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ABSTRACT

The recent advancements in the area of Large language
models (LLMs) have opened horizons for conversational
assistant-based intelligent models capable of interpreting im-
ages, and providing textual response, also known as Vi-
sual language models (VLMs). These models can assist
equipment operators and maintenance technicians in com-
plex Prognostics and Health Management (PHM) tasks such
as diagnostics of faults, root cause analysis, and repair rec-
ommendations. Significant open-source contributions in the
area of VLMs have been made. However, models trained in
general data fail to perform well in complex tasks in spe-
cialized domains such as diagnostics and the repair of in-
dustrial equipment. Therefore, in this paper, we discuss our
work on the development of Diagnostics-LLaVA, a VLM
suitable for interpreting images of specific industrial equip-
ment, and provide better response than existing open source
models in PHM tasks such as fault diagnostics and repair
recommendation. We introduce Diagnostics-LLaVA based
on the architecture of LLaVA and created one instance of
Diagnostics-LLaVA for the automotive repair domain, re-
ferred to as Automotive-LLaVA. We demonstrate that our
proposed Automotive-LLaVA model performs better than the
state-of-the-art open-source visual language models such as
mPlugOWL and LLaVA in both qualitative and quantitative
experiments.

1. INTRODUCTION

The development of domain-specific visual language mod-
els has emerged as an important area of research due to the
increasing demand for advanced artificial intelligence sys-
tems that can communicate, reason, and understand the visual
world effectively (Park & Kim, 2023). A Visual Language
Model (VLM) combines the capabilities of Computer Vision
(CV) and Natural Language Processing (NLP) to create a sys-

tem that comprehends and generates descriptions based on vi-
sual content with the help of large language models (LLMs)
(Wang et al., 2023). Within the field of prognostics and health
management (PHM), a domain-specific VLM tailored to the
needs of equipment operators and maintenance technicians
has the potential to revolutionize the maintenance and re-
pair of equipment in various industries (Lai et al., 2024). By
leveraging a domain-specific VLM, operators and technicians
can seamlessly interact with such intelligent systems, which
can automatically analyze equipment components, identify
issues, and communicate relevant information in an efficient
and intuitive manner. As technology continues to advance,
such a specialized VLM will enable technicians to stream-
line diagnosis and repair processes, increase operations and
maintenance efficiency, and ultimately enhance overall user
satisfaction and safety.

Recent advancements in Visual Language Models (VLMs)
have significantly improved the integration of computer vi-
sion and natural language processing (He et al., 2024).
Notable developments include the Multi-modal Instruction
Tuned LLMs with Fine-Grained Visual Perception (AnyRef)
model which generates pixel-wise object perceptions and nat-
ural language descriptions from multi-modality references
(X. Zhao et al., 2024). Additionally, the LLaVA model (Liu,
Li, Wu, & Lee, 2024) enhances visual processing by integrat-
ing multi-granularity images and introducing a novel visual
instruction tuning method for extending MLLMs to perform
various multi-modal tasks, surpassing previous state-of-the-
art performance on multiple visual instruction tuning bench-
marks. mPLUG-Owl (Ye et al., 2023) is another popular
open-source VLM. mPLUG-Owl2 (Ye et al., 2024), an exten-
sion of the mPLUG-Owl model, revolutionizes multi-modal
large language models by effectively leveraging modality col-
laboration to improve performance in both text and multi-
modal tasks. Despite these advancements, some VLMs do not
align with human vision illusions, particularly for question-
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answering tasks (Y. Zhang, Pan, Zhou, Pan, & Chai, 2023).
Interestingly, research from MIT’s CSAIL demonstrates that
language models trained on text possess a strong understand-
ing of the visual world, opening up possibilities for improved
multi-modal understanding and interaction between humans
and AI systems (MIT, 2024).

