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ABSTRACT

Providing forecasts of pressure fluctuations and changes will
aid in selecting appropriate maintenance strategies to op-
timize efficiency and costs. This paper presents a deep-
learning-based model to forecast the degradation evolution of
membrane biological fouling in RO (Reverse Osmosis) sys-
tems. Although applying deep learning in forecasting still
faces many challenges, applying convolutional operations in
convolution 1D has yielded promising results for sequential
data, particularly time series data. Thus, in this paper, we
study and develop the 1D convolution operation-based Tem-
poral Convolutional Network (TCN) model to predict pres-
sure dynamics at both ends of the RO vessel. In addition,
since the deep learning technique has yet to be widely ex-
plored in this field, thus we also need to pre-process the data
collected from the Carlsbad Desalination Plant in California,
such as the proposed model can identify complex relation-
ships between timestamps and pressure features. The experi-
ment results were evaluated and compared with other existing
models, such as LSTM, CNN & LSTM, and GRU. The results
show that the TCN-based prediction model had the slightest
error in the test dataset.

1. INTRODUCTION

Water covers approximately 71 % of the Earth’s surface, and
more than 97 % of the Earth’s water is saltwater. Under popu-
lation growth, the need for clean water is highly critical. Vari-
ous methods have been developed to generate clean water for
industrial and domestic use to meet this demand, one such
method being desalination Nour et al., 2022 found. There-
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fore, RO (Reverse Osmosis) technology-based desalination
plants have been put into operation. Nour et al., 2022 show
that the issue arises when these plants face system impair-
ment after operation due to membrane fouling. Depending
on the type of accumulated residue, membrane fouling can be
categorized into particle fouling, organic fouling, inorganic
fouling, and biofouling, with biofouling being considered the
most severe and challenging to solve.

One of the common causes of biofouling is algal blooms (van
Rooij, Scarf, and Do, 2021), (Villacorte et al., 2017) and
(Jiang, Li, and Ladewig, 2017). Organic compounds pro-
duced during algal blooms are the leading cause of biofouling
on membrane surfaces. These compounds create a slippery
layer on the membrane surface, increasing the salts and pres-
sure passing through the filter membrane. When these mem-
branes become fouled, they can reduce filtration efficiency
or, more seriously, damage the membrane system (Koutsakos
and Moxey, 2007) found. There are three ways to improve
membrane longevity: (a) membrane performance monitoring,
(b) membrane cleaning (clean-in-place (CIP) method) (Kout-
sakos and Moxey, 2007; van Rooij, Scarf, and Do, 2021), and
(c) membrane replacement (Koutsakos and Moxey, 2007; van
Rooij, Scarf, and Do, 2021).

Many works have been proposed to mitigate the impact of
biofouling, and some of them have yielded positive results.
In the direction of maintaining membrane biological foul-
ing, there are many causes. However, biological fouling is
challenging to resolve, and the algal bloom is the root cause
of membrane fouling (Nour et al., 2022). (Koutsakos and
Moxey, 2007) proposed methods for monitoring membrane
systems and maintenance options for the system. Mainte-
nance of this system includes cleaning the membranes with
chemical solutions, known as the CIP method. Replacing
and rearranging the elements is essential when the system be-
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comes heavily fouled. V.Rooij et al. have provided a solution
to monitor the system’s state. This method builds mathemat-
ical models based on extensive knowledge and experience in
the desalination field. Statistical methods are used to esti-
mate parameters for the models. Digital Twins (Sharma et
al., 2022) is employed to implement the mathematical mod-
els. The results achieved are auspicious.

Besides traditional statistical models such as ARIMA, VAR,
etc., deep learning models have recently been used to ad-
dress problems due to their ease of implementation. Famous
deep learning models include RNN, LSTM, GRU, GNN, and
more recently, the Transformer of Yong Liu et al. (Yong et
al., 2022) has emerged. The introduction of 1D convolu-
tional layers (Kiranyaz et al., 2019) and the Temporal Con-
volutional Network (Lea et al., 2016) (TCN) has also yielded
some promising results.

