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ABSTRACT

The performance of random forest (RF) based satellite atti-
tude control system (ACS) fault diagnosis methods is lim-
ited by uninformative features in high-dimensional data. To
solve this problem, we proposed a feature-weighted random
forest with Boruta (FWRFB) based fault diagnosis method
is proposed for fault diagnosis of ACSs. Firstly, a Boruta
feature selection algorithm is used to obtain a feature set
and determine significant feature weights. Subsequently, a
novel feature-weighted random forest (FWRF) algorithm is
designed, which utilizes feature-weighted random sampling
instead of simple random sampling to generate feature sub-
sets in the RF. The FWRFB effectively utilizes the feature
information while mitigating noise interference. Finally, a
FWRFB-based diagnostic module is developed for online
fault diagnosis of ACSs. The effectiveness of the proposed
method is verified by the ACS data from a semi-physical sim-
ulation platform.

1. INTRODUCTION

The satellite attitude control system (ACS) is crucial to guar-
antee the normal operation of onboard loads and even the in-
tegrity of the entire satellite (Yuan, Song, Pan, Song, & Ma,
2021). As the subsystem of satellites has a high fault rate,
sensor faults and actuator faults may occur in the ACS due
to the complex and changeable space environment. Faults
Shaozhi Chen et al. This is an open-access article distributed under the terms
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the original author and source are credited.

without immediate handling can lead to satellite performance
degradation or even cause on-orbit mission failure (Ji, Zhang,
& Liu, 2024). Therefore, the fault diagnosis of ACS is
crucial for improving the safety and stability of satellites
(Pourtakdoust, Mehrjardi, & Hajkarim, 2022).

A large amount of test data and telemetry data of ACSs
can be easily obtained. Thus, data-driven fault diagnosis
methods are more adequate and feasible to implement than
model-based approaches; particularly if we cannot rely on
prior knowledge or accurate model descriptions (Xiao & Yin,
2021). A variety of intelligent methods have been applied
to ACS fault diagnosis (Yang & Zhong, 2022). The random
forest (RF) based method is an ensemble method that com-
bines decision trees (DTs) to form a strong classifier, achiev-
ing high robustness and accuracy in handling large-scale data
(Wu, Chen, Qiu, & Zhou, 2024). It has been demonstrated
that the RF algorithm is a suitable method for the fault diag-
nosis of ACSs (Huang et al., 2021). The effectiveness of RF-
based methods usually depends on the classification power
of extracted features from original data (Papakonstantinou,
Daramouskas, Lappas, Moulianitis, & Kostopoulos, 2022).
However, the extracted features affect the fault diagnosis per-
formance differently, and some of them may encumber the
fault diagnosis performance improvement.

Feature subsets are constructed by the way of simple ran-
dom sampling in conventional RF algorithm (S. Chen, Yang,
Zhong, Xi, & Liu, 2023). Features enter the feature subset
of DT with same probability, which may restrain the function
of features with high feature importance (Sun et al., 2011).
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In addition, the use of uninformative features may generate
noise in the RF-based fault diagnosis model, and affect the
prediction accuracy of that model. Feature weighting simpli-
fies mapping data to categories and helps improve classifier
performance, making same-category data more compact spa-
tially while allowing different-category data to be looser in
structure (Cao, Xu, Liang, Chen, & Li, 2010). The enriched
random forest (ERF) applies weighted random sampling, as-
signing lower weight to less informative features by the fea-
ture importance (Ghosh & Cabrera, 2022). With the weighted
sampling strategy, the variable importance-weighted random
forest (VIRF) can focus on the most informative features (Liu
& Zhao, 2017). However, the accuracy of traditional feature
importance is limited by the coupling of variables and the ran-
domness of feature selection. Thus, these methods can only
partially overcome the influence of uninformative features.

The performance of weighted random forest algorithms may
be limited by weights transformed from the traditional fea-
ture importance. Moreover, uninformative features cannot
be blocked from entering the feature subset due to positive
nonzero weights. Feature selection methods can usually be
used to reduce uninformative features, which are processes
that identify and remove as many irrelevant features as possi-
ble. In (Eroglu & Akcan, 2024), a feature importance based
feature selection method is designed to address difficulties
in high computational demands and extracting valuable in-
sights. A compound fault feature selection method based on
the causal feature weighted network effectively reduces the
number of features in optimal feature subsets (Yu, Li, Wu,
Gao, & Wang, 2024). The accuracy of feature evaluation is
crucial in the process of feature selection. However, the fluc-
tuation problem of feature evaluation based on traditional fea-
ture importance is usually ignored in the existing literature.

