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ABSTRACT

Bearing failures are very common in the industrial envi-
ronment, requiring effective fault detection methods, which
can be categorized into physics-based, knowledge-based and
data-driven types. Data-driven methods are efficient in differ-
entiating healthy conditions from faulty conditions by char-
acterizing machine signals, involving stages of data acquisi-
tion, feature extraction, and condition determination. Tradi-
tionally, feature extraction and condition determination were
manual, but advances in artificial intelligence and machine
learning, especially deep learning, have automated this pro-
cess. Although deep learning can automatically learn fea-
tures from input data, the signal domain can affects model
performance. Time and frequency domain representations are
widely used in fault detection methodologies using vibration
signals. In contrast, angular and order domains are more com-
mon in variable operating conditions, but their direct use with
deep learning remains rare in the literature. Considering this,
this study evaluates a bearing fault detection methodology us-
ing vibration signals in different domains (time, frequency,
angular, and order) under various rotational conditions. Three
distinct approaches were tested to assess the effectiveness of
these representations. Results showed the frequency domain
had the best performance, and the study concluded that angu-
lar and order domains offer no significant advantage over it.
Nonetheless, it is recommended to conduct a more in-depth
analysis with more diverse datasets, especially those contain-
ing early-stage bearing fault signals.

Racquel Domingues et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Industrial plants are commonly composed of rotating machin-
ery, resulting in the extensive use of bearings, as they are
fundamental elements for reducing friction in rotary motion
(Lei, 2016). In addition to this extensive use, bearings are of-
ten exposed to harsh operating conditions, such as high loads
or high temperatures. Consequently, bearing failures account
for a significant portion of mechanical failures in the industry,
creating the need for methodologies to detect these failures,
which can contribute to efficient and optimized maintenance.

Failure detection methodologies can be classified into three
categories: model-based methodologies, knowledge-based
methodologies, and data-based methodologies (X. Zhang,
Zhao, & Lin, 2021). Unlike the first two, which require a
deep understanding of the behavior of the element, the data-
based methodology offers a more efficient approach by dis-
tinguishing between a healthy and a faulty condition through
the characterization of a signal measured from the machine.

Data-based methodologies are basically composed of three
main stages: data acquisition, extraction of useful features,
and determination of the current condition of the element
(Mushtaq, Islam, & Sohaib, 2021). In the first stage, an in-
ternal parameter of the element must be measured and stored.
Machine vibration is a widely used parameter in this appli-
cation because any change in the element will cause an im-
mediate modification in its dynamic response (Domingues,
2023). In the feature extraction process, the goal is to ex-
tract representations and metrics that allow for the distinction
between data from different conditions (Guyon & Elisseeff,
2006). From these extracted features, the current condition of
the element can then be determined, which will serve as the
basis for the proper planning of maintenance actions.
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Traditionally, the feature extraction stage and the current con-
dition determination stage were performed manually, utiliz-
ing the knowledge of field experts. However, with the ad-
vancement of research in artificial intelligence, specifically
in machine learning algorithms, this process began to be au-
tomated (Hoang & Kang, 2019). Initially, traditional shal-
low learning algorithms were applied only in the stage of de-
termining the current state of the element. In this context,
various bearing fault detection methodologies based on algo-
rithms such as Support Vector Machines (SVM), K-Nearest
Neighbor (KNN), and Random Forests have been proposed
in the literature, as observed in the works of X. Zhang et al.
(2021) and Peng, Bi, Xue, Zhang, and Wan (2022).

However, this process still required the manual extraction of
features using signal processing techniques and mathematical
transformations specific to each situation. With the advanced
development of deep learning methods, the feature extraction
process also became automated. Deep learning architectures
have the ability to automatically extract the most useful rep-
resentations from the data for the task to which they are be-
ing applied, using the concept of layered learning, which can
abstract from simple characteristics of the data to the most
complex ones (Goodfellow, Bengio, & Courville, 2016).

Several deep learning architectures have been applied in bear-
ing fault detection methodologies, as pointed out by Hoang
and Kang (2019) and S. Zhang, Zhang, Wang, and Habetler
(2020). However, convolutional neural networks (CNNs)
have gained prominence in the field (Mushtaq et al., 2021).
This is because their learning is based on applying filters to
input data to recognize relevant features that can contribute
to the model’s final task. Feature extraction in these architec-
tures is done locally, allowing for hierarchical learning, where
complex features are built based on simpler ones. Thus, by
using vibration signals along with CNN models, it is possi-
ble to automatically extract intrinsic characteristics of these
signals that characterize the current condition of the analyzed
element.

Although the principle of deep learning is to automatically
learn the best features from the input data for each task, some
studies have shown that the signal domain can interfere with
a model’s performance (Rosa, Borges, de S. Braga, & Silva,
2023). The concept of using different representations for the
same signal is based on the fact that each domain presents
different characteristics of the signal, and therefore, differ-
ent information can be extracted. Evaluating which domain
produces the most appropriate representation for each appli-
cation can, therefore, be a key factor in achieving good per-
formance in fault detection.