Operating and maintaining the system is highly expen-
sive (Asif et al., 2021; van Rooij, Scarf, and Do, 2021), neces-
sitating a strategy for monitoring the system’s state to derive
optimal maintenance solutions. This paper focuses on pre-
dicting pressure evolution in the desalination system using
RO technology. Moreover, the paper develops a TCN-based
model to predict pressure dynamics at both ends of the RO
vessel. This model forecasts target variable values. In addi-
tion, we propose new techniques to present the relationship
between the positions of elements or sockets, the operation
status of the train, and the target variable and stabilize the
normalized differential pressure (NDP) value.

The organization of the paper is as follows. Section (2)
presents the desalination plant system. Section 3 describes
the Temporal Convolutional Networks and proposed tech-
niques in data processing. The experiment results on the per-
formance of the proposed TCN-based prediction method are
shown in Section 4. Finally, Section 5 presents the conclusion
and future works.

2. DESALINATION PLANT SYSTEMS

The Carlsbad desalination plant system consists of over 2000
vessels. These vessels are evenly divided into components
we call RO trains. Specifically, we have 14 independently
operating trains. These vessels operate in parallel with the
trains. Within these vessels are eight serially connected sock-
ets, each filled with membrane elements (Fig. 1). Typically,
these membrane elements are spirally wound, allowing sea-
water to be pushed through the membrane surface of all el-
ements from the first element’s feed source to the last ele-
ment’s tail end.

This vessel is divided into eight sockets, each filled by a mem-
brane element rolled in a spiral form. Water is pumped into
the vessel in a high-pressure sequence from the first to the tail
element.

Figure 1. The structure of a vessel in an RO train. The ves-
sel is divided into eight sockets, each filled by a membrane
element rolled in a spiral form. The water is pumped into the
vessel with a high-pressure sequence from the first to the tail
element, from (Rooij, 2022)

2.1. Membranes Biofouling

Algal blooms significantly accelerate the biofouling process
in RO membranes (van Rooij, Scarf, and Do, 2021). The
quality of RO feed water reflects the influence of these
blooms. The primary cause of accelerated degradation is
the organic matter produced during algal blooms, known as
algae-derived organic matter (AOM), particularly transpar-
ent exopolymer particles (TEP). As algae cells perish, they
release AOM, which adheres to clean membranes and even
more to fouled ones, intensifying biofouling.

TEP absorption manifests as a slimy substance clinging to
surfaces. Dinoflagellates, a phytoplankton responsible for al-
gal blooms, produce considerable quantities of TEP once nu-
trients are depleted. Consequently, biofouling-induced degra-
dation continues beyond the duration of an algal bloom.

2.2. Membranes Restoration

When a membrane becomes fouling, measures must be taken
to improve its state. A vessel will have various methods for
restoring the membrane, including:

1. Clean-In-Place method (CIP) that includes: C1, a clean-
ing method in which the membrane is cleaned with a
high pH solution (NaOH solution), followed by a low pH
solution (HCl solution) (Rooij, 2022). C2 is a method
in which the elements are soaked in a sodium bisulfate
(NaHSO4) solution, followed by the application of C1.

2. C3 is a method that combines the redistribution of the
structure of the elements and cleaning. In this method,
the first element (S1), which usually has the highest
biomass (most fouling), is removed for cleaning and then
placed at the bottom of the vessel. The elements from S2

to S8 are each moved one position forward (Rooij, 2022).
3. Swapping and redistributing the vessel structure is a
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method that includes planned restructuring of the posi-
tions of the elements, sometimes involving replacing a
few positions with new ones (Rooij, 2022).

4. Unidentified correction, e.g., Low Salinity flushing, de-
pressurization, or instrument adjustment.

Each method yields different results; therefore, having a pre-
defined plan will help achieve optimal outcomes in terms of
efficiency and cost.

3. DEEP LEARNING-BASED APPROACH FOR FORE-
CASTING FLUCTUATION DIFFERENTIAL PRESSURE
IN RO SYSTEM

This section describes the proposed model developed from
the TCN model, which uses different convolution operations
and multiple blocks instead of one TCN layer. In addition,
the rule-based new techniques for processing data are also
described in more detail.

