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ABSTRACT

Battery systems are increasingly being used for powering
ocean going ships, and the number of fully electric or hy-
brid ships relying on battery power for propulsion and ma-
neuvering is growing. In order to ensure the safety of such
electric ships, it is of paramount importance to monitor the
available energy that can be stored in the batteries, and clas-
sification societies typically require that the state of health
(SOH) of the batteries can be verified by independent tests
annual capacity tests. However, this paper discusses physics-
informed data-driven approaches to online diagnostics for
state of health monitoring of maritime battery systems based
on a combination of physical knowledge, physic-based mod-
els, insights from extensive characterization tests and opera-
tional sensor data collected from the batteries during actual
operation. This represents an alternative approach to the an-
nual capacity tests for electric ships that is found to be suffi-
ciently robust and accurate under certain conditions. Previous
attempts with purely data-driven models, including both cu-
mulative and snapshot models, semi-supervised learning and
simple models based on the state of charge did not achieve
the required reliability and accuracy for them to be utilized
in a ship classification perspective, as presented at previous
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PHM conferences. However, preliminary results from the
physics-informed data-driven method presented in this paper
indicate that it can be relied on for independent verification of
state of health as an alternative to physical tests. It has been
tested on battery cells cycled in laboratory degradation tests
as well as on field returns from batteries onboard ships in ser-
vice. Notwithstanding, further validation and verification of
the method is recommended to further build confidence in the
model predictions.

1. INTRODUCTION

The safety of battery-powered ships is important, and classi-
fication societies have rules for the safe design, construction
and operation of such ships. One crucial aspect of the safety
of electric ships is to ensure that sufficient energy is stored
in the batteries to cover the required demand for the intended
operation (Hill et al., 2015). Loss of propulsion power in a
critical situation can lead to serious accidents such as colli-
sion or grounding. Therefore, robust estimation and predic-
tion of the actual available energy of a battery is crucial for
ship safety.

Batteries are aging and the energy storage capacity degrades
over time. The aging process affects both the amount of
charge that can be stored and the available power. Most mar-
itime battery systems are designed with an expected lifetime
of 10 years and end of life is typically defined as State of
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Health (SOH) = 70-80%, where SOH stands for the ratio of
remaining capacity to initial capacity (in %). Ships, on the
other hand, are typically design for 25-30 years. Hence, bat-
teries are expected to approach their end of useful life (EOL)
long before the end of the operational life of the vessels. In
such a context, reliable estimation of SOH will become in-
creasingly important as the battery systems approaches its
EOL and making correct decisions on remaining useful life
(RUL) will have great financial and safety implications.

Currently within the maritime Industry, the commonly
adopted approach for evaluating the real-time capacity of
an onboard battery system is by considering the State of
Charge (SOC) and the State of Health (SOH): Available
energy = Initial Capacity x SOC x SOH. A major part of
such an estimation will be a reliable evaluation of the battery
State of Health, which is challenging. Currently, battery
suppliers are required to have an SOH estimation algorithm
and to regularly verify the SOH annually through in-situ
capacity testing. From a practical point of view, the annual
capacity test is time consuming and typically requires that
the ship is taken out of operation for one full day. More-
over, the accuracy of the test is questionable due to several
factors influencing the results, such as variability in loads,
temperatures and Depth of Discharge (DOD). As ship-to-
shore connectivity has improved immensely over the past
few years it is natural to evaluate whether a sensor-based
monitoring system can used for diagnostics in order to both
reduce downtime for the operator and improve the quality of
the SOH verification.

A review of different methods for data-driven diagnos-
tics of maritime battery systems were presented in Vanem,
Bertinelli Salucci, et al. (2021); Vanem, Alnes, & Lam
(2021). According to this review, data-driven methods for
estimating battery capacity can be categorized into a few
generic type of approaches. Additionally, a distinction was
made between models that rely on the complete loading his-
tory of the batteries in order to estimate current state of health
– cumulative methods – and what was referred to as snap-
shot methods, where state of health and capacity can be es-
timated based on only snapshots of the data. Other recent
reviews of state of the art methods for condition monitoring
and data-driven state of health prediction can be found in e.g.
Berecibar et al. (2016); Ungurean et al. (2017); Xiong et al.
(2018); Lipu et al. (2018); Pastor-Fernández et al. (2019); Li
et al. (2019); Huixin et al. (2020).

Some recent approaches involving the combination of data
and equivalent circuit models (ECM) for estimation of state
of health are reported in e.g. Chen et al. (2023); Yang et al.
(2023); Hu & Qian (2024), see also the overview presented
in Shu et al. (2021). Previous models based on open circuit
voltage (OCV) for state of health prediction are presented in
e.g. Weng et al. (2014); Bian et al. (2020, 2022); Noh et al.

(2023), see also Yu et al. (2018); Meng et al. (2020); Wang et
al. (2023); Zhou et al. (2024) for related work on estimating
the OCV curve.