Representations in the time domain and frequency domain
are already widely used in fault detection methodologies that
utilize vibration signals, both with deep learning and shal-
low learning. In cases where the machine’s operating condi-

tion involves rotational variation, angular domain and order
domain representations are more common (Lu, Yan, Liu, &
Wang, 2019). However, in most cases, such representations
are employed contributing to the feature extraction stage.
Wang et al. (2024) proposed a methodology to assist in the ex-
traction of features from vibration signals, based on the use of
the order domain. The approach demonstrated the advantages
of this domain in identifying fault frequencies in bearings,
even in signals with rotational variation. X. Huang, Zhang,
Xu, and Xu (2024) also employed the order domain, present-
ing a technique for extracting multiple time-frequency curves,
which identifies features associated with bearing faults.

The direct use of signals in these domains in conjunction with
deep learning is relatively scarce in the literature, especially
when considering bearing fault detection. A exception is the
work by He et al. (2023), which addresses this gap by propos-
ing a method that leverages order domain information in con-
junction with deep learning for fault diagnosis in rotating ma-
chinery. Their approach uses vibration data in order domain,
effectively reducing discrepancies in input data distribution
across different working conditions.

Therefore, considering the aforementioned, this article aims
to evaluate the performance of a deep learning-based fault
detection methodology for bearings. It utilizes vibration sig-
nals across different domains and considers data from time-
varying rotational conditions. The primary focus is to inves-
tigate whether representations in the angular domain or order
domain provide benefits in detection compared to represen-
tations in the time domain or frequency domain, which are
widely used in existing literature methodologies.

This paper is structured as follows. In Section 2, the pro-
posed methodology for fault detection is detailed, indicating
the classification model used as well as a brief description of
the representations employed. Section 3 presents the dataset
used in this study, describing the main characteristics of sig-
nal acquisition and the operating conditions employed. In
Section 4, the methodology for evaluating the performance of
fault detection is described, presenting the procedures used at
each stage of implementation. Finally, Section 5 presents the
obtained results, and Section 6 provides the final conclusions
of the study.

2. FAULT DETECTION METHODOLOGY IN BEARINGS

The fault detection methodology used in this work consists
of two main stages: data preparation and fault detection. In
the first stage, the vibration signal is segmented, transformed
into a specific domain, and normalized. In the second stage,
these data are fed into a deep learning model based on CNN
architecture. The architecture was implemented to perform a
classification task, where each input data point is assigned to
a class for fault detection purposes.
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Following the main objective of this work, we propose the
use of signal representations in four different domains: time,
frequency, angle, and order. The representation in the time
domain refers to the raw signal obtained directly from exper-
imental measurements without applying any transformations.
On the other hand, the representation in the frequency domain
can be obtained through the Fourier transform (Shin & Ham-
mond, 2008). Representing a signal in the frequency domain
allows us to observe which frequencies contain higher energy
concentration. This characteristic is very useful because lo-
calized faults in bearings often have characteristic frequencies
associated with the faults (Randall, 2021).

The angular domain is analogous to the time domain, where
the signal is represented ”instantaneously” in terms of the an-
gular position of a rotating element. This way, the signals
maintain their periodic characteristics, even if there are fluc-
tuations in rotational speed, because periodicity, in this case,
is related to angle (Rémond, Antoni, & Randall, 2014). In
this representation, the signal must be sampled to ensure an
equal number of samples per revolution, meaning the sam-
pling should occur at regular angular increments.

To obtain the representation in the angular domain, this
study employed the technique of angular resampling. In this
method, a mapping is constructed that relates time to angular
position, using a reference signal containing rotation infor-
mation, which can be generated by an external device such
as a shaft encoder or a tachometer. Using this signal, the
moments in time when a complete rotation occurs are identi-
fied, corresponding to an increment of 2π in angle. With this
relationship, it is possible to determine the times when there
are regular angular increments and subsequently resample the
signal in the angular domain using numerical interpolation
(Domingues, 2023).

Just as the frequency domain complements the time do-
main, the order domain complements the angular domain
(Borghesani, Pennacchi, Chatterton, & Ricci, 2014). There-
fore, one way to obtain the representation of a signal in the
order domain is by applying the Fourier transform to this sig-
nal when it is in the angular domain. This representation re-
veals spectral information concerning the reference rotation
and its harmonics, referred to as orders. With this definition,
this representation allows visualization of the energy concen-
tration associated with multiples of the reference rotation. It
is worth noting that if there are no fluctuations in the rota-
tion speed, the shape of the spectrum in frequency will be the
same as the spectrum in order.

In Figure 1, the four representations described earlier for the
same signal are presented. The representations in the time,
frequency, angular, and order domains are expressed in sec-
onds, Hertz, radians, and nX, respectively. It is important to
emphasize that the unit of measure representing the order, nX,
corresponds to the number of cycles per revolution, quantify-

ing the proportionality relationship to multiples of the refer-
ence rotation. It is observed that the representations in the
time and angular domains are quite similar, differing only in
the periodicity of the waveform. However, the representa-
tions in the frequency and order domains exhibit notable dif-
ferences. Considering that this signal was measured under
a variable rotation condition, the frequency spectrum shows
energy spread around the rotation frequency (17 Hz) and its
harmonics, in contrast with the order spectrum, which only
exhibits peaks at integer orders.

Figure 1. Representations of a Signal in Different Domains

Within the scope of preparing the input data, this work pro-
poses the use of two techniques: signal segmentation and
data normalization. Signal segmentation is proposed to in-
crease the dataset and thereby contribute to reducing model
overfitting (Géron, 2022). For this purpose, the sliding win-
dow segmentation algorithm was employed, where a window
moves through the signal, typically with overlap, extracting
segments. Details regarding the window size and overlap pa-
rameters used will be provided in Section 4.