3.1. Long short-term memory - LSTM

Long short-term memory (LSTM) (Alex and Alex, 2012) is a
type of recurrent neural network (RNN) aimed at dealing with
the vanishing gradient problem (Sherstinsky, 2018)present in
traditional RNNs. Its advantage over other RNNs, hidden
Markov models, and other sequence learning methods is its
relative insensitivity to gap length. It aims to provide a short-
term memory for RNN that can last thousands of timesteps,
thus ”long short-term memory.” It applies to the classifica-
tion, processing, and prediction of data based on time series,
such as handwriting, speech recognition, machine translation,
and speech activity detection.

One can view the cell state (Fig. 2) as a kind of long-term
memory that retains at least a part of the information in ear-
lier states by using a combination of partial forgetting and
increment operations on the previous cell states. Specifically,
the LSTM operation follows:

Forget gate: This function determines how much important
information from the previous cell state should be retained.
Since the sigmoid function σ outputs values in the range [0,
1], where one indicates keeping all the information, the forget
gate can be calculated as (1).

Ft = σ(Ht−1 ·Whf +Xt ·Wfx + bf ) (1)

Update Cell State: This is the process of updating the cell
state information along with the retained information from
the forget gate (8), (3), (4):

It = σ(Wit ·Ht−1 +Xix ·Xt + bi) (2)

Figure 2. Long short-term memory , information have store
in cell state. The operation of LSTM is similar to that of
RNN; however, the significant difference that LSTM brings
is in the hidden state. LSTM can store information over a
long period, helping to solve the vanishing gradient issue.

C̃t = tanh(Wch ·Ht−1 +Wcx ·Xt + bc) (3)

Ct = Ct−1 ⊙ Ft + It ⊙ C̃t (4)

Output State: This function helps compute the value of the
hidden state (or provide the final prediction result if it is the
final cell) (5), (6):

Ot = σ(Woh ·Ht−1 +Wox ·Xt + bo) (5)

Ht = tanh(Ct)⊙Ot (6)

3.2. Gated Recurrent Unit - GRU

Gated Recurrent Unit - GRU maintains the reset and update
gates. The reset gate (7) helps control how much of the pre-
vious state is retained. Similarly, the update gate (8) allows
control over how much of the new state will resemble the old
state, given the current time step input Xt and the previous
hidden state Ht−1.

Rt = σ(Wxr ·Wt +Whr ·Ht−1 + br) (7)

Zt = σ(Wxz ·Wt +Whz ·Ht−1 + bz) (8)

Operation of Reset Gate

H̃t = tanh(Wxh ·Xt + (Rt ⊙Ht−1) ·Whh + bh) (9)

Similar to RNNs (Sherstinsky, 2018), GRUs maintain a hid-
den state and a candidate hidden state H̃ (9). The information
from Ht−1 passes through the reset gate Rt, adjusting the in-
formation retained. If Rt is close to 1, the result will be sim-
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ilar to an RNN: H̃t = tanh(Wxh ·Xt +Ht−1 ·Whh + bh),
if Rt is close to 0, the hidden state will be the output of a
multi-layer perceptron with Xt as the input.

Operation of Update Gate

Ht = Zt ⊙Ht−1 + (1− Zt)⊙ H̃t (10)

This gate (10) determines the similarity between the new state
Ht and the old state Ht−1, as well as the extent to which the
potential hidden state H̃t is used. The value of Ht will be
determined by Zt and H̃t. If the values in the update gate Zt

are equal to 1, we retain the old state. In this case, the infor-
mation from Xt is essentially ignored, equivalent to skipping
the time step t in the dependency chain. Conversely, if Zt

is close to 0, the hidden state Ht will be close to the poten-
tial hidden state H̃t. These designs can help us address the
vanishing gradient problem in RNNs and better capture long-
term dependencies in time series.

3.3. TCN prediction approach

The TCN (Temporal Convolutional Network) is a neural net-
work that processes data in the type of time series data and
is model ( Shaojie, Zico, and Vladlen, 2018) has been proven
effective in various tasks such as time series prediction and
sequence classification. This architecture combines 1D con-
volutional layers with techniques such as causal convolutions
and residual connections (see Figure (??)).