This paper presents physics-informed data-driven approaches
to state of health modeling for maritime battery systems. The
overall idea is to use sensor data from batteries to learn the
degradation state of the batteries without the need for specific
testing or characterization cycles. If successful, data-driven
approaches may replace the need for annual capacity testing
to verify SOH according to class rules. This paper extends
previous attempts that were purely data-driven. As it turned
out, purely data-driven approaches left something to be de-
sired in terms of accuracy and computational efficiency to be
recommended for implementation onboard maritime batter-
ies, either for cumulative methods or snapshot methods, as
outlined in e.g. Liang et al. (2023); Grindheim et al. (2024);
Vanem, Bruch, et al. (2023); Bertinelli Salucci et al. (2023);
Vanem, Liang, Ferreira, et al. (2023). However, by com-
bining physics-based insight with data-driven methods, it is
possible to achieve reasonable results, as outlined in this pa-
per. Hence, this paper continues the story from previous pa-
pers presented at the PHM conference Vanem, Alnes, & Lam
(2021); Vanem et al. (2022); Vanem, Liang, Ferreira, et al.
(2023), and presents the final chapter with the final recom-
mendations.

It is important to note that different approaches set different
requirements for the data. For example, most approaches re-
quire training data to train the data-driven models, whereas
some approaches can do without training data. If training
data are required, they obviously need to be representative of
typical operational data, and should preferably correspond to
identical cells as the system it should be applied to. This is
among the considerations that need to be made when com-
paring and recommending which models to use for data-
driven classification of the batteries. Other factors to con-
sider, apart from the predictive performance, include amount
of data needed, the sensitivity to missing data and the compu-
tational costs.

The main contribution from this paper is the presentation of
a novel physics-informed data-driven approach that combines
physical insight with operational data to provide reliable state
of health estimation of maritime battery systems based on
sensor data and without the need for special tests.

2. BATTERY DATASETS

Different sets of data have been available for analysis and
modeling in the project. These include laboratory data gener-
ated by the project, proprietary data from actual ships in oper-
ation and some publicly available datasets. For a more com-
plete description of these datasets, references is made to data
descriptions in a previous PHM conference paper Vanem,
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Liang, Ferreira, et al. (2023), and a brief summary is pre-
sented in the following.

2.1. Laboratory Cycling Data

Three different types of battery cells have been subject to lab-
oratory cycling tests in order to generate degradation data
for the cells. Two types of cylindrical 18650 cells, i.e. en-
ergy cells (henceforth denoted DDE; nominal capacity 3.5
Ah) and power cells (henceforth denoted DDP; nominal ca-
pacity 2.5 Ah), and one type of pouch cells (henceforth de-
noted DDF; nominal capacity 64 Ah) have been cycled ac-
cording to specified test matrices. Individual cells have been
cycled within specified lower and upper voltage limits, with
specified charge and discharge currents, and at specified con-
trolled temperatures. Varying these parameters yields differ-
ent degradation rates. This continuous cycling is interrupted
at regular intervals to perform check-ups and capacity mea-
surements, i.e. pulse tests and charge and discharge capacity
measurements by way of Coulomb counting over deep cycles
at low current rates. Hence, capacities will be measured at
certain points in time for all cells.

Values of current, voltage and temperature are sampled con-
tinuously, resulting in time-series of these variables through-
out the experiment. From these raw measurements, different
derived variables can be calculated as well, such as cumu-
lative throughputs, cycle counts and equivalent full cycles.
Measurements are obtained from a total of 81 individual cells;
35 DDE cells, 30 DDP cells and 16 DDF cells. The cells in
this experiments have been charged and discharged according
to a constant-current-constant voltage (CCCV) scheme: the
cells are charged/discharged with constant current until the
cut-off voltage, where the cells continue to charge/discharge
at constant voltage with a current that gradually decreases to-
wards zero.

2.2. Field Data From Ships in Operation

Field data from electric ships with a battery system of pouch
cells of type DDF have been available for this study. These
battery systems are designed with a 4-layer structure; individ-
ual cell-pairs connected in series make up modules, modules
connected in series form packs and several packs connected
in parallel make up an array. A ship may have one or more ar-
rays connected in parallel as independent energy storage sys-
tems that do not communicate directly, and any combination
of packs in an array can be powered off during operation.
Raw data from these systems include the pack voltage and
current for all packs as well as the cell voltage, temperature
and State of Charge (SOC) for all cells (or rather, cell-pairs).
Since modules and cell-pairs are connected in series within
a pack, the current will be the same for all series elements
in that pack. However, it will not be possible to distribute
this current over the two cells in a series element. Hence, for

all practical purposes, the cell-pairs will be considered the
smallest entities of the system, i.e. cells. Moreover, whereas
currents, voltages and temperatures are measured directly by
sensors, SOC is a derived quantity that needs to be calculated
from the other raw sensor measurements.

Operational data from 6 different ships with the same battery
system on board have been available for this study. These
ships include both hybrid and all-electric solutions and with
different configurations (different number of arrays and packs
per array). All of these systems are relatively new, without
having experienced extensive degradation. Results from an-
nual capacity tests are available, and all vessels had under-
gone at least two such tests by the time of this study.