The capabilities of large language models extend beyond con-
versation; they can also be used to query information from
documents through Retrieval Augmented Generation (RAG)
(Lewis et al., 2020). A recent study utilized automotive man-
uals for information retrieval, highlighting the limitation of
interpreting visual elements (Medeiros et al., 2023). This un-
derscores the need for a VLM that can enhance knowledge
retrieval by effectively processing both textual and visual in-
formation in specialized domains (Kumar & Starly, 2022).
RAG can be highly suitable for cases where enterprise in-
formation needs to be retrieved from highly classified docu-
ments that should remain on-premises (R. Zhao et al., 2023).
Domain-specific VLMs can help achieve better results due to
their advanced image processing capabilities.

Domain-specific VLMs have led to the development of in-
novative techniques for transforming and extending these
models to cater to unique industry requirements (J. Zhang,
Huang, Jin, & Lu, 2024). By applying methods that trans-
form domain-specific visual and vision-language datasets
into a unified question-answering format, such as Visual
Question Answering Instruction (VQA-IN), researchers have
successfully extended Multimodal Large Language Models
(MLLMs) to domain-specific tasks (Lee, Cha, Lee, & Yang,
2024; Vidyaratne et al., 2024). These advancements enable
the models to achieve high performance on domain-specific
visual tasks while maintaining their performance on vision-
language tasks in a multi-task manner, demonstrating the po-
tential for domain-specific VLMs to revolutionize various in-
dustries and facilitate seamless multi-modal interactions be-
tween humans and AI systems. Therefore, a domain-specific
VLM designed for a specific industry could help operators
and technicians in that industry analyze equipment compo-
nents and identify issues efficiently, ultimately enhancing di-
agnosis and repair processes.

In this paper, we propose a method for building Diagnostics-
LLaVA, a VLM that is suitable for assisting in maintenance
and repair tasks in the specialized industrial domain and is
based on the architecture of the LLaVA model. We devel-
oped Automotive-LLaVA, an instance of Diagnostics-LLaVA
for the automotive domain. The choice of the automotive do-
main is motivated by the availability of large enough datasets
of public documents in the automotive domain that can be
used for development and validation. However, the proposed
method can be applied to other industrial domains with spe-
cialized proprietary documents.

The development of Automotive-LLaVA involves the follow-
ing steps.

1. We construct the Automotive image-text pairs dataset for
training the Contrastive Language-Image Pretraining (CLIP)
based Vision Transformer (ViT) model for joint text and im-
age representation through adapters (Radford et al., 2021;
Dosovitskiy, 2020).

2. We create an Automotive Visual Question Answering
(AVQA) dataset with images, questions and responses for su-
pervised instruction tuning of the LLaVA model.

3. We propose a benchmark for the evaluation of the
Automotive-LLaVA model.

The remainder of the paper is organized as follows. Section 2
describes the process of data preparation for the VLM train-
ing. Section 3 explains the architecture and the model train-
ing process. Section 4 presents the quantitative and qualita-
tive experiments to evaluate the models. Sections 5 and 6 talk
about the conclusion, limitations, and future work.

2. DATA PREPARATION

2.1. Domain data collection

Acquiring domain-specific data poses significant challenges
but is crucial for effective training in large language models.
While text data acquisition is relatively straightforward, col-
lecting multi-modal image-text pair data is more complex due
to the essential relationship between image and text pairs re-
quired for multi-modal model training. To facilitate this, we
collect data from trusted sources of information in the do-
main such as operation and maintenance manuals, where cor-
responding figures and text are readily available, enabling the
creation of robust image-text pairs.

The data preparation was done in four stages: (1) Extrac-
tion of images from the domain-specific documents (mostly
in PDF format) (2) Extraction of image-text pairs dataset for
pretraining (3) Building domain-specific instructions dataset
for visual question answering (4) Data Augmentation

2.1.1. Extraction of images from domain-specific PDF
documents

We use PyMuPDF python library (Guedes & da Silva, 2021)
to parse the PDF document. We created a function to locate
the area occupied by the image caption and the corresponding
image. Next, we retrieve all blocks positioned above and to
the right of the image caption area. We group these elements
using a threshold method to distinguish between distinct el-
ements and exclude any groups identified as text bodies, fo-
cusing solely on those likely to contain images.
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2.1.2. Building image-text pairs dataset for pretraining

We focus on extracting all images from different parts of the
PDF. Each image in the PDF is accompanied by a caption that
provides brief information about the image. We collect these
captions, whether they are above or below the image, refer-
ring to them as short descriptions. Additionally, we extract all
text from paragraphs where the figure number is mentioned,
which we call long descriptions. This ensures that we not
only have brief captions but also more detailed descriptions,
which are very useful during the later stages of the work.