In general, TCN model ( Shaojie, Zico, and Vladlen, 2018)
satisfies two fundamental rules: 1) the input and output of
the model must be the same size, and 2) the model must en-
sure that there is no information from the future in the current
prediction step. Convolutional layers are padded with (ker-
nel size - 1) zeros to achieve the first criterion. This padding
is placed on the left side of the data to reach the second cri-
terion: the model only depends on historical data before the
prediction point.

Dialated Convolutions: The causal convolution can only
look at several previous elements in the sequence. Thus, di-
lated convolutions are employed in this paper since they help
the model learn information from further distances in the data
and focus on essential time steps while ignoring unimportant
ones.

For a 1-D sequence input x and a filter f , the dilated convo-
lution operation at element s of the sequence F (s) is defined
as a sum over the filter (k) multiplied by the input elements
at specific positions determined by the dilation factor d (see
Equation11).

F (s) =

k−1∑
i=1

f(i) ·Xs−d·i (11)

Larger filter sizes (k) and increasing the dilation factor (d)
are two ways to improve the receptive field of the Temporal
Convolutional Network (TCN). Larger filter sizes allow the
model to consider more elements in the sequence while in-
creasing the dilation factor, which enables the model to cap-
ture information from further back in the sequence.

Residual Connections The residual block He et al., 2015
helps the TCN model control. The residual block He et al.,
2015 helps the TCN model control the amount of informa-
tion, minimizing the vanishing gradient problem and enabling
the model to learn more effectively and deeply. A residual
block contains a branch leading out to a series of transforma-
tions F , whose outputs are added to the input x of the block.

σ = activation(x+ F (x)) (12)

The TCN has two layers of dilated convolution and non-
linearity within a residual block. In addition, To effectively
predict pressure dynamics at both ends of the RO vessel
and replace causal convolutional with dilated convolution, we
propose a deep-learning-based model with two TCN blocks.
The input data passes through the first TCN block, and its out-
put is the repeated end timestamp, which is used as the input
for the second TCN block as the output block. The proposed
model with the first TCN block has 80 filters, a kernel size of
3, dilation rates of [1, 2, 4, 8, 16, 32], and a dropout rate of
0.1 for the first TCN layer and second TCN layer. The final
layer will be fully connected at each timestamp.

More specifically, with its two TCN blocks, the proposed
model is designed to provide precise predictions for time se-
ries data (see Figure 3). The first TCN block, comprising
two TCN layers, is tailored to learn complex data structures
within the time series. The first TCN layer takes the time
series as input and returns the hidden states at each step,
while the second TCN layer returns the hidden state at the last
step. The output of the first TCN block is then multiplied and
passed through the second TCN block to make predictions
for the following days of the time series. Using a specific
number, the proposed approach helps minimize the accumu-
lation of errors in the projections, ensuring the precision of
the model’s predictions.

The model aims to minimize discrepancies between out-
put and observer values. The proposed model employs the
Mean Square Error, a robust and widely used loss function
to achieve this. This choice of loss function underscores the
model’s commitment to accuracy and precision in its predic-
tions.

3.4. Data Preprocessing

The dataset used in this paper comes from the Carlsbad de-
salination plant in California. The data comprises 14 trains
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Figure 3. Proposed models based on deep learning seq-to-seq architectures: Input data will be organized as multivariate time
series data. The first TCN block (encoder block) consists of 2 TCN layers with kernel size = 3, dropout rate = 0.1, dilated factor
= [2,4,8,16,32], and the output is the final output vector, which is then scaled according to the number of forecast days and fed
into the second TCN layer to predict the number of required days.

collected from 2015 to 2020. The dataset uses two kinds of
values: the target variable Normalized Differential Pressure
(NDP) and Train Status. The Train Status are values repre-
senting the operational condition of the trains, in which the
following values should be noted: Operation, C1, C2, C3,
Permutations. The value Permutations consists of sequences
of numbers from 1 to 8, and the letter ’N’ represents that the
element at that position is replaced with a new one. For in-
stance, value ’324N5678’ is interpreted as element three be-
ing placed in the first position, element two remaining in the
second position, element four is placed in the third position,
a new element replaces the one in the fourth position, and the
elements in positions 5, 6, 7, and 8 remain unchanged.