Data normalization was proposed to reduce instabilities, as at-
tributes with different scales can directly interfere with train-
ing convergence (Géron, 2022). In this work, normalization
was achieved through standardization, where the data is pro-
cessed to have zero mean and unit variance. It is important
to note that the mean and standard deviation were calculated
separately for each dataset used during model training and
evaluation (training set, validation set, and test set).

For the fault detection stage, this work employed the WD-
CNN deep learning model proposed by W. Zhang, Peng, Li,
Chen, and Zhang (2017). The model is a Convolutional Neu-
ral Network (CNN) designed specifically to process 1D in-
puts. The first convolutional layer of the model is sufficiently
wide to extract patterns of larger dimensions, which may con-
tain information from medium and low frequencies of the
signal. Additionally, after this initial layer, the architecture
comprises several narrow convolutional layers, which play
the typical role of extracting local features from the signal,
thereby enhancing the model’s ability to extract useful repre-
sentations.
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The classification stage of the model consists of two fully
connected layers, where the number of units in the last layer
is defined according to the specific task. For binary classifi-
cation tasks, this layer comprises only one unit followed by
a sigmoid function, which is used to obtain the probability
of the input belonging to either class. If the classification is
multi-class, the number of units in this layer is determined
by the number of classes in the problem, and the softmax
function is used to obtain probabilities corresponding to each
class. A schematic of the proposed architecture is shown in
Figure 2. More detailed information regarding its implemen-
tation, such as kernel sizes and layer configurations, is pro-
vided in Section 4.

Figure 2. WDCNN Architecture (W. Zhang et al., 2017)

3. EXPERIMENTAL DATA

The dataset used in this work was collected and published by
the University of Ottawa, where vibration signals from bear-
ings operating under varying rotational conditions over time
are made available (H. Huang & Baddour, 2019). These data
were generated using a fault simulation test rig from Spec-
traQuest, model MFS-PK5M. The test rig consists of a mo-
tor driven by an AC Drive, rotating a shaft supported by two
bearings fitted with ER16K ball bearings. Figure 3 depicts
this test rig. For the construction of this dataset, the bear-
ing closest to the motor was kept consistently healthy, while
different conditions of bearings were tested in the bearing fur-
thest from the motor, labeled as the experimental bearing.

The dataset comprises vibration signals and rotational speed
signals. The vibration signals were acquired using a uniax-
ial ICP accelerometer, model 623C01, mounted in the verti-
cal direction of the experimental bearing. Rotational speed
signals were obtained through an incremental encoder from
EPC, model 775, installed on the main shaft of the test
rig. Both signals were captured using NI acquisition boards,
model USB-6212, configured to capture signals with a dura-
tion of 10 seconds and a sampling frequency of 200 kHz. It’s
worth noting that the encoder produces a signal containing
1024 pulses per revolution.

In this dataset, four operational conditions related to shaft

Figure 3. Experimental Set-up (H. Huang & Baddour, 2019)

rotation were evaluated, combined with five different bear-
ing conditions. The rotation conditions are: a) increasing
ramp, b) decreasing ramp, c) increasing ramp followed by de-
creasing ramp, and d) decreasing ramp followed by increas-
ing ramp. It’s important to note that ”ramp” here refers to a
linear variation in rotation speed. The bearing conditions in-
clude: i) healthy, ii) inner race fault, iii) outer race fault, iv)
rolling element fault, and v) compound fault. For each combi-
nation of rotation condition and bearing condition, three trials
were conducted to assess repeatability. Therefore, the dataset
comprises 60 pairs of signals (vibration + rotational speed).
In Figure 4, a schematic of the dataset composition is pre-
sented, and in Figure 5, the curves of instantaneous rotations
are shown for the all trials of each rotation condition. It is
noted that there is a certain randomness in the rotation oper-
ating condition for each test.
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Figure 4. Composition of Dataset

4. EVALUATION METHODOLOGY

To evaluate the performance of the proposed bearing fault de-
tection methodology, two distinct approaches were adopted:
a multiclass classification and a binary classification. In the
first approach, the methodology was configured to distin-
guish, from vibration signals, between healthy bearings and
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Figure 5. Instantaneous Rotations - Dataset

faulty bearings, as well as to identify the specific types of
faults present in the defective bearings: inner race, outer
race, rolling elements, or compound faults. In the second
approach, the methodology was used to differentiate only be-
tween healthy and faulty bearings without specifying the type
of fault. The motivation for these approaches lies in eval-
uating whether the analyzed representations offer advantages
both in the generic characterization of bearing defects (binary
classification) and in the identification of specific localized
bearing defects (multiclass classification). For the implemen-
tation of the methodology and the evaluation experiments, a
Python framework1 with GPU processing2 was used. The
preparation of the input data as well as the training of the
model were implemented with Pytorch Lightning library3.