Additional data from an older battery system have been ana-
lyzed in this study. These have different types of battery cells,
but with the benefit of longer time histories. However, data
quality is somewhat lower, and there are more and longer data
gaps compared to the newer system. Data from these systems
are referred to as Site A, Site B and Site C and include data
from three different vessels.

3. DATA-DRIVEN STATE OF HEALTH ESTIMATION
UTILIZING PHYSICAL PRINCIPLES

In this section of the paper, a description of various physics-
informed data-driven approaches that have been explored in
this study will be presented. They represent continuous re-
search efforts that was made to improve on more purely data-
driven methods that was found to lack in accuracy and com-
putational efficiency, e.g. cumulative methods that are too
data greedy and computationally heavy Liang et al. (2023);
Grindheim et al. (2024), snapshot methods that did not
achieve the desired accuracy Vanem, Bruch, et al. (2023) and
reliability and semi-supervised approaches Bertinelli Salucci
et al. (2023) that were tried out due to lack of training data,
see also Vanem, Liang, Ferreira, et al. (2023); Vanem et
al. (2024). By exploiting physical knowledge, the need for
training data can also be relaxed, something of great value
since reliable training data is scarce and time-consuming and
expensive to generate. In this paper, two preliminary ap-
proaches will be presented before arriving at the final method
that ended up being recommended and implemented for ac-
tual use on ships in operation.

All of the methods presented in this paper exploit the funda-
mental relationship between integrated current and change in
state of charge (SOC), i.e. Coulomb counting. That is, the re-
lationship between the total capacity Q and change in state of
charge SOC of a battery between times t1 and t2 is described
by the following equation:∫ t2

t1

ηI(τ)dτ = Q (SOC(t2)− SOC(t1)) (1)
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where I(τ) is the battery current at time τ measured in am-
peres, which is defined as positive when charging and nega-
tive when discharging, and η is a unitless Coulomb efficiency
factor. For simplification, η ≈ 1 may be assumed.

3.1. Simple Linear Models Based on Coulomb Counting

A simple linear model based on Coulumb counting was pro-
posed by Plett (2011), which formulated eq. 1 as a linear
regression problem,

Y = QX + ε, (2)

with Y =
∫ t2
t1

ηI(τ)dτ and X = SOC(t2) − SOC(t1).
By collecting data for Y and X the regression coefficient Q
can be estimated by different methods, such as ordinary least
squares (OLS) and total least squares (TLS), to yield an es-
timate of the total capacity of the battery. Note that the re-
gression model does not have an intercept; when there is no
current, or when the integrated current is zero, there should
also not be any change in SOC. Hence, in principle, one ob-
servation of concurrent (X,Y ) should be sufficient to give an
estimate of the regression coefficient.

Initial attempts with a simple ordinary least squares (OLS)
implementation of this method was presented in Vanem,
Liang, Ferreira, et al. (2023); Vanem et al. (2024), and ex-
tended to total least squares variants in order to account
for the attenuation bias in OLS Kejvalova (2022); see also
Vanem, Liang, Bruch, et al. (2023) for a Bayesian implemen-
tation of this model. However, changes in loading conditions
were not appropriately accounted for, leading to variable re-
sults, in particular for the operational data from ships in op-
eration.

3.2. Ensembles of Simple Linear Models

In an attempt to remedy this, an ensemble of such simple lin-
ear models were tried out on different subsets of the data.
The fundamental approach is similar as above, and the lin-
ear model for the relationship between integrated current and
change in state of charge is assumed. However, rather than
simply integrating the current between arbitrary time points,
some more careful filtering and pre-processing is applied. In
particular, different linear models are applied to segments of
the charge and discharge between specified voltage ranges
only. Moreover, individual estimates are obtained from pure
charging and pure discharging segments only, as well as es-
timates from the joint charge and discharge segments. This
yields various estimates of capacity/SOH for the different
time periods. These can again be averaged in order to obtain
one unique estimate, and two types of averaging is applied.
That is, normal averaging and weighted averaging, where the
weights are defined as the reciprocal of the standard deviation
of the individual estimates. Hence, an estimate with a large

standard deviation will get lower weight than an estimate with
less uncertainty.

These battery systems are typically operated between 4.0 and
3.6 Volts (with cut-off voltages at 3.0 and 4.2 V, but hardly
experiencing these voltages in normal operation), hence four
voltage ranges are specified in this study:

• From 3.65 to 3.7 V
• From 3.7 to 3.8 V
• From 3.8 to 3.9 V
• From 3.9 to 4.0 V

This gives rise to potentially 8 point estimates for each time
period selected: one for each voltage range for charge dis-
charge and jointly, respectively.