To present the relationship between the positions of elements
or sockets, the operating status of the train, and the target
variable, we propose some rule-based techniques as follows:

1. Generate additional features Si, (i = 1, ..8) representing
the values of the elements within the trainfor example,
the value ”32405678” with 0 corresponding to replacing
the element at position i. The values from Train Status
will be converted to Permutation for the element restruc-
turing method.

2. The C3 method is described by values from S1 to S8 as
follows: ”23456781”. It should be noted that the values
of the sockets will be taken from the most recent mem-
brane restoration event when the system is operational.

3. Typically, maintenance methods involve system down-
time for a few days (3 - 5 days) to ensure temporal con-
sistency. In this paper, we merge these days into one,
during which the target variable receives NaN values. We
then fill in the missing values with the NDP value from
the previous period.

4. The Train Status values will be encoded using One-Hot
Encoding, which transforms categorical variables into bi-
nary vectors (0 − 1), simplifying data processing and
computation. In more detail, each categorical variable
with a set of labels L = {l1, l2, . . . , ln} is represented as
a vector vi of length equal to the number of labels in the
set, where only one element is 1 (corresponding to the
chosen label). All other elements are 0.

5. Data is normalized to the range (0, 1). For Train Status,
the paper performs One-Hot Encoding.

We employ advanced data smoothing techniques to ensure
the precision and reliability of our data analysis. These tech-
niques, namely the SavitzkyGolay filter (B, 2020) and the
Simple Moving Average (Rooij, 2022), are designed to stabi-
lize the NDP values (Figure 4). We compare the smoothing of
different smoothing methods to the original data. By smooth-
ing the data, we make it easier for the model to learn the data
trends, thereby enhancing the accuracy of our analysis.

A SavitzkyGolay filter (S-G filter) is a digital filter that can be
applied to a set of digital data points to smooth the data, that
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(a) (b) (c)

Figure 4. The Normalized Differential Pressure (NDP) values from Train 9 to Train 13, with data collected from 2015 to 2020.
The sudden decrease in NDP values occurs when the system undergoes membrane restoration interventions. We compare the
other smoothed data to the original data. Fig.4a The original data shows significant fluctuations and the presence of outliers;
Fig.4b the data smoothed using a Moving Average (MA) with a window size of 10; Fig.4c the data smoothed using a Savitzky-
Golay (SG) filter with a window size of 150 and a 4th-degree polynomial.

is, to increase the precision of the data without distorting the
signal tendency. The S-G filter operates by approximating
real values with a polynomial. Suppose we have a set xj ,
j = 1 . . . n data points. The S-G filter smooths the data using
a polynomial of degree k within a window of w data points.
This polynomial has the form: ŷi = a0 + a1z+ a2z

2 + . . .+
akz

k. z is a vector that takes values from 1−w
2 to w−1

2 , or
Ŷ = J · a, where J is the Vandermonde matrix, and a is
the coefficient of the polynomial. The coefficients a will be
solved following Equation (13).

â = argmin
a

∥J · a− Y ∥2 (13)

A Simple Moving Average (SMA) is the unweighted mean
of financial applications’ previous k data points. However, in
science and engineering, the mean is normally taken from an
equal number of data on either side of a central value. SMA
ensures that variations in the mean are aligned with the varia-
tions in the data rather than being shifted in time. An example
of a simple equally weighted running mean is the mean over
the last k entries of a data set containing n. Let those data
points be {p1, p2, . . . , pn}. The mean over the last k data
points is denoted as MA and calculated as in Equation (14).

SMA =

∑n
i=n−k+1 pi

k
(14)

4. EXPERIMENT RESULTS

The dataset used in this paper comes from the Carlsbad de-
salination plant in California that comprises 14 trains col-
lected and is pre-processing as described in Section 3.4.

For the training model, 80 % of the data in each train is used
as the training and validation dataset. The last ten percent of
each train is the testing set.