The input data preparation stage was divided into three steps,
as illustrated in Figure 6. Within this stage, two distinct ap-
proaches were proposed, varying the sampling frequency of
the raw signals, the size of the segments used, and the ro-
tation signal. In the first approach, the initial data acquisi-
tion configuration was adopted, with a window size set to
400,000 points for segmentation, equivalent to a 2-second
segment. This size was chosen due to significant rotation
variation within the segment period, contributing to the anal-
ysis of differences between the proposed representations. A
95% overlap was established to maximize the number of re-
sulting segments. Additionally, the rotation signal used was
the encoder signal obtained without modifications. This first
approach was exclusively applied to the multiclass problem.

Subsequently, the methodology was evaluated using a lower
acquisition rate. This second approach was proposed to align
the data acquisition configuration with common practices in
the industry. To achieve this, vibration signals were down-

1Version 3.11.9
2RTX 3090 GPU
3Version 2.2.5

STANDARDIZATIONSEGMENTATION DOMAIN
TRANSFORMATION

RAW SIGNAL INPUT SAMPLE

Figure 6. Sample Pre-Processing Flowchart

sampled, reducing the sampling rate to 2 kHz. Prior to this
process, a low-pass filter of 1 kHz was applied to the signals
to prevent possible aliasing effects. With this new config-
uration, a window size of 8000 points was defined for seg-
mentation, equivalent to longer segments than those used in
the first approach (4 seconds). The overlap was maintained
at 95%. Regarding the rotation signal, the signals were modi-
fied to resemble a tachometer signal, i.e., a signal with a pulse
for each revolution. This second approach was evaluated for
both the multiclass and binary classification problems.

Within the segment transformation stage, certain points re-
garding the procedures used should be highlighted. Firstly,
it is noted that the time-domain representation required no
processing, and thus the raw signal segment was used di-
rectly. For the angular-domain representation, an angular re-
sampling algorithm was implemented. In the scope of this
work, the algorithm was developed to ensure that the map-
ping between time and angle was constructed using the entire
extent of the vibration and rotation signals, while resampling
was applied to each segment. This approach was chosen to
ensure that the same information contained in the time seg-
ment was present in the angular segment, albeit with a dif-
ferent waveform due to the angular periodicity introduced by
resampling. It is noted that the segments for both representa-
tions remained with the same number of points. For represen-
tations in the frequency and order domains, the FFT module
from the numpy library4 was used. In these domains, respec-
tive unilateral spectra were employed, resulting in segments
with half the number of points compared to their counterparts
in the time and angular domains (200,000/4,000 points).

The deep learning model proposed for fault detection in this
work was implemented using the PyTorch library5. The
model can be characterized by two stages: the convolutional
layers, responsible for extracting useful features, and the fully
connected layers, responsible for classification. The convo-
lutional layers were built from cells (ConvBnPool1D) com-
posed of a 1D convolutional layer, a batch normalization
layer, a pooling layer, and an activation layer. Five cells were
used, and their parameters can be found in Table 1. In the
second stage of the model, there is a fully connected layer fol-
lowed by a normalization layer, followed by a layer composed
of five units for multiclass classification, or a single unit for
binary classification. The classes for the multiclass task cor-

4Version 1.26.4
5Version 2.3.1
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respond to the five conditions of the bearing: 1) healthy, 2)
inner race fault, 3) outer race fault, 4) roller fault, and 5) com-
bined fault. The parameters of these layers can also be found
in Table 1. It is noted that the ReLU function was used for
activation.

Table 1. Model Parameters

Layer Type Parameters

ConvBnPool1D 1 Convolutional +
BN + Pooling

Conv1D: in=1, out=16,
kernel size=64,

stride=16, padding=24
BN: out=16

MaxPool1D: kernel size=2,
stride=2

ConvBnPool1D 2 Convolutional +
BN + Pooling

Conv1D: in=16, out=32,
kernel size=3,

stride=1, padding=1
BN: out=32

MaxPool1D: kernel size=2,
stride=2

ConvBnPool1D 3 Convolutional +
BN + Pooling

Conv1D: in=32, out=64,
kernel size=3,

stride=1, padding=1
BN: out=64

MaxPool1D: kernel size=2,
stride=2

ConvBnPool1D 4 Convolutional +
BN + Pooling

Conv1D: in=64, out=64,
kernel size=3,

stride=1, padding=1
BN: out=64

MaxPool1D: kernel size=2,
stride=2

ConvBnPool1D 5 Convolutional +
BN + Pooling

Conv1D: in=64, out=64,
kernel size=3,

stride=1, padding=0
BN: out=64

MaxPool1D: kernel size=2,
stride=2

BatchNorm1D Batch Normalization out=100
LazyLinear Linear out=100

Linear Linear in=100, out=5 or 1

For evaluating the methodology’s performance and training
the model, this work proposes two data splits to obtain a train-
ing set and a test set. The first proposed split involves divid-
ing the data based on their rotation condition, which was used
for the multiclass approach. For the binary approach, a split
based on bearing conditions was proposed. For both splits, a
k-fold cross-validation strategy was employed. In this type of
strategy, the data is divided into k subsets, or folds, and the
model is trained on all but one subset, which is used for per-
formance evaluation. This process is repeated until all folds
have been used for evaluation, and the model’s performance is
estimated from the average of all evaluations (Géron, 2022).

In the first split, the dataset was divided into four folds based
on the rotation condition: A) increasing ramp, B) decreasing
ramp, C) increasing followed by decreasing ramp, and D) de-
creasing followed by increasing ramp. For the second split,
the proposed folds are : I) Inner Race Faults, O) Outer Race
Faults, B) Roller Faults, and C) Combined Faults. It is worth
noting that in this second split, the signals from healthy bear-
ings were divided such that half of the signals, corresponding
to rotation conditions A and B, were included in the three

training folds, while the other half, corresponding to rotation
conditions C and D, were included in the test fold.