For the text part, we leverage the manual’s textual content
and GPT-4’s (Achiam et al., 2023) capabilities to create the
final data. We use the GPT-4 to rephrase the short descrip-
tions so that they align well with our format and remove un-
necessary phrases such as ”Figure XXX”. For the long de-
scriptions, we observe that not every line mentioning the fig-
ure number is useful, and sometimes the paragraphs are quite
lengthy. Therefore, we perform similar operations as with the
short descriptions, including removing irrelevant information
by appropriately prompting GPT-4. In total, for the automo-
tive domain, we collected 3,287 unique image-text pairs.

2.1.3. Building Instructions dataset for visual question
answering

To better understand the input and generate relevant responses
following instructions, Vision-Language Models (VLMs) are
typically trained using a technique called instruction tuning.
This involves training the model to align with desired be-
haviors or tasks provided through explicit instructions. The
model is given examples containing both the input and the de-
sired output. To adapt VLMs for domain-specific tasks such
as automotive, an instruction dataset specialized in the au-
tomotive domain is required. As of the time of writing this
paper, there is no existing instruction dataset available for the
automotive domain. To address this gap, we created the Au-
tomotive Visual Question Answering (AVQA) dataset.

For each image, we created pairs of questions and answers to
train a visual QA model. Using the image and text dataset
developed in the previous step, we employed the advanced
GPT-4V model to read both the image and text and generate
five questions per image following specific instructions pro-
vided as prompts. Before generating the AVQA data, we ap-
plied simple rules to filter images based on their descriptions
to ensure they were suitable for question generation. Ulti-
mately, 2,477 images were selected for the AVQA dataset.
This was followed by data augmentation, which is explained
in the next section.

2.1.4. Data Augmentation

All the automotive images used for training the image-text
representation model and the instruction-tuned model were

augmented using the following techniques: rotation, blur,
grayscale, edge detection, and sharpening (Shorten & Khosh-
goftaar, 2019). This augmentation increased the dataset by
a factor of six. As a result, we obtained 19,722 images for
image-text pairs from the initial 3,287 unique images (A)
and 14,682 images for visual QA pairs from the initial 2,477
unique images (B), where B is a subset of A.

The authors of LLaVA have curated the dataset in such a
way that each image is accompanied by one description per
prompt. For our dataset curation, we decided to augment this
by providing four additional types of descriptions with differ-
ent responses based on our acquisition of both short and long
descriptions of each image, as mentioned in section 2.1.2. We
selected a variety of prompts already present in the original
LLaVA dataset. An example of pretraining and finetuning
instructions for a given image has been provided in the Ap-
pendix. The instruction prompts used for automotive image-
text pairs are as follows:

1. Describe the image concisely: For this prompt, we use the
image caption as provided in the document.

2. Provide a detailed description of the image: We compile
all occurrences of the figure number in the document to create
a detailed description of the image with the help of GPT-4.

3. Share an informative description of the image: We use a
2-3 line summary of the detailed description.

4. Give a brief summary of the image: We provide a one-line
summary of the detailed description.

To sum, 19,722 images when augmented with four descrip-
tions, resulted in a total of 78,888 image-text pairs from 3,287
unique images.

2.1.5. Mixing of general and domain-specific data

We mix the general dataset curated by the authors of LLaVA-
1.5 with the domain-specific data to perform pretraining and
instruction tuning of the model from scratch. For pretrain-
ing, we used the LLaVA Visual Instruct Pretrain LCS-558K
dataset, which contains 558K general image-text pair exam-
ples and utilized LLAVA 665K instruction-following exam-
ples (we call this dataset D1) (Y. Zhang, Zhang, et al., 2023).
For the automotive domain, we added 79K automotive image-
text pair examples, resulting in a total of 637K examples for
pretraining. For instruction tuning, we added 15K automo-
tive instruction examples, bringing the total to 680K exam-
ples (we call this dataset D2). Table 1 shows the D1 and D2
datasets used in the VLM training experiments discussed in
the subsequent sections of the paper.