This paper addresses the performance reduction issue caused
by uninformative features and information differences, a fault
diagnosis method based on feature-weighted random forest
with Boruta (FWRFB) is proposed for the ACS fault diagno-
sis. First, the Boruta algorithm is developed to enhance the
feature evaluation and eliminate irrelevant features. Then,
the significant feature weights are utilized to improve the
construction processes of feature subsets, forming a feature-
weighted RF (FWRF) algorithm that enhances the utilization
rate of critical features and leverages feature information dif-
ferences. Finally, a FWRFB-based fault diagnosis method is
trained and tested on the enhanced feature dataset, which is
applied to the online fault diagnosis of ACSs. Based on the
above analysis, the contributions of this paper can be summa-
rized as follows:

1. An FWRFB based fault diagnosis method is proposed for
ACSs to improve the efficiency of fault diagnosis.

2. A feature evaluation method based on Boruta algorithm

is designed to obtain accurate feature weights and elimi-
nate irrelevant features.

3. An FWRF algorithm is designed by a feature-weighted
random sampling method to improve the strength of fault
classifiers.

4. The proposed method is helpful because it can overcome
uninformative features and enhance the role of features
according to the importance.

The rest of this paper is organized as follows. The system and
problem formulation is provided in Section 2. In Section 3,
the Boruta algorithm and the FWRF algorithm are introduced
and explained in detail. In Section 4, the simulation results on
a satellite attitude control system are provided and discussed
to illustrate the effectiveness of the proposed method. The
conclusion and future works are presented in Section 5.

2. SYSTEM DESCRIPTION AND PROBLEM FORMULA-
TION

2.1. System Description

The ACS is mainly composed of an attitude controller, atti-
tude actuator, and sensor, which plays a crucial role in the
completion of on-orbit tasks, with the structure shown in
Fig. 1. The efficient attitude stabilization and maneuvering of
satellites can be realized by the above components. The satel-
lite’s orientation information is measured by attitude sensors,
and then the orientation is determined by obtained informa-
tion in the attitude estimation unit. According to the mea-
sured data and the expected attitude, the satellite attitude can
be determined by the attitude controller that can give a con-
trol law. Finally, a required control torque is generated by the
actuator to realize the attitude control (Zhong, Liu, Zhou, Li,
& Xue, 2019). Multiple signals from components of ACS can
be collected for the fault diagnosis subsystem to monitor the
system state. The fault diagnosis subsystem, as an essential
part of the attitude controller, is critical to the safe and stable
operation of the satellite.

Attitude control Actuators Satellite body

SensorsAttitude estimation

Attitude 

estimate 
Attitude 

measure 

Disturbance torque Expected 

attitude

Output 

attitude

-

Original data

Control signals Actuator signals

Sensor signals

Figure 1. Schematic diagram of ACS.
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2.2. Problem Formulation

When the ACS exhibits abnormal behavior, fault states can
be directly inferred from variables of telemetry data such as
voltage, current, temperature, attitude angle, and angular ve-
locity. In literature (Suo, Zhu, & Yu, 2019), fuzzy Bayes risk
and support vector machine methods are employed for diag-
nosing faults of satellite power systems using the telemetry
data. However, the method performance is reduced by unin-
formative features generated during feature extraction. Irrele-
vant features degrade the performance of RF by affecting the
strength of the decision tree. These irrelevant features may re-
sult in problems like overfitting and invalid calculations that
degrade the performance of RF-based fault diagnosis algo-
rithms while increasing computational and storage space re-
quirements. In addition, the interpretability of fault diagnosis
results is compromised by these irrelevant features.

For an RF classifier, an upper bound of its generalization error
can be derived in terms of the strength of individual trees and
the correlation between them:

PE ≤ ρ̄(1− s2)

s2 (1)

where PE is the generalization error, ρ̄ is the average pair-
wise correlation between trees and s is the average single tree
strength (Leo, 2001). Therefore, improving the strength of
DT is effective way to enhance the RF model performance.
The more fault information the used features contain, the bet-
ter the performance of each DT. However, each feature ex-
tracted form telemetry data contains a different amount of
fault information, and even some features do not contain fault
information.