There are hyperparameters that need to be optimized to
achieve the best model performance. For this work, we chose
to optimize two main hyperparameters: batch size and learn-
ing rate. To prevent information leakage from the test set
to the training set during the optimization process, an addi-
tional split is performed within the training set to extract a
validation set, which will be used to assess the model’s per-
formance. In this work, two fixed splits were proposed for
this process, following the earlier proposals. For the rotation
condition split, it is proposed to use conditions A and B for
training and condition C for validation. For the fault condi-
tion split, it is proposed to use conditions I and O, along with
a portion of the healthy condition (rotation A), for training,
and condition B, along with the other portion of the healthy
condition (rotation B), for validation.

The optimization strategy used was a systematic search
within a predefined set of values. The values tested for the
learning rate were 10−1, 10−2, 10−3 and 10−4. For the batch
size, the values tested were 16, 32, 64 and 128. In order to
reduce processing time, the batch size was optimized only
once, using the time domain representation and a fixed learn-
ing rate of 10−4. The value obtained in this process was used
for all other representations. For each value tested, both for
the learning rate and the batch size, five repetitions were per-
formed, and the average performance results were considered
as the validation outcome. This process was used to account
for the influence of randomness on the results.

In this work, no specific optimization was performed to de-
termine the number of epochs. However, within the optimiza-
tion of the learning rate, a strategy combining the concept of
early stopping with model checkpoints was used to obtain this
value. In this strategy, the model’s performance is evaluated
at each epoch, and its current state, as well as its performance
on the validation set, are saved. When performance on this set
does not show significant improvement or begins to decline,
training is stopped, and the best model is saved. From this
model, the final number of epochs is extracted, and this value
is associated with the performance of the tested learning rate.
Thus, at the end of the learning rate optimization, along with
the best value for this hyperparameter, an optimized value for
the number of epochs is obtained.

After the hyperparameter optimization process, a training and
final model evaluation pipeline was proposed. The signal
preparation step follows the same guidelines described ear-
lier and shown in Figure 6. For training and evaluating the
model, the optimized hyperparameters obtained from the op-
timization were used, and 10 repetitions were performed for
each of the four folds defined in the proposed divisions. The
average performance of the repetitions was associated with
each fold, and the average performance across folds was as-
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sociated with the model. This process was repeated for each
signal representation domain, and the results obtained, which
will be shown in Section 5, were used to assess the influence
of the domain on the methodology’s performance.

Some inherent characteristics of the proposed methodology
are highlighted here. The model error, i.e., the cost func-
tion used to approximate the model predictions to the true
labels, was calculated using the cross-entropy loss function
for the multiclass task and binary cross-entropy for the bi-
nary task. The Adam optimizer was used for weight updates
during the model training process. For evaluating the model
performance, both in the hyperparameter optimization pro-
cess and the final evaluation, the area under the ROC curve
(AUC ROC) was used as the metric. It is emphasized that
for the multiclass approach, AUC ROC is calculated using a
one-vs-rest approach and averaging across all classes. Fur-
thermore, in the final evaluation of the model, the false posi-
tive rate obtained by setting a true positive rate at 90% is also
calculated.

Considering all the issues addressed in this section, the eval-
uation of this work can be summarized in three distinct ex-
periments. The first involves the use of the multiclass ap-
proach along with the original acquisition setup provided in
the dataset. In the second experiment, the multiclass approach
was adopted with undersampling applied to the signal. Fi-
nally, in the last experiment, the same acquisition setup as the
second experiment was used, but with a binary approach. Ta-
ble 2 provides a summary of the three experiments, including
the main characteristics of each.

Table 2. Summary of Evaluation Experiments

Experiment 1 2 3
Classification

Task Multiclass Multiclass Binary
Sampling

Rate Fs = 200 kHz Fs = 2 kHz Fs = 2 kHz
Segment

Size Tseg = 2 s Tseg = 4 s Tseg = 4 s

Data
Division

By rotation
condition
(A/B/C/D)

By rotation
condition

(A/B/C/D)

By bearing
condition
(I/O/B/C)

5. RESULTS AND DISCUSSION

In this section, we present the results obtained using the
methodology proposed in this work. This section is structured
in two parts. Firstly, a brief initial exploratory analysis of the
signals that compose the dataset is presented. In this analysis,
the behavior of the signals under different rotation conditions
and bearing conditions is shown. Subsequently, the results
obtained in the fault detection process are presented, along
with a brief analysis of them.

5.1. Initial Exploratory Analysis

Firstly, the signals in the time domain for the four faults
present in the dataset are presented in Figure 7, along with
the signals from the healthy bearing. The rotation condition
A (increasing ramp) and the first trial for each condition were
used. It is noticeable that in the signals from bearings with
faults in the inner race and the compound fault, the charac-
teristic impulsive response typical of bearing faults is clearly
evident, with a significant difference in amplitude compared
to the healthy signal. For failures in the outer race and rolling
elements, although the difference in amplitude between the
healthy and defective signals is much smaller, it is still pos-
sible to identify sections in the signals that indicate typical
defect responses.
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Figure 7. Signals in Time - Bearing Conditions

Subsequently, the signals in the time domain for the four ro-
tation conditions used are presented in Figure 8. In the plots
shown, signals from the bearing with faults in the inner race
and signals from the healthy bearings were used, all from the
first trial. It is noticeable that the amplitude of the faulty sig-
nals varies with rotation, but this variation is not as evident in
the healthy signals.