The implementation of this method involves the following
steps and model choices: First, one need to define the time in-
tervals on which to do the analysis from the continuous time-
series. That is, how long time periods to include data from,
and how far apart they should be. In this study, data from 14
days are included with 3 months apart. Hence, 14 days snap-
shots every three months are used to get 3-monthly capacity
estimates. Some additional filters are applied to the extracted
data. First, any segments containing NA values for current,
SOC or the timestamp will be ignored, since this would make
the current integral and the change in state of charge un-
reliable. Moreover, empty segments are removed from the
data. Then, charge and discharge segments within the spec-
ified voltage ranges are identified by finding the down- and
up-crossing of the different voltage levels. The segments
between subsequent down (up)-crossings of the upper and
lower voltage level are found and this yields several partial
charge and discharge segments that are analyzed with the lin-
ear model separately.

Some additional filters are applied to these subsets of the data.
First, more than two up- and down-crossings are required.
Then, data where the time between any two recordings are
too great will be ignored. This is to ensure that correct cur-
rent values are used in the integration (e.g. if two subsequent
current-measurements are far apart in time, the integral could
be inaccurate). For the results reported herein, the maximum
lag between two consecutive measurements is set to 3 min-
utes (180 seconds). Finally, all segments with less than 10
observations are ignored.

Additional optional filters can be applied, e.g. filter on
temperature (remove data that have experienced tempera-
tures higher than a specified maximum temperature), filter on
monotonicity (that is, ignore all segments that are not mono-
tonic). An optional factor on C-rate is also included in the
implementation, i.e. it is possible to apply a multiplicative
factor to account for differences in capacity from variations
in C-rate. However, in this study, temperature filters or C-rate
factors have not been applied. Finally, a filter is applied that
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removes data-pairs where the sign of integrated current and
change in state of charge are different.

One example of data extracted from an arbitrary selected cell
is shown in Figure 1. Extracted segments of the discharge and
charge curves between the specified voltage levels are shown
to the left. The legend indicates the number of data segments
with correct and incorrect sign of integrated current. In this
example, there are 29 segments for discharge and 7 segments
of charge, all with the same sign of change in state of charge
and integrated current. Hence, all data are used in the analy-
sis. These data gives rise to 36 datapoints to fit linear models,
and three different models are fitted, as indicated in the plot to
the right: one model using only the charge datapoints, one us-
ing only discharge and one model for the joint data of charge
and discharge. A line corresponding to the nominal capacity
of the cell is also shown in the figure.

In this way, several simple linear models yields various es-
timates of capacity for each cell and for each selected time
period. For some time-periods, only some of the linear mod-
els are applied due to the filters applied, but for most of the
time-periods there are several estimates available. Capacity
estimates obtained this way are plotted over time in Figures
2, 3, 4, indicating a clear decreasing trend. In addition to the
individual estimates from the different linear model, the mean
and the weighted mean from all time periods are included.
Also, the results from the annual capacity tests, are indicated
in the plot, showing general agreement with the results from
the linear model.

Note that results are generally better for vessels C and E com-
pared to vessel A. In particular, the predicted SoH around
the first annual capacity tests is considerably higher than the
test results, whereas results are in better agreement for the
second annual test. It is not obvious why this is the case,
but one possible explanation could be related to the fact that
vessel A is a hybrid vessels, whereas C and E are fully elec-
tric ferries. Presumably, all-electric vessels have more regular
charge-discharge schedules and it is expected that predicting
SoH based on sensor data for such vessels are easier than for
hybrid vessels, with more variable charge-discharge patterns.
It may also be that the results from the first annual test for
this particular vessel are too low; indeed a SoH around 90%
seems very low after one year of operation. In summary, it
appears that predictions based on ensembles of simple linear
models yields reasonable results for two of the three vessels,
compared to results from annual tests. However, proper vali-
dation of such an approach is difficult without more data from
ships with older systems that have experienced a higher de-
gree of degradation and more annual test results.

One problem with the simple linear model, that can also ex-
plain the variable results, is the dependence of SOC. SOC is
not directly measured, but is a derived quantity. It is assumed
that SOC is less challenging to estimate accurately than SOH,

but the variable results from methods relying on SOC indicate
that it might not be accurate enough to be used in data-driven
methods. As an attempt to remedy this, models based on the
open circuit voltage will be explored next.

3.3. Methods Based on Open Circuit Voltage

The OCV based method utilizes the correlation between a
battery cell’s capacity and its open circuit voltage (OCV), i.e.,
the voltage across the cell’s terminals when no electric load is
connected. The OCV is increasing with SOC and its shape is
not linear but has different slope changes that originate from
the utilized active material in the cell (see figure 6). Apart
from this useful relationship with the state of charge there is
only a small influence of temperature and SOH. The obvious
challenge, however, is to determine the OCV when the cell is
not at rest. Therefore, an equivalent circuit model (ECM) can
be deployed to describe the overpotentials and then subtract
them from the measured signal. Once this has been done, all
that is required is to correlate the determined OCV with the
known curve and the capacity measured during operation can
be correlated with the SOC. Based on this relationship the
Capacity value at 100% SOC can be calculated and its rela-
tion to the nominal capacity gives the SOH. Ideally the only
necessary prior knowledge for the method is the OCV-SOC-
curve.