2.2. Evaluation dataset

For the automotive domain, the Automotive Service Excel-
lence (ASE) certifications (Kolo, 2006) are designed to gauge

3



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Table 1. Dataset

Dataset name pretraining finetuning
data size data size

D1 558K 665K
D2 637K 680K

Figure 1. Example of Automotive Service Excellence exam
question. (freeasestudyguides, 2024)

automotive service professionals’ expertise in vehicle repair,
service, and parts distribution. ASE exams cover various sec-
tions that target different specialties within the automotive
sector. We selected this exam since it serves as an excel-
lent benchmark for evaluating knowledge in the automotive
domain (Yemaneab, 1997).

We acquired sample exams and curated an evaluation dataset
by parsing the PDFs. The sample exam contains 1,090 ques-
tions from 10 categories, of which 876 are text-based and
214 are image+text-based. In this work, we focus on all
214 image+text-based questions. Each question is a multiple-
choice question (MCQ) with four options and an associated
image. The models are prompted to answer the question with
one correct option, and the results are compared against the
ground truth labels. An example of an ASE exam question is
given in Fig. 1.

3. VLM MODEL TRAINING

3.1. Model training

The Automotive-LLaVA architecture is designed to enhance
visual and language processing capabilities in the automotive
domain. This architecture, illustrated in Fig. 2, includes a
pretrained visual backbone for image encoding, a chat-based
large language model for generating responses, and a projec-
tion network that links the visual backbone to the language
model (Liu et al., 2024).

Figure 2. Architecture of Automotive-LLaVa.

Consider a sample fX; I; Tg from the Automotive-
instructions dataset, with X representing the image, I as
the instruction, and T as the instruction’s response. Initially,
an image encoder processes the input image X 2 RH×W ,
where H , and W , denote the image’s height, and width, re-
spectively. This encoder transforms the image into a series of
image tokens ZX 2 RN×Dimg , with N indicating the token
sequence length and Dimg the image encoder’s dimensional
capacity.

Following this, the tokens pass through a projection network.
This network projects the visual tokens into an embedding
space of dimension Demb, producing the mapped sequence
Fimg 2 RN×Demb . These image features are subsequently
combined with the instruction tokens Finst 2 RM×Demb .
The concatenated sequence forms the input F 2 RK×Demb

for the LLM, where K = M + N .

The LLM is a chat-based language model employing the
transformer architecture. It receives the sequence F consist-
ing of both visual and linguistic tokens as input and generates
the response in an auto-regressive manner. This process in-
volves optimizing the probability distribution for generating
an accurate response given the combined image-instruction
tokens. The probability distribution can be expressed as fol-
lows:

P (T jX; I) =

K∏
k=1

P (TkjT1; : : : ; Tk−1; I; X)

where K denotes the length of the response sequence, and
P (TkjT1; : : : ; Tk−1; I; X) represents the probability of the k-
th token given the preceding tokens, the instruction, and the
image.

For our experiments we have undergone two stages of train-
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Table 2. Pretraining experiments showing different LLM and
the dataset used with a ViT-L/14 Visual encoder

Experiment LLM Data
LLaVa-1.5 Vicuna-1.5-7B D1
LLaVa-LLaMa (ours) LlaMa-2-7B-chat D1
LLaVa-Auto (ours) LlaMa-2-7B-chat D2

ing: (1) pretraining for feature alignment and (2) Visual In-
struction tuning.

3.2. Feature Alignment and Visual Instruction tuning

As discussed in the data preparation section, the pretraining
data consists of a mix of general and automotive data. Each
sample in the dataset can be treated as a single-turn conversa-
tion between input and assistant where instruction is provided
to the assistant to explain the image. The ground truth predic-
tion answer is provided which is used during the training pro-
cess. Keeping the visual encoder and LLM weights frozen,
we train the model to maximize the likelihood of trainable
parameters of the projection matrix. Through this, the image
features Fimg can be aligned with the LLM embedding using
image-text pairs.