Three measures are used to evaluate the system’s perfor-
mance: RMSE (Root Mean Squared Error), MAPE, and R2.
The values are calculated for each train, and the final value is
the average value of all trains. RMSE quantifies the distance
between data points in a regression model and the actual data.
RMSE calculates the square root of the squared error aver-
age between predicted and actual values. Thus, it estimates
the average distance between data points in the regression
model and the actual data. Mean Absolute Percentage Error
(MAPE) measures the average absolute percentage difference
between actual and forecasted values, providing insights into
the forecasting model’s overall performance. R-squared (R2)
or the coefficient of determination) is a statistical measure in
a regression model that evaluates how well the data fit the
regression model.

We train the model for 400 epochs. We employ an early
stopping mechanism during training to prevent overfitting the
data. The batch size is set to 64. We use optimizer Adam
with learning rate = 0.001 to train the model, and the activa-
tion function is the ReLu function.

The proposed model is evaluated and compared to other deep-
learning models, such as LSTM, GRU, etc. All models use
the same dataset after applying the pre-processing stage, and
the optimal parameters are the number of units = 80, dropout
rate = 0.1, and kernel size of the convolution = 3.

In this paper, we designed three groups of experiments. The
first one aims to evaluate the impact of window size t on the
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prediction results of the target variable. In this experiment,
the smoothing techniques, such as the S-G and SMA filters,
have not been applied yet. Table 1 indicates that a window
size of t = 120 yields relatively stable results with RMSE =
0.629 and R2 = 0.371.

Table 1. Effect of timestamp (input length) on prediction re-
sults

Timestamp RMSE MAPE R2

90 0.843 25.041 0.157
120 0.629 22.212 0.371
150 0.917 24.021 0.087
180 0.929 28.089 0.025

The data must also be considered to evaluate the impact of
smoothing and denoising; the second experiment is designed
to assess the performance of the proposed approach with dif-
ferent smoothing methods. In the second experiment, two
filters, the S-G and SMA filters, were used with different win-
dow sizes: S-G filters (Rooij, 2022 is verified with the win-
dow of w data points corresponding to 90, 120, 150, 180 and
SMA with the value being 5, 10, 20, 30.

The proposed model provides long-term forecast days to min-
imize the accumulation of errors. The result in Table 2 is the
forecasting results over 60 days and is calculated as an av-
erage of over 14 trains of RO systems. In this experiment,
the performance of the proposed model is also compared to
another model, including LSTM, CNN & LSTM, and GRU
models.

Table 2 shows that data smoothing methods significantly in-
fluence the forecasting performance of models. Choosing a
smoothing window size w that is too short may not effec-
tively address the issue while selecting one that is too long can
potentially lead to losing important information in the data.
It can be seen that with a smoothing window size of SMA
equals 10, an increase of 6 % compared to the window size 5.
This indicates that the data is smoothed at an acceptable level,
preserving essential information and reducing the impact of
outliers. Besides, when applied experimentally, the S-G filter
yielded poor results due to over-smoothing of the data. Com-
pared to the three existing approaches (LSTM, CNN+LSTM,
GRU), it is clearly shown that the proposed TCN-based pre-
diction approach provides better results.

In addition, we conducted a third experiment group to see the
smoothing technique’s effect on each train of the RO system
more deeply. Table 3 presents the obtained results. It can
be seen that the SMA filter provides better outcomes. In Ta-
ble 3, the values across the RO trains are generally promis-
ing; however, there are still some instances where results
are less favorable, such as Train 9 with RMSE = 0.669,
MAPE = 18.331, and R2 = 0.331. To evaluate the multi-
step prediction process significantly affected by the accumu-

lation of errors, we conducted an experiment to test this. The
model outcomes are depicted in Figure 5. From the obtained
results in Figure 5, we conducted forecasts of all points in
the RO train with train data (the dataset used for training the
model, which accounts for about 80% of the RO train, and
10% each for validation and test) and the test set (the remain-
ing part). We attempted to make predictions on the entire RO
train based on the initial 120 timestamps. However, we rec-
ommend making short-term forecasts that are approximately
equal to the output range of the model.