Due to the limitation of conventional feature importance, it is
difficult to design an accurate feature importance based fea-
ture evaluation and selection method to leverage the different
fault information of features. Although the feature set can be
optimized by manual feature selection, relying on expertise
in the satellite field, the process is time-consuming. The fea-
tures can be evaluated by the traditional feature importance of
RF, and then an enhanced feature set can be obtained by some
feature selection methods. However, these methods are often
plagued by inaccurate feature evaluation. It is difficult to get a
suitable feature set. Therefore, this study focuses on address-
ing the performance reduction caused by irrelevant features
in RF-based fault diagnosis algorithms and rationally using
differences of feature information to improve the strength of
DT.

3. MAIN RESULTS

The FWRFB based fault diagnosis approach consists of three
steps, as shown in Fig. 2. First, many kind of discriminative
features are determined to be extracted from original signals
(described in Section 3.1). Second, the Boruta feature selec-
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Figure 2. Structure of the proposed method

tion method (H. Chen, Hu, Han, & Miao, 2024) is designed to
obtain a feature set with weights for the subsequent classifica-
tion algorithm (described in Section 3.2). Third, the feature-
weighted random forest algorithm is constructed based on the
feature dataset with significant feature weights (described in
Section 3.3). Finally, the established fault diagnosis approach
is developed for on-line fault diagnosis of ACSs.

3.1. Feature Extraction

In order to effectively capture the fault characteristics of the
raw signals for accurate fault diagnosis of ACSs, signal fea-
ture extraction is a critical step to obtain effective features.
The feature dataset of fault diagnosis is formed by consoli-
dating features extracted from original signals collected from
the controller, actuators and sensors. In this paper, 16 time-
domain features reported in (Guo et al., 2021) are extracted
from the original data, as shown in Table 1.

In this paper, the signal data from ACSs is collected under
multiple system sates, and consolidated into a dataset Do. The
feature variables are extracted from each segment of origi-
nal signals. Each feature variable reflects a certain physical
meaning. c1 ∼ c6 reflect the amplitude properties, c7 ∼ c8
reflect the energy properties, and c9 ∼ c16 reflect the proper-
ties of time distribution. An initial feature sample matrix X
with feature set f R can be obtained by consolidating features
extracted from the original data Do. Each sample is labeled
by the fault type to form label matrix Y . In matrix X , some
columns are uninformative features generated by irrelevant
signals and noise. Thus, these features can not provide effec-
tive information for fault diagnosis.
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Table 1. Feature variable

Variable Expression Variable Expression

c1
1
N

N
∑

t=1
s(t) c9

√
N
∑

t=1
(s(t)−c1)2

N−1

c2
1
N

N
∑

t=1
|s(t)| c10

N
∑

t=1
(s(t)−c1)

3

(N−1)c3
9

c3 max(s(t)) c11

N
∑

t=1
(s(t)−c1)

4

(N−1)c4
9

c4 min(s(t)) c12 c6/c8

c5 c3− c4 c13 c6/c7

c6 max(|s(t)|) c14

Nc8
N
∑

t=1
|s(t)|

c7 (

N
∑

t=1

√
|s(t)|

N )2 c15

Nc6
N
∑

t=1
|s(t)|

c8

√
N
∑

t=1
(s(t))2

N
c16

Nc6
N
∑

t=1
(s(t))2

where s(t) (t = 1,2, · · · ,N) represents a time-domain signal.

3.2. Boruta based Feature Selection

During feature extraction, irrelevant features may be gener-
ated from irrelevant variables and noise, limiting the perfor-
mance of subsequent fault classification algorithms. Thus,
the feature evaluation method based on Boruta algorithm is
designed to obtain accurate feature weights and eliminate ir-
relevant features. The running flow of the Boruta feature se-
lection algorithm is shown in step 2 of Fig. 2. The Boruta
algorithm is built around the RF algorithm, which has the ad-
vantages of shadow features and feature importance statisti-
cal analysis with the dynamic threshold. The detailed steps
of Boruta algorithm are presented as follows.