In the Visual Instruction tuning step, we keep the visual en-
coder weights, and the pretrained weights of the projection
layer frozen and finetune the LLM weights using a visual
question-answering dataset as discussed earlier.

4. EXPERIMENTAL RESULTS

4.1. Experimental Settings

Automotive-LLaVa model uses a mix of automotive + gen-
eral data for pretraining and finetuning, and LLaMa-2-7b-
chat model (Touvron et al., 2023) as the LLM while basing
its architecture on LLaVa.

As shown in Table 2, Experiment E1 is the original LLaVa
model which used Vicuna-1.5-7B chat LLM and D1 dataset
(refer to section 2.1.5), while E2 and E3 were created by
us where we experimented by replacing Vicuna LLM with
LLama-2-7B-chat model in E2 and then replacing the origi-
nal dataset (D1) with newly created dataset (D2) in E3.

We train all our models with 8 � H100s GPUs using the pa-
rameters provided in LLaVA. We pretrain our models for 1
epoch with a learning rate of 2e-3 and a batch size of 128
and finetune for 3 epochs with a learning rate of 2e-5 and
a batch size of 32, which took 2.5 hours for pretraining and
4.75 hours for finetuning on 8 � H100s.

4.2. Quantitative Evaluation

The models created upon training were used to perform eval-
uation inference on the ASE benchmark dataset. VLMs in
general are good for free-form responses to explain the im-

Table 3. Results on a total of 214 ASE Questions

VLM Model Correct Accuracy
mPlugOWL 44 20.56
LLaVa-1.5 62 28.97
LLaVa-v1.6-mistral-7b 60 28.04
LLaVa-v1.6-vicuna-7b 52 24.29
LLaVa-LLaMa (ours) 71 33.18
LLaVa-Automotive (ours) 67 31.31

age and ask questions about the same. However, due to the
limited capabilities of a small-sized model, it is difficult to
expect consistent output in the desired format. We performed
some iterations of prompting the VLM to produce the out-
put as one of the options provided in zero-shot and few-shots
(5-shot) (Brown et al., 2020). Providing few-shot image and
text pairs to VLM as input and expecting the final question
response based on another image would require additional
steps which were beyond the scope of this work, therefore
we focussed on experimenting with zero-shot setting. We ex-
perimented with 5-shot text examples, but it did not change
the way the model provided output so we stuck to zero-shot
for the final results. We prompted the model by providing the
same question and image three times to note the variability
in the output. Due to inconsistent output by VLM, we em-
ployed GPT-4 to check for the inconsistency and convert the
response into one of the 4 options so that it can be validated
directly against the ground truth.

The results of the evaluation of all the models are presented
in the table 3. We show that the LLaVA-LLaMA model has
outperformed all open source models in comparison by more
than 4%. This depicts that the base LLM Vicuna used in
LLaVA is not very suitable for domains such as automotive.
Replacing the LLM with LLaMA-2-7B-chat resulted in sig-
nificant improvement in the benchmark. We also show that
the dataset created for training a LLaVA-automotive model
when used with LLaMA-2-7B-chat does not yield better re-
sults, on the contrary, it reduces the performance. However,
the result achieved through LLaVA-automotive is still more
than 2% better than the original LLaVA. More investigation
is required on the incorrect answers to gauge what is hurting
the performance of LLaVA-Automotive. Moreover, from this
observation, we decided to do an investigation on the qualita-
tive aspect to evaluate the response provided by the LLaVA-
Automotive model. The results are shown in the next section.

4.3. Qualitative Evaluation

Towards the qualitative evaluation, we selected random im-
ages related to automotive from the web and prompted the
three models i.e. LLaVA-1.5, LLaVA-LLaMA and LLaVA-
Automotive to analyze the image and answer the question.
The same images and the questions were fed to GPT-4 and
prompted to rate the three model responses on a scale of 10.
GPT-4 provided both the pros and the cons of the model re-
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