To obtain the OCV, an ECM with a serial resistance and three
RC elements is used. The time constants are set to 10, 100 and
1000 seconds. The values of the resistors are matched to the
monitored voltage (Usignal). Therefore, the voltages of a cer-
tain period of analysis (here one day) are sorted into nCgroups

groups according to their capacity (see example capacity sec-
tion in figure 5). Then one can subtract the ECM’s voltage
from the measured voltage values and minimize the differ-
ence between those voltages and the average voltage value
within the groups (Uaverage) by the adjustment of the resis-
tance values (Rs, R1, R2, R3). In other words, values are de-
termined that reduce the voltage fluctuation within a narrow
capacity range to a minimum. A least squares algorithm is
used for this task.

min
RsR1,R2,R3

nCgroups∑
i=1

|Ui signal − Ui ECM − Ui average| (3)

The known OCV-curve is fitted to the obtained voltage, that
is cleaned from the overpotential (quasi OCV). Therefore, the
simulated overpotential voltage is subtracted from the mea-
sured voltage and the average in each capacity window is
used to match the OCV-curve. Two parameters are defined
for the approximation. One for the capacity offset, since the
OCV-curve starts at a fully discharged state and the lowest
capacity respectively SOC in the measured data is certainly
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Figure 1. Example of data segments for an arbitrary cell within a specific voltage range and how it is used to fit a simple linear
model. Segments of discharge and charge curves between 3.7 and 3.8 V (left) and linear models fitted to corresponding data of
integrated current and change in state of charge (right)

Figure 2. Examples of capacity predictions from the simple linear model for some arbitrary cells from vessel A.
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Figure 3. Examples of capacity predictions from the simple linear model for some arbitrary cells from vessel C.

Figure 4. Examples of capacity predictions from the simple linear model for some arbitrary cells from vessel E.
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Figure 5. Measured voltage (blue line) plotted against the ca-
pacity (calculated by ampere-hour counting) of a battery cell
in vessel D. The orange line represents the monitored voltage
after subtracting the overpotential calculated with the approx-
imated ECM. The black points correspond to the average of
the cleaned voltages in each of the capacity sections.

higher. The second parameter scales the SOC range to the ca-
pacity range, where the 100% SOC value corresponds to the
momentary maximum capacity of the cell. This maximum
capacity value divided by the nominal capacity value gives
the SOH.

min
p1,p2

|Uaverage − UOCV (p1, p2)| (4)

On closer inspection, the OCV is actually a result of the su-
perimposed potential curves of the cell’s electrodes. The cells
voltage and in an idle state the OCV corresponds to the differ-
ence between the potential of the positive electrode (cathode,
here NMC) and the negative electrode (anode, here graphite).
Birkl et al. (2017) shows how different aging modes (loss
of active material LAM at each of the electrodes and loss
of lithium inventory LLI) change the shape of the OCV. Or
vice versa, how the shape of the OCV can be used to ob-
tain the LAM and LLI. Analog to the approximation with a
predefined OCV-curve, the curves of the negative and posi-
tive electrodes potential (ENE and EPE) can be placed with
two parameter (p1, p2 and p3, p4) for each electrode in such a
way that the resulting OCV matches the obtained quasi OCV
points.

UOCV EP (p1, p2, p3, p4) = EPE (p3, p4)− ENE (p1, p2)
(5)

min
p1,p2,p3,p4

|Uaverage − UOCV EP (p1, p2, p3, p4)| (6)

Figure 6. The known OCV (green) is matched to the ob-
tained quasi OCV points (black). This allows one to deter-
mine the offset, but most importantly, of course, the total ca-
pacity amount.

Figure 7. The electrode potentials are placed in a way that
results in a match of the OCV (green dashed line) and the
cleaned voltage signal. This allows not only the capacity but
also LAM and LLI to be determined.

The electrode potential (EP) method is used to calculate the
SOH of one specific battery cell in 4 of the vessels moni-
tored in the project (see figure 8). In addition, the SOC-based
method (total least squares) is used as a comparison. Since
the values of all three SOH-estimators scatter, a running av-
erage is calculated over 21 points respectively days. If there
was a gap in the recorded data or not a meaningful usage of
the battery, that day or analysis interval has been excluded.

Figure 8 shows that there is a significant difference in the esti-
mated SOH between the methods. However for vessel A and
E the SOC-based and the OCV-based method have a similar,
partially overlapping trend. This is surprising, since the OCV-
based and EP-based method are related much closer. On the
other hand, the SOC estimation is based on a Kalman filter
based approach, that also uses an ECM and the SOC-OCV
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Figure 8. Overview of the SOH estimations for one cell in the
various Vessels and comparison with the SOH test.

relationship to correct the ampere-hour counting, so a distant
relationship can be assumed as well. Of course, the main
task of the estimator is to determine the SOH and make the
costly capacity test on board the ship obsolete. The compari-
son with those measurements show a mixed result. While the
outcome of the second test of vessel D and E match the EP-
based estimations, the other measurements show a meaning-
ful deviation. Unfortunately, the other estimation procedures
also show a mostly inaccurate behaviour. Another evident is-
sue is the big spread of the daily estimates. Figure 9 gives an
overview of the deviations.