Additionally, based on Table 2, the negative R2 (GRUs
model) value indicates that your regression model is making
worse predictions compared to simply using the mean of the
dependent variable (i.e., ŷ, Ȳ ) for predictions. This suggests
that the model may need improvement, or there might be is-
sues with data selection or preparation. Experiments with
such models often result in a straight or very poor line. R2

will be negative if the model’s predictions are worse than us-
ing the mean value of the target variable for all predictions.
This occurs when the sum of squared differences between the
actual values and the predicted values is greater than the sum
of squared differences between the actual values and the mean
value:

R2 < 0 if
∑

(yi − ŷi)
2 >

∑
(yi − ȳ)2

5. CONCLUSION

In this paper, we gained a deep understanding of the impact
of the algal bloom phenomena in seawater on seawater de-
salination membranes using RO technology, with a critical
indicator of membrane fouling being increased filtration pres-
sure. This knowledge is the base for us to continue research
and propose a deep learning-based method to predict pressure
dynamics at both ends of the RO vessel, a technique has yet
to be widely explored in this context. In addition, we metic-
ulously smoothed the data to clarify trends using Savitzky-
Golay and Moving Average filters. The experiment results of
the proposed approach over data collected from the Carlsbad
desalination plant in California, including 14 RO trains from
2015 to 2020 (over 16,000 data points), presented compelling
predictive results, opening up a promising for research and
application in the field.

ACKNOWLEDGMENT

This document is the results of the research project funded by
QG.23.71 of Vietnam National University, Hanoi

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Table 2. Comparison of forecasting methods with different smoothing methods

Method Window Proposed Model LSTM CNN + LSTM GRU

RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2

Moving average

5 0.130 6.551 0.891 0.857 25.078 0.157 1.011 25.023 -1.021 1.960 44.241 -17.982

10 0.097 3.091 0.945 0.675 12.192 0.671 0.127 6.042 0.894 1.976 44.511 -16.276

20 0.180 8.411 0.851 0.725 20.901 0.229 0.568 12.879 0.442 1.949 43.763 -12.991

30 0.251 9.891 0.723 0.877 26.981 0.114 0.564 12.943 0.421 1.901 43.671 -11.143

Savitzky-Golay filter

90 0.138 8.212 0.857 1.037 29.891 -0.112 0.431 12.591 0.572 2.571 50.112 -43.951

120 0.177 8.156 0.871 0.769 16.901 0.241 0.376 12.912 0.670 2.522 48.687 -40.112

150 0.098 3.521 0.919 0.704 14.768 0.299 0.138 6.621 0.871 2.438 46.112 -31.112

180 0.101 4.023 0.904 0.767 16.872 0.243 0.893 22.119 0.084 2.429 46.991 -32.651

Figure 5. The proposed model results when applying recursive forecasting on both training and testing data, using S-G filter
(left) and SMA (right). The proposed model takes several days to forecast for the next few days.

Table 3. Performance of the proposed approach on each train (above 1300 days in all RO trains) using S-G filter (w = 150,
degree poly = 4) and Moving Average (w = 10)

S-G filter Moving average
Train number RMSE MAPE R2 RMSE MAPE R2

1 0.106 6.648 0.872 0.099 4.924 0.924
2 0.098 4.803 0.930 0.090 2.713 0.979
3 0.062 2.617 0.984 0.050 1.108 0.996
4 0.269 9.886 0.731 0.119 6.222 0.850
5 0.078 6.498 0.967 0.101 3.493 0.920
6 0.128 6.767 0.863 0.051 1.408 0.992
7 0.122 6.123 0.882 0.080 3.023 0.949
8 0.122 6.172 0.881 0.178 8.895 0.846
9 0.288 9.963 0.712 0.669 18.331 0.331
10 0.119 5.999 0.888 0.055 1.519 0.991
11 0.061 2.049 0.989 0.074 2.390 0.971
12 0.379 12.628 0.674 0.389 12.428 0.678
13 0.127 6.733 0.868 0.079 6.525 0.964
14 0.321 11.803 0.682 0.185 6.913 0.838

Average 0.162 7.049 0.851 0.158 5.706 0.873
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