Finally, the frequency spectra and order spectra for the four
faults are presented in Figure 9. For this analysis, rotation
condition A (increasing ramp) and the first trial were also
used. As discussed earlier, it is noticeable that all frequency
spectra exhibit a spread characteristic, in contrast to the or-
der spectra, which are mainly composed of discrete peaks.
Furthermore, it can be observed that the distinction between
defective spectra and healthy spectra is much more evident in
cases of inner race defect and combined defect, especially in
a higher frequency range.
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5.2. Detection Performance

The results obtained with the methodology proposed are pre-
sented. Three evaluations were performed as outlined earlier:
1) multiclass approach using the original acquisition config-
uration, 2) multiclass approach using downsampling and 3)
binary approach using downsampling. First, the hyperparam-
eters obtained in the optimization processes are presented. As
previously reported, batch size optimization was performed
at the beginning of each evaluation, using the time domain
representation and a learning rate of 10−4, and the values ob-
tained were: 1) 16, 2) 128 and 3) 32.

The learning rates (LR) and the number of epochs (E) asso-
ciated, obtained in the optimization process for each of the
experiments, are shown in Table 3. As previously mentioned,
the result shown is the average of five repetitions, using the
proposed splits for each approach. It is emphasized that one
value was optimized for each proposed representation.

Table 3. Optimized Learning Rate and Number of Epochs

Experiment Domain LR E
Time 10−2 4

Frequency 10−4 2
Angle 10−3 21
Order 10−3 3
Time 10−3 3

Frequency 10−3 3
Angle 10−3 22
Order 10−3 3
Time 10−2 2

Frequency 10−2 7
Angle 10−4 23
Order 10−2 2
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Figure 9. Frequency and Order Spectra - Bearing Conditions

Next, the results of the methodology evaluation for the first
experiment are presented. It is recalled that, in this experi-
ment, we have the multiclass approach using the original ac-
quisition configuration and that the proposed data split was
based on the rotation condition. The evaluation results for
each fold in the cross-validation and the average of the folds
for each representation used are presented in Table 4. It is
emphasized that 10 repetitions were performed for each fold,
and the mean AUC ROC values obtained (multiplied by 100)
and the standard deviation are presented.

The evaluation results for the second and third experiments
are presented in Tables 5 and 6, respectively. In these exper-
iments, we have the multiclass approach (2) and the binary
approach (3) using downsampling, meaning the sampling fre-
quency was reduced to 2 kHz and the segment length was in-
creased to cover 4 seconds. It should be noted that, for each
of these experiments, the evaluation is carried out in folds, ac-
cording to each previously proposed division. In other words,
the evaluation is done by rotation for the multiclass experi-
ment (2) and by rolling for the binary experiment (3).

It is noted that, in the first experiment, the average perfor-
mance obtained for the four proposed domains was quite sim-
ilar, with a slight superiority in the frequency domain. It is
also observed that the values obtained for the average AUC
ROC were very high, with this value being greater than 94%
in all cases. To better understand the nature of these results,
the average AUC ROC (multiplied by 100) for each of the
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Table 4. Performance Results - Experiment 1

Fold A/B/C → D B/C/D → A C/D/A → B D/A/B → C Average
Domain AUC

ROC
FPR

(TPR90%)
AUC
ROC

FPR
(TPR90%)

AUC
ROC

FPR
(TPR90%)

AUC
ROC

FPR
(TPR90%)

AUC
ROC

FPR
(TPR90%)

Time 97.27
± 2.22

7.58
± 13.81

85.23
± 6.94

19.78
± 20.17

98.43
± 1.81

3.62
± 7.03

98.54
± 3.16

1.75
± 7.05

94.86
± 6.91

8.18
± 14.95

Frequency 99.94
± 0.18

0.27
± 1.82

95.87
± 3.48

7.2
± 13.29

100.0
± 0.00

0.00
± 0.00

100.0
± 0.00

0.00
± 0.00

98.95
± 2.49

1.87
± 7.38

Angle 98.61
± 2.82

2.71
± 8.03

84.7
± 7.64

19.55
± 21.09

99.86
± 0.42

0.39
± 2.32

100.0
± 0.00

0.00
± 0.00

95.79
± 7.61

5.67
± 13.93

Order 94.51
± 6.46

11.51
±18.41

86.11
± 4.72

21.25
± 21.75

99.41
± 1.23

1.08
± 4.37

97.75
± 2.94

3.22
± 11.12

94.45
± 6.69

9.26
± 17.37

Table 5. Performance Results - Experiment 2

Fold A/B/C → D B/C/D → A C/D/A → B D/A/B → C Average
Domain AUC

ROC
FPR

(TPR90%)
AUC
ROC

FPR
(TPR90%)

AUC
ROC

FPR
(TPR90%)

AUC
ROC

FPR
(TPR90%)

AUC
ROC

FPR
(TPR90%)

