent the individual samples, and the
red dot is the median value for that integer group of values.

Equation (5) is a good way to reduce the efficiency curve to
a single number if the goal is to understand the impact it has
on production (the weights associated with each load level
represent the expected time the inverter will work under that
operating condition), but the goal of this study is to measure
any possible efficiency degradation whether it impacts or not
the performance of the inverter. For that reason, the area un-
der the curve (AUC) of the efficiency curve is decided as a
measurement of the efficiency of the inverter. This ensures
that every load level receives the same importance.

This method runs into problems when comparing the AUC
of a winter month against a summer month. During the win-
ter, the maximum irradiance values are lower than during the
summer (sun does not shine as bright), hence, the inverters
highest capacity is not reached.This means there is no data
to draw a complete curve across all the load levels (neither

Efficiency vs. Load Level
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Figure 5. Visual representation of the computation of the ef-
ficiency curve
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would there be data to complete Eq. (5)), as illustrated in Fig.
6.

The solution proposed to be able to follow the trend of effi-
ciency is to divide the analysis by bins of load level range.
Each bin is equal to 10 consecutive load levels (e.g.,1-10,
11-20). If every load level within the bin has an associated
efficiency value, the AUC for that bin and month can be cal-
culated. This ensures that the computation of the AUC is not
affected by the lack of data at certain ranges of operation dur-
ing winter.

This, however, means that for higher load levels, there will in-
evitably be missing data, as some months do not present data
for those load levels. To measure the trend in the evolution of
the efficiency for each bin, it is necessary to have/dispose a
method that can handle missing data appropriately.

3.2.3. Degradation trend testing

The Mann-Kendall test is designed to statistically assess if
there is an upward or downward monotonic trend. A mono-
tonic trend means that the variable consistently increases or
decreases over time, but the trend might not be linear. Con-
sider a time series of data points (x1,x2,...,x,). For each pair
of observations (x;,x;) where i < j:

+1 ifxj—x>0
iij—xi:O (6)
-1 iij—xi<0

sign(x; —x;) =<0

The statistic S is the sum of these signs:

n—1

n
S§=Y ) sign(x;—x) ()
i=1 j=i+1

If S is a positive number, observations obtained later in time
tend to be larger than observations made earlier. If S is a
negative number, then observations made later in time tend

Median efficiency curve across time

Load Level

Figure 6. Comparison of the AUC for the efficiency curve of
an inverter in August against January

to be smaller than observations made earlier. The variance
Var(S) under the null hypothesis (no trend) is given by:

n(n—1)(2n+5)

Var(S) = 8
ar(s) 1 ®
The standardized test statistic Z is calculated as:
S L if§>0
Var(S)
Z=<0 ifS=0 )]
Sl if§<0
Var(S)

A positive value of Z indicates that the data tends to increase
with time. A negative value indicates data tends to decrease
with time. To test the statistical significance of the results, the
p-value is computed in the case of no ties with an algorithm
provided in (Best & Gipps, 1974). In cases of missing data,
the test will run as usual, simply comparing the available con-
secutive data points.

3.3. Software and tools used

To work in this article was developed in VScode, using
Python 3.11.3. The libraries used were Pandas (2.2.1) and
scikit-learn (1.4.1).

4. CASE STUDY
4.1. Description of the Dataset

The acquired dataset consists of inverter data production from
over thirty-five different PV plants located in central Europe,
eight different inverter brands and a total of fourteen differ-
ent inverter models compose the dataset with a total of 646
inverters. The total capacity of the inverter ranges from 1
kW to up to 400 kW. Overall, the operational time of the
PV plants ranges from 2 and a half years to almost 6 (71
months). We can assume the inverter’s lifetime is equal to
the PV plant since the data comes from PV plants that have
been re-powered. The distribution of nominal power of the
inverters and operational time of each PV plant can be seen
in Fig. 7.

Being such a heterogeneous dataset, with different locations,
inverter brands and models, plant size and even acquisition
techniques, the data quality is also varied across different PV
plants. We can identify two distinct cases: when the DC
power reading comes directly from the inverter and when
it does not. In the first scenario, the data quality is higher.
This means that the cloud of data points across the efficiency
against load level graph better resembles what we expect from
an inverter. In the second scenario, the DC power must be
computed from the readings of current and voltage per each
MPPT that goes into the inverter, this creates noisy efficiency
curves. This is due to several reasons:
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Histogram of Inverters by Nominal Power

=
o
S

= = =
15} <] =
5] S S

Frequency
®
3

@
S

&
S

(
LIl N | I

0 50 00 150 200 250 300 350 400
Nominal Power (kw)

N
S

o

(a) Distribution of nominal power of the inverters

Distribution of Total Operation Plant (Months)

Frequency

5.0
2.5
0.0

(b) Distribution of operational time of the PV plants

—l_\mﬂ [
40 50

Total months of operations

30 60 70

Figure 7. Distribution of (a) Inverters by Nominal Power and (b) operational time of different PV plants

1. Sensors are all connected close to the inverter input, close
to one another. This increases the risk of inference from
one sensor to another.

2. The maintenance crew have observed how disconnected
strings still have positive readings of currents flowing
through them, this is due to residual currents.

3. DC data are more likely instantaneous data compared
with the more commonly time-averaged AC data (Jordan
etal., 2022).

This generates data points that are clearly erroneous, such as
efficiency values over one, which is physically impossible for
any system. These data points need to be handled appropri-
ately.

4.2. Results and discussion

Visualizing the trend of efficiencies for each bin makes it ap-
parent that the lowest load level bin (1 to 10) has a much
higher variability. For this reason, this bin of load level is
excluded from the analysis.