Figure 9. Histogram of the scattering of the methods estima-
tion compared to the running average. The dashed black lines
indicate the aspired precision limits.

The unsatisfying mostly mismatching estimates show a very
questionable accuracy and a clear lack in precision. This
makes further development necessary. Contrariwise, success
seems not guarantied since the voltage signal might not pro-
vide enough significant information for a reliable execution
of the OCV- or EP-based process. A longer, purposeful se-
lected analysis window might be an improvement over a daily
estimate. The scattered results also point to an over-fitting is-
sue. But the model is well selected and has a good theoretical

background. Therefore, regularization would be a construc-
tive countermeasure against the spreading. These two points
should be considered in future activities before a conclusive
verdict can be rendered. The methods advantages like mini-
mal prior knowledge and the possibility to obtain more then
just the SOH (LLI, LAM, internal resistance), that in turn al-
lows an assessment of the ability to provide power (not just
capacity like SOH) or a better forward-looking SOH predic-
tion, justify further ambitions.

In the following subsection, an extension of this method
based on extensive characteristics tests to account for vari-
ations in current and temperature, among other things, will
be presented.

3.4. Methods Based on Equivalent Circuit Models and
Extensive Characteristics Tests

Equivalent circuit models (ECM) are often employed in bat-
tery management systems (BMS) due to their easy imple-
mentation and computational efficiency. They rely on ex-
perimental protocols to estimate cell properties such as the
correlation between Open Circuit Voltage (OCV) and State
Of Charge (SOC), and internal resistance. Nevertheless, the
experimental and computational burden associated with im-
plementing such models are significantly smaller than more
complex models such as single particle models and Doyle-
Fuller-Newman models.

ECMs represent the instantaneous and transient processes in-
side a lithium ion battery using circuit elements. Such a
model is presented in Figure 10. The open circuit voltage
of the cell is generated by the OCV element and the internal
Ohmic resistance by the R0 resistor. R1|C1 and R2|C2 rep-
resent transient processes in the cell at different timescales.
T contains a thermal model, and h represents hysteresis ef-
fects when the values of the other elements may depend on
the charge and discharge history of the cell.

The cell ECM defines a set of five states, (7), where SOC is
cell state of charge, and U1 and U2 is the voltage drop over
R1|C1 and R2|C2, respectively. h and T is the previously
mentioned cell hysteresis level and cell temperature.

x =


SOC
U1

U2

h
T

 (7)

Each circuit element depend on the cell states and conditions.
E.g., the open circuit voltage and internal resistance typically
depend on SOC, SOH , T , and h, and this may be modelled
with lookup tables or estimated from real data.

The cell voltage and the overpotential (OP) are given by (8)
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R1

C1

R2

C2

hT

Figure 10. Schematic overview of an equivalent circuit model, containing an open circuit voltage element (OCV ), cell internal
resistance (R0), transient processes (R1|C1 and (R2|C2)), an hysteresis model (h) and a thermal model (T ).

and (9)

V = OCV (x) +OP (8)
OP = IR0 (x) + U1 + U2 (9)

The states change according to a set of differential equations,
(10), where I is the cell current, η is the Coulombic efficiency
of the cell, Cnom is the nominal capacity of the cell, α and β
are parameters of the thermal model, Ta is the ambient tem-
perature surrounding the cell and fh is a function defining the
cell hysteresis model. R1, R2, τ1 and τ2 are the resistances
and time-constants of (R1|C1) and (R2|C2) presented previ-
ously in Figure 10. R0 is the electrical resistance in the cell.

∂x

∂t
=



η I
SOH×Cnom

IR1(x)−U1

τ1(x)

IR2(x)−U2

τ2(x)

fh (x, I)

αR0 (x) I
2 − β (T − Ta)


(10)

3.4.1. Method overview

The ECM-based SOH analysis is based on the estimation of
the states OP and h which allows the lookup of SOC, and
hence calculating the depth of discharge DOD = SOC2 −
SOC1 and consequently the actual capacity from Coulomb
counting. Integrating (10) between two SOC values leads to
the correlation

SOH × Cnom × (SOC2 − SOC1) = η ×
∫ t(SOC2)

t(SOC1)

I dt

(11)

which one may use to estimate SOH. Unlike the BMS, the
algorithm presented herein runs offline; It makes use of the
large available data to clean and filter out unnecessary data
points and find the optimal anchor points that guarantee the

most accurate SOH estimation. Besides, the computational
limitations do not pose a problem. The ECM based algorithm
consists of the following steps:

1. Initialization: prepare the lookup tables; configure the
analysis; get the battery system size and units.

2. In a user-guessed period, query the pack-current data and
find the optimal data analysis window.

3. Query and synchronise the voltage and temperature data
for all cells within the pack; verify the data quality, then
clean and correct the data.