Time 81.08
± 2.39

29.65
± 20.64

60.43
± 12.96

52.07
± 29.48

80.16
± 4.25

28.20
± 20.46

82.85
± 4.02

24.81
± 21.86

76.13
± 11.62

33.68
± 25.76

Frequency 95.83
± 2.24

9.74
± 11.61

75.67
± 4.41

37.13
± 25.70

96.90
± 2.36

6.30
± 10.90

99.08
± 2.10

1.80
± 6.65

91.87
± 9.87

13.74
± 20.73

Angle 76.81
± 9.47

37.29
± 35.11

59.99
± 9.48

54.45
± 29.89

90.39
± 9.26

30.17
± 25.91

87.87
± 5.70

20.84
± 22.83

76.26
± 13.37

35.69
± 31.32

Order 88.13
± 5.38

21.67
±23.04

73.68
± 7.1

38.47
± 30.59

96.64
± 4.06

5.98
± 10.14

93.22
± 5.11

9.50
± 13.49

87.92
± 10.36

18.90
± 24.48

Table 6. Performance Results - Experiment 3

Fold I/O/B/H → C/H O/B/C/H → I/H C/I/O/H → B/H I/C/B/H → O/H Average
Domain AUC

ROC
FPR

(TPR90%)
AUC
ROC

FPR
(TPR90%)

AUC
ROC

FPR
(TPR90%)

AUC
ROC

FPR
(TPR90%)

AUC
ROC

FPR
(TPR90%)

Time 71.31
± 20.83

57.38
± 41.67

36.69
± 25.57

96.28
± 10.78

48.54
± 3.45

99.65
± 1.05

68.24
± 19.33

62.21
± 40.24

56.20
± 23.91

78.88
± 35.17

Frequency 91.08
± 17.61

19.88
± 39.34

31.98
± 42.35

72.85
± 40.96

77.57
± 19.47

43.9
± 39.39

92.93
± 10.74

23.72
± 38.3

73.39
± 35.44

40.09
± 44.74

Angle 64.00
± 28.36

71.22
± 37.20

53.84
± 33.30

85.12
± 27.36

53.33
± 5.39

85.76
± 5.60

67.77
± 16.21

67.21
± 28.36

59.74
± 24.30

77.33
± 28.46

Order 95.58
± 7.45

22.50
±39.26

34.07
± 40.59

80.29
± 37.47

68.15
± 14.27

60.64
± 30.64

93.22
± 1.30

9.94
± 0.17

72.76
± 33.04

43.34
± 42.13

defined classes, both for the representations in the frequency
domain and in the order domain, are presented in Table 7.
It is noted that, when comparing the two domains, the clas-
sifications for the outer race defect and ball element defect
classes, along with the healthy condition, showed a greater
decline in performance. To understand this behavior, Figure
10 shows the spectra, in frequency and order, for these three
conditions, in a segment using the acquisition condition of
this experiment under the condition of increasing ramp rota-
tion. It is observed that, although the order analysis is fulfill-
ing its main objective of standardizing the spectrum based on
a reference rotation, this behavior may be causing some dif-
ficulty for the model to distinguish between classes, as these
signals exhibit similar behaviors in this domain.

Table 7. Average AUC ROC for Experiment 1 - Each Class

Outer
Race

Inner
Race Ball Combined Healthy

Frequency 98 99 96 99 99
Order 92 99 89 97 93

Regarding the second experiment, it is noted that the aver-
age performance obtained for the frequency domain showed

the best performance, although with a value very close to that
of the order domain. Again, an attempt was made to better
understand this prominence of the frequency domain by eval-
uating the average AUC ROC (multiplied by 100) for each
class, which are shown in Table 8, for the frequency and or-
der domains. In this case, it can be noted that, even using the
frequency, the downsampling applied to the signal caused a
decline in the model’s performance in classifying all classes.
Compared to the order domain, it is noted that, once again,
the outer race defect and ball element defect classes were the
most affected; however, in this experiment, the healthy condi-
tion remained similar. Seeking a better understanding of the
results, the spectra in frequency and order, using the proposed
acquisition configuration for this experiment, of the healthy
bearing condition, with an outer race defect and ball element
defect, are presented in Figure 11. It is noted that there is a
behavior very similar to the previous experiment, where the
order analysis standardizes the spectrum, which may be caus-
ing the model’s difficulty in making distinctions.

The performances for the time and angle domains had lower
and quite similar values. An attempt was made to understand
the reason for the more pronounced drop in performance of

9



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

0 50 100 150 200
Frequency [Hz]

0

2

4

M
ag

ni
tu

de
 [g

]
×10 4 Frequency - 200 kHz

Healthy
Ball Defect
Outer Defect

0 2 4 6 8 10
Order [nX]

0.0

2.5

5.0

7.5

M
ag

ni
tu

de
 [g

]

×10 4 Order - 200 kHz

Figure 10. Spectras in Frequency and Order - Experiment 1

the time and angle domains when changing the acquisition
configuration. For this, Figure 12 shows the time signals for
the five bearing conditions present in the dataset, for the con-
dition of increasing ramp rotation, using the two proposed ac-
quisition configurations. It is noted that, with the downsam-
pling and, consequently, with the filtering process, the time
signals, and consequently the angle signals, for the second
experiment experienced a loss of energy, which may have re-
sulted in the lower performance.