Following the process described in section 3.2.2, delivers one
efficiency value for each load level range each month. Fig. 8
is an example of the trend of AUCs obtained for one inverter;
each point is the efficiency of a given load level range at a cer-
tain month, and each color follows the trend for one load level
range. This particular example follows the expected behavior
of an inverter: lower load levels have a lower efficiency, and
the efficiency then stabilizes slowly and reduces for the high-
est load level. This example also shows decreasing trends of
efficiency for eight out of nine of the bins. The results of the
Mann-Kendall tests can be seen in Table 1.

Fig. 9 and Table 2 shows the data points and the simplified
test results for an inverter where the degradation is only iden-
tified for a few subsets of the bins. Utilizing this method-
ology, we are able to identify degradation patterns that are

AUC Timeseries for Different Operational Ranges
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Figure 8. AUC trend of load level bins for inverter with 8 bins
with descending trend

Table 1. Results of the Mann-Kendall test for different data
segments.

L.L. Range Trend p-value Z S
11-20 decreasing  0.000002 -4.756785 -308.0
21-30 decreasing  0.000001 -4.996947 -295.0
31-40 decreasing  0.000002 -4.760975 -217.0
41-50 decreasing  0.000803 -3.351858 -112.0
51-60 decreasing 0.043546 -2.018439  -50.0
61-70 decreasing 0.000119 -3.848413 -111.0
71-80 decreasing 0.040816 -2.045396  -55.0
81-90 decreasing  0.043546 -2.018439 -50.0

91-100 notrend  0.299665 -1.037151 -18.0

not as clear (unlike those in Fig. 8). By dividing the perfor-
mance of the inverter into different bins of operating ranges,
it is possible to identify degradation specific to these ranges,
allowing to find characteristics that would otherwise been left
unnoticed.

Running the methodology provided 509 successful tests. For
each inverter, 9 curves are analyzed. This is a total of 4581
curves. The distribution of the results can be seen in Fig. 10.
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AUC Timeseries for Different Operational Ranges
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Figure 9. AUC trend for inverter with three bins degrading

Table 2. Trend classification for different data segments.

Load Level Range Trend
11-20 decreasing
21-30 decreasing
31-40 decreasing
41-50 no trend
51-60 no trend
61-70 no trend
71-80 no trend
81-90 no trend
91-100 no trend

More than half the curves show no trend, and there are almost
4 times more decreasing trends than increasing. Further anal-
ysis revealed that only 17 out of the 509 inverters (3.34 %)
presented both increasing and decreasing trends for different
bins. This suggests that the results are not random.

Simplified results divided by load level can be seen in table
3. The amount of increasing trends across the different load
levels is quite stable. In contrast, the number of decreasing
trends increases as the load levels are higher. These ranges of
load level present a more linear behavior (Fig. 4), and thus,
small degradation trends should be more easily identifiable.
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Figure 10. Distribution of trends of AUC for all inverters

Table 3. Trend counts for different data segments.

Load Level Range Decreasing No trend Increasing
11-20 134 329 46
21-30 147 313 49
31-40 136 329 44
41-50 164 299 46
51-60 187 272 50
61-70 197 262 50
71-80 240 217 52
81-90 237 222 50
91-100 172 285 52

5. CONCLUSIONS

This study has shown how power losses relate to tempera-
ture changes in the switching devices, as well as compiling
state of the art suggesting that temperature impacts the perfor-
mance of the inverter. Additional relationships between the
temperature changes and the probability of a wear-out failure
have been presented. Given these relationships, the study of
the degradation of efficiency in photovoltaic solar inverters
provides critical insights into the long-term performance and
reliability of PV systems. This research identifies key fac-
tors contributing to inverter efficiency loss, including thermal
cycling, electrical overstress, and environmental conditions
such as ambient temperature.

The findings indicate that while inverter efficiency degrada-
tion over time is generally not significant enough to impact
the overall production of PV plants, it is nonetheless present
and measurable. The proposed method for measuring effi-
ciency degradation, utilizing the area under the curve (AUC)
approach, dividing the efficiency curve by bins and using the
Mann-Kendall test, proves effective in identifying trends in
efficiency that would have otherwise gone unnoticed.

There are already existing methods for lifetime management
of power electronic converters. However, these methods are
complicated, require several steps and have big data require-
ments. Defining the health indicator by means of its effi-
ciency is very simple, as it only requires to know the input
DC power and output AC power of the inverter.

To study the relationship between this new KPI and the failure
of the inverter remains work for the future. This includes
identifying examples of inverter failures using the production
data and the maintenance tickets, followed by studying how
the KPI behaves before those instances. But still, another way
to define the failure of the component is by performance loss,
which can be achieved using this methodology.

In conclusion, while the degradation of inverter efficiency
may not drastically reduce PV plant output, it remains a fac-
tor in the overall reliability and economic viability of solar
energy systems. Ongoing monitoring, combined with strate-
gies to mitigate the identified stressors, will be crucial in en-
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hancing the durability and efficiency of future PV inverters.
This research contributes valuable knowledge towards opti-
mizing PV system maintenance and improving the resilience
of solar power infrastructure by identifying the link between
efficiency and RUL and showing new ways to measure small
changes in efficiency in inverters that are not clearly identifi-
able by looking at the overall performance.

Future work includes the acquisition of a dataset that spawns
over the lifetime of an inverter. These usually have life ex-
pectancy of over 10 years, however in the current dataset the
longest recorded data is almost six years long. Examples of
inverters that operate until death will provide additional infor-
mation on the behavior of the inverter at the latest stages of
life. Additional steps in that regard include setting thresholds
for the inverter efficiency to estimate when the component
has entered the wear-out phase and begin the estimation of
the RUL.
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