1) Shadow Feature Formation

To remove correlations between features and label variables
and among features, the values of each column of X are
shuffled, and then all columns are permutated to obtain the
shadow feature matrix X s. The obtained randomized feature
sample matrix X s is added to the original feature sample ma-
trix X , constructing the extended feature sample matrix Xe.

2) Feature Importance Analysis

The labeled dataset (Xe,Y ) is fitted to RF for feature impor-
tance. The higher the feature importance, the more important
the feature. The Z score value of each feature is evaluated
for comparing features’ importance. An original feature is
determined as important based on the fact that the feature has
a higher Z score than the maximum Z score of shadow fea-
tures Z scores

max (MZSF). Otherwise, it is determined to be
unimportant. A hit is recorded if an original feature’s Z score
is higher than the MZSF.

3) Two-sided Equality Test

A statistical test is performed for all features after running
several RFs. The null hypothesis is that the feature’s Z score
is equal to the MZSF. A two-sided equality test can reject the
hypothesis when feature importance is significantly lower or
significantly higher than MZSF. It is straightforward to com-
pute limits for accepting and rejecting features for any num-
ber of RFs for a desired confidence level.

4) New Feature Set Construction

The features deemed as unimportant are removed from the
original feature set, resulting in a new feature set that ends
an iteration. The procedure is performed according to a pre-
defined number of iterations or until all features are either
rejected or conclusively deemed important, whichever comes
first. In the former case, there are features left that are neither
accepted nor rejected and are further referred to as undeter-
mined features.

Finally, important and undetermined features are integrated
as f B = { f B

1 , f B
2 , · · · , f B

m}, and the corresponding weights of
features are w = {ω1,ω2, · · · ,ωm}. To summarize, the pseu-
docode of the Boruta feature selection method is shown in
Algorithm 1.

Algorithm 1 Boruta based feature selection
Input: feature sample data X ∈ Rn×M , sample label Y ∈

Rn×1, feature set f R, number of iteration Ni, number of RF in
each iteration NR and confidence level α .
Output: feature set f B and feature weights w.
1: for i=1 to Ni do
2: for j=1 to NR do
3: Features of X are shuffled to obtain X s;
4: X s is added to X by row to obtain Xe;
5: Run the RF on (Xe,Y );
6: Obtain MZSF based on all features’ Z score;
7: Assign the hit by Z score greater than MZSF;
8: end for
9: Determine acceptance and rejection thresholds by α;

10: Deem important features by acceptance threshold;
11: Deem unimportant features by rejection threshold;
12: Remove unimportant features from original feature

set;
13: Remove all shadow features;
14: if all features have been deemed then
15: break
16: end for
17: Obtain f B and w based on retained m features;
18: return feature set f B and feature weights w.
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3.3. FWRF based Fault Classification

From feature weights, it can be seen that the fault informa-
tion carried by each feature has a different effect on the fault
classification. To increase the performance of RF-based fault
diagnosis algorithms, it is necessary to improve the feature
subset formation way and enhance the contribution of fea-
tures with high importance. Thus, a feature-weighted random
forest algorithm is constructed by using feature-weighted ran-
dom sampling instead of simple random sampling to form
feature sets. The flow of the FWRF algorithm is shown in
step 3 of Fig. 2. For building the FWRF-based fault diagno-
sis model, the feature data set XB ∈ Rn×m with label matrix
Y ∈ Rn×1 is generated by f B with feature weights w.

The FWRF is an improved RF-based algorithm that is a tree-
structured ensemble learning method (Leo, 2001). Thus, the
FWRF also consists of k DTs expressed as:

H = {h1(T1),h2(T2), · · · ,hk(Tk)} (2)

where Tθ (θ = 1,2, · · · ,k) is the input feature set of each DT,
k is the number of DTs and hθ (Tθ ) (θ = 1,2, · · · ,k) repre-
sents the θ -th classification and regression tree (CART). The
detailed steps of the FWRF are as follows.

1) Bootstrap Sample Subset

For each decision tree, n samples are sampled form XB

with replacement to form a bootstrap sample subset XT =
[xT

1 ,xT
2 , · · · ,xT

n ]T . Out of n times, each sample’s probabil-
ity of not being sampled is (1− 1

n )
n. As n approaches pos-

itive infinity, the limit of (1− 1
n )

n is 1
e ≈

1
3 . Thus, approx-

imately one-third of unselected samples become out-of-bag
(oob) samples, constituting the oob dataset for model testing.