4. Identify the optimal anchor points for the top charge and
discharge cycles; i.e. deepest peak-to-peak Coulomb
counting, most relaxed min(OP ), shortest duration, and
most converged |h| → 1.

5. Estimate state priors ÕP (t), h̃(t), ˜OCV (t), and ˜SOC(t)
using the anchor points and SOC-independent ECM
simulation through R0(SOC), R1(SOC), R2(SOC),
C1(SOC), and C2(SOC).

6. Simulate the ECM and calculate the posteriors OP (t),
h(t), OCV (t), SOC(t), and SOH .

7. Calculate the confidence intervals using all sources of
data and model inaccuracies through error propagation.

3.4.2. Verification on operational field data

In this section we consider data from operational systems in
field. This is key in the evaluation strategy, as it allows us to
capture any implications that only arise in field, e.g. related
to operational constraints, data quality etc. In total, we have
validated the ECM based SOH calculation in field against lab
capacity checkup for 64 cell-pairs. They originate form 6
different modules at 5 different sites.

For field data evaluation, we do the following steps:

1. Calculate SOH from operational data in field for selected
modules

2. Fetch those modules from the field and send them to one
of Corvus’s research labs.

10
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3. Run the field return modules through lab capacity check-
ups (100 % to 0 % SOC)

4. Compare the SOH calculated form operational data with
the SOH from the capacity checkup in lab.

Field validation scenario #1

Here we consider a module from a hybrid ferry which got
79.7 % SOH in the lab capacity checkup. The ECM based
SOH was calculated from operational data one month earlier.
The SOH was calculated on a cycle with DoD in the range 40
- 50 %. The ECM based SOH for the module was 79.7 %.
The timeline of the process is show in Figure 11

Figure 11. Timeline of the field return process in validation
scenario 1

The module SOH is given by the lowest cell SOH in the mod-
ule. Figure 12 compares the individual SOH results for each
cell in the module. SOH estimated from operational data was
lower than what was obtained in the lab for 9/12 cells. The
cell with the largest error underestimated the actual SOH with
1.1 %.

Figure 12. Results from field validation scenario 1. Estima-
tion from operation data underestimated SOH in 9/12 cells
when compared to results obtained in the lab.

Field validation scenario #2

Here we consider a module from a hybrid bulk carrier vessel
which got 93.25 % SOH in the lab capacity checkup. Figure
13 compared the SOH values calculated from operational data
and in the lab. The ECM based SOH was calculated from op-
erational data one week before the module was fetched from
field. In this scenario, the vessel performed a deep discharge
and charge according Corvus SOH field test procedure, cy-
cling the system from 80 % SOC to 20 % SOC with 15 min
zero-current rest periods between the discharge and charge.
The ECM based SOH for the module was 93.50 % SOH. The
cell with the largest error underestimated the actual SOH with

0.3 %. SOH estimated from operaitonal data was underesti-
mated in 8/12 cells.

Figure 13. Results from field validation scenario 2. SOH-
estimation from operational data underestimated SOH com-
pared to lab-measurements in 8/12 cells.

Field validation scenario #3

Here we consider a module from the same vessel as in the sec-
ond scenario. The SOH-values estimated from operational-
and lab data are show in Figure 14. This module got 92.38
% SOH in the lab capacity checkup. The module is from the
same vessel as field validation scenario #2. The ECM based
SOH for the module was 92.85 % SOH. The cell with the
largest error underestimated the actual SOH with 0.9 %.

Figure 14. Results from field validation scenario 3. Estima-
tion from operational data underestimated SOH in all cells.

Field validation scenario #4

Here we consider a module from a shore station. The mod-
ule was disassembled in the lab, and four cells were tested
individually. The resulting SOH error was in the range 1- 2
%.

Field validation scenario #5

Here we consider a module from a fully electric ferry which
got 83.8 % SOH in the lab capacity checkup. Figure 15 com-
pares the SOH values calculated in the lab capacity checkup
to those calculated using the ECM model. There was a delay
of more than 6 months between the last available field data
and the lab capacity checkup The delay was due to first the
pack being disconnected for 6 months (hence no cycles to cal-
culate SOH), before it was fetched from field and was stored
for additional months before the capacity checkup in lab was
completed. The module was replaced due to deviating volt-
ages on cell pair 12. As expected, the ECM based SOH calcu-
lated higher SOH values, especially on cell pair 12. A defect
in this cell pair may cause accelerated degradation, possibly
explaining the larger error between ECM based SOH and lab
capacity checkup. The example illustrates the importance of
a short delay between SOH calculation on operational data
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Figure 15. Results from field validation scenario 5. Esti-
mation from operational data overestimated SOH in all cells.
Almost 1 year storage of module between ECM based SOH
calculation and lab capacity checkup.

Figure 16. Results from field validation scenario 6. Estima-
tion from operational data underestimated SOH in all cells.
Almost 1 year storage of module between ECM based SOH
calculation and lab capacity checkup.

and lab capacity checkup, despite practical difficulties in re-
trieving modules from field.