Table 8. Average AUC ROC for Experiment 2 - Each Class

Outer
Race

Inner
Race Ball Combined Healthy

Frequency 89 95 90 95 89
Order 80 95 78 97 88
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Figure 11. Spectras in Frequency and Order - Experiment 2
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Finally, regarding the third experiment, it is noted that the
performance trend followed the same pattern as the second
experiment, with the frequency and order domains showing
similar and superior performances compared to the others.
However, in this experiment, there is a high variability as-
sociated with the results. It is noted that, in the proposed di-
vision of this experiment, the model is trained on certain de-
fect conditions and tested on others, aiming to extract a useful
and generalized representation for bearings and avoid possi-
ble information leakage between signals from the same bear-
ing across the sets. However, this approach made the model’s
task more difficult, which may have resulted in these inferior
and highly variable results.

5.3. Discussion of Hypotheses

Based on the results obtained from the three experiments con-
ducted in this work, it was not possible to demonstrate a clear
advantage of using the angular or order domains compared
to the time or frequency domains. Some hypotheses are sug-
gested to justify these results, but further investigations are
needed to validate them. Firstly, it is suggested that the an-
gular and order domains may be more advantageous in tra-
ditional machine learning methodologies, particularly in the
feature extraction step. In such cases, these domains may of-
fer an advantage by extracting signal information in scenarios
with rotational variation due to their standardization charac-
teristics. In the case of using a deep learning model, as em-
ployed in this work, it is assumed that the model was able
to extract useful information for classification directly from
the frequency domain, even with rotational variation. Addi-
tionally, the use of a sequence of techniques for signal ma-
nipulation, as is the case with the angular and order domains,
may lead to a loss of information, resulting in a decrease in
performance.
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Another possible hypothesis is the occurrence of information
leakage in the proposed data split for the multiclass approach.
In this case, signals from the same bearing are present in both
the training and test sets, as the split considers only the ro-
tational condition. With this leakage, there is a possibility
that the model is simply memorizing the intrinsic character-
istics of the fault signals. Since order analysis normalizes
the signals, the model may better memorize the particulari-
ties of each class when the data is in the frequency domain.
Although there is no leakage in the proposed split for the bi-
nary approach, based on the results of the third experiment,
a significant amount of associated randomness was observed,
suggesting that the model was not able to efficiently perform
the proposed task, regardless of the use of order analysis.

6. CONCLUSIONS

We propose the evaluation of a framework for bearing fault
detection using vibration signals, considering variable rota-
tional conditions over time. A deep learning model was em-
ployed to classify faults across different signal representa-
tion domains (time, frequency, angular, and order) to assess
whether the angular and order domains could provide addi-
tional benefits. To this end, three approaches were tested
using a dataset of vibration signals from bearings under five
conditions (healthy, inner race fault, outer race fault, rolling
element fault, and combined fault). In the first approach, a
multiclass task was defined, maintaining the original acquisi-
tion setup (200 kHz sampling frequency) and 2-second seg-
ments. In the second and third approaches, the signals were
resampled to 2 kHz, and the segments were extended to 4 sec-
onds. The second approach involved a multiclass task, while
the third approach proposed a binary task focusing only on
differentiating between healthy and faulty bearings.

When conducting the evaluation experiments of the three ap-
proaches, it was observed that the frequency domain rep-
resentation achieved the best performance. In the first ap-
proach, the obtained values were high for all tested repre-
sentations, likely due to the signal acquisition configuration,
which, with a high sampling rate, captured data with more in-
formation, making it easier to distinguish between the classes.
In the second approach, there was a drop in values, espe-
cially in the time and angle domains, possibly caused by the
loss of information resulting from the filtering process. De-
spite this limitation, the order and, particularly, the frequency
domains maintained satisfactory performance. The third ap-
proach showed the worst performance, with high variability
in the results, regardless of the representation used. There-
fore, it is concluded that it is not possible to extract a gener-
alized representation for bearing defects in this application.

The analyses conducted in this work indicate that the use of
angular and order domains does not offer significant advan-
tages over the frequency domain. However, these domains

may provide benefits in feature extraction when traditional
machine learning algorithms are employed, due to their abil-
ity to standardize signals under rotational variations. To ex-
plore this issue in more detail, future studies should focus
on evaluating their impact within different machine learning
frameworks. Moreover, it is essential to investigate potential
issues, such as information leakage during data splitting, to
determine whether the observed results stem from inherent
limitations of order analysis application or from external fac-
tors, such as memorizing specific fault patterns. Therefore, a
more comprehensive analysis, including alternative strategies
to mitigate information leakage and the use of other datasets,
is recommended to fully understand the implications of using
these domains.

ACKNOWLEDGMENT

We thank the Laboratory of Vibrations and Acoustics at
UFSC and Dynamox S/A, supported by FEESC, for making
this work possible.

REFERENCES

Borghesani, P., Pennacchi, P., Chatterton, S., & Ricci, R.
(2014). The velocity synchronous discrete fourier
transform for order tracking in the field of rotating ma-
chinery. Mechanical Systems and Signal Processing,
44(1-2), 118–133.

Domingues, R. K. (2023). Avaliação de metodologia de
detecção de falhas em mancais de rolamento utilizando
análise de ordem e média sı́ncrona no tempo (Mas-
ters dissertation). Federal University of Santa Catarina,
Florianópolis.
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