Field validation scenario #6

Here we consider a module from a shore station which got
73.7 % SOH in the lab capacity checkup. The ECM based
SOH values presented in Figure 16 was calculated on oper-
ational data (DOD 40 %) over a period of almost 9 months,
resulting in an estimated value of 76.1 %. This scenario high-
lights that the uncertainty of the result increase as the avail-
able data for the ECM calculation has lower DoD.

4. DISCUSSION

The results in this paper has demonstrated that by carefully
constructing data-driven methods that exploits fundamental
physical knowledge and utilizes results from extensive char-
acterization tests, it is possible to obtain accurate and reliable
capacity estimation based on collected sensor data without
additional training of the data-driven models. Previous stud-
ies have shown that purely data-driven approaches might not
be sufficiently accurate Vanem, Liang, Ferreira, et al. (2023),
but by combining data-driven methods with the physical prin-
ciple of Coulomb counting and an appropriate equivalent cir-
cuit model, results can be improved significantly, see also the
summary in Vanem et al. (2024).

The simple linear model based on Coulomb counting is very
attractive, since it needs not be trained and it can be used
on snapshots of the data. However, it turned out difficult
to get sufficiently accurate results, most likely due to the
dependence on SOC and the uncertainties associated with
this derived quantity. Ensemble methods and various filters
could improve the results, but the dependency on SOC re-
mains challenging. To avoid the strong dependence of SOC,

an extended method that rather relates capacity to OCV was
developed. This method utilizes a simple ECM to estimate
OCV from voltage measurements during cycling. Then, an
OCV-SOC curve is used to fit the estimated OCV and esti-
mate capacity. All model parameters in such a model can be
fitted based on snapshots of the data, and the only prerequi-
site is that the OCV-SOC curve is known. This can be found
from characterization tests. Initial results with this method
yield variable results, although average predictions are rea-
sonable. However, by supplementing such an approach by
comprehensive look-up tables from characterization tests to
account for temperature and current effects, and by carefully
fine-tuning the ECM model, reasonable SOH estimates can
be obtained. This approach provides reasonable estimates
from operational data provided that deep enough cycles are
included in the data. Hence, this approach can be used to
improve the annual capacity test, which may be performed
based on normal operational data without requiring a specific
test protocol or disruption of operations. Some requirements
regarding DOD might be needed, but this can presumably be
achieved during normal operation. In summary, this is be-
lieved to be the most promising method explored in this re-
search, and it can be proposed for data-driven verification of
SOH for ship classification. In fact, this method has already
been used in actual verification of capacity for electrical ships
in operation, as presented in a recent press release1.

The provided comparisons of SOH estimated from field data
and from lab measurements highlight the importance of high
depth of discharge (DOD) for accurate estimation. Estimation
from a DOD around 60% resulted in errors below 1%, while a
DOD of 40% give errors up to 3%. An important contribution
to the inverse relationship between DOD and accuracy may
be the nonlinear nature of ∂Q

∂OCV . Two voltage intervals may
contain different amounts of charge, despite the voltage win-
dows being equally wide. Consider two equally wide voltage
windows ∆V1 and ∆V2 containing 60% and 30% of the total
cell capacity respectively. In ∆V1, information about 60% of
the cell capacity is available, while ∆V2 contain only 30% if
the total information. Even if a cell has lost almost all the
capacity in ∆V2, it may retain almost all the capacity stores
within ∆V1.

5. SUMMARY AND CONCLUSION

This paper has presented various physics-informed data-
driven approaches for diagnostics and state of health predic-
tion for maritime battery systems. This is needed in order
to satisfy classification requirements and to ensure the safety
of electric ships. Previous studies have shown that purely
data-driven methods, including cumulative methods, snap-
shot models and semi-supervised learning approaches might

1https://corvusenergy.com/corvus-energy-first-
marine-ess-supplier-to-enable-data-driven-state-
of-health-test-soh/
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not be sufficient, and that they need to be combined with
physics-based knowledge and models.

By doing this in a clever way, however, it is possible to de-
velop methods that can be used based on sensor data from
normal operation to replace the annual capacity test. The
method proposed in this paper employs an equivalent circuit
model and Coulomb counting together with extensive look-
up tables from characterization tests and snapshots of sensor
data collected during normal operation. It accounts for the
effect of varying temperature, current and voltages and can
therefore relax the strict requirements of the test protocols for
the annual tests. The only requirement is that some relatively
deep charge and discharge cycles are experienced during the
operation. This represents a significant advantage over cur-
rent capacity tests, which imposes disruptions of normal op-
erations.

The method proposed in this paper has been tested and
verified to perform satisfactorily on various case studies.
Notwithstanding, further validation is recommended to
strengthen the trust in this method, particularly for batter-
ies approaching their end of life. Moreover, further testing
and verification is required before applying the methods
on different battery chemistries. Nevertheless, the method
presented in this paper represent an improved way of per-
forming the verification of SOH as required by classification
societies, that offers considerable benefits for operators of
electric ships.
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