2) Weighted Random Sampling based Feature Subset

The strength of DT can be improved by the eligible fea-
ture subset including important features. Important features
are sampled in high probabilities by the weighted random
sampling instead of simple random sampling. The sam-
pling weights w is obtained in the above subsection. Thus,
a feature subset f T

i (i = 1,2, · · · ,k) is generated by sampling
m∗ = b

√
mc features from f B in the way of weighted random

sampling.

3) Decision Tree Establishment

The process of growing a decision tree requires constant node
splitting. The Gini index is used to represent the classification
impurity of a sample set (Zhu & Peng, 2022). Samples are
divided into C classes under a feature ti , and the Gini value
of ti can be expressed as follows:

Gini(ti) =
C

∑
1

Pj(1−Pj) = 1−
C

∑
1

P2
j (3)

where Pj is the probability that the samples belongs to the jth

category. The optimal feature with a split point is selected
from the feature subset by minimizing the Gini index shown
below (Leo, 2001):

min
a

Gini(ti,a) =
n1

n
Gini(Dti1

)+
n2

n
Gini(Dti2

) (4)

where n is the total sample number with feature ti, Dti1
and

Dti2
are two sample subsets with feature ti, and n1 and n2 are

the sample numbers of Dti1
and Dti2

respectively. The deci-
sion tree cannot grow indefinitely and stops growing when
each leaf node contains one class of samples.

4) Decision Tree Integration

The FWRF-based fault diagnosis model is obtained from the
ensemble of established DTs. All DTs in the FWRF-based
fault diagnosis model run in parallel. The fault type result
for the sample can be obtained by each DT. Finally, the fault
diagnosis result of the FWRF can be obtained by majority
voting on the results of all DTs.

The training of the FWRF model can be stopped if the model
testing error has met the effective classification. Model struc-
tures and parameters are recorded to complete the establish-
ment of the FWRF model. Otherwise, the FWRF model is
iteratively trained by repeatedly acquiring newly extracted
sample subsets and feature subsets. To summarize, the pseu-
docode of the FWRF algorithm is shown in Algorithm 2.

Algorithm 2 Feature weighted random forest
Input: feature sample data XB ∈ Rn×m, sample label Y ∈
Rn×1, feature set f B ∈ R1×m.
Output: fault diagnosis result.
1: Generate sample subset by the Bootstrap sampling

method with replacement, simultaneously obtain oob
dataset;

2: Generate feature subset by weighted random sampling
method with weights w;

3: Each DT is constructed by a feature sample data deter-
mined by a pair of a sample subset and a feature subset;

4: All results of decision trees are integrated by majority
voting to obtain the result of FWRF;

5: The fault diagnosis result is determined by the classifica-
tion result of FWRF;

6: return fault diagnosis result.

4. SIMULATION RESULTS

To verify the effectiveness of the proposed method, experi-
ments are designed and performed on the data of ACSs. The
original data consists of raw signals from sensors, actuators,
and controllers. Finally, the proposed method is verified and
compared with some typical machine learning (ML) methods
on the feature dataset, and the experimental results are ana-
lyzed.
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Figure 3. Feature importance of important features

4.1. Experiment Setup

In this paper, experimental data were collected under five typ-
ical states of ACSs: normal, constant deviation fault of con-
trol moment gyro (CMG), noise increase fault of gyroscope,
saturation fault of gyroscope, and constant deviation fault of
the gyroscope. A feature sample is generated by integrating
features extracted from multiple segments at the same mo-
ment. After extracting features from the original signal data,
the number of feature samples in each state of the ACS is
185. According to five states, samples are labeled as 1, 2, 3,
4, and 5, respectively. The number of samples and the label
of each state are shown in Table 2. The original data contain
107 variables, and 16 domain features are extracted from a
signal segment consisting of 8 sampling points for each vari-
able. The feature vector is built by simultaneously integrat-
ing 1712 features extracted in a time window. Features are
numbered according to their source and characteristics of the
time domain in the form of U −n−T −m. U represents the
source of the feature, consisting of the sensor S, the actuator
A, and the controller C, and the corresponding n is numbered
1−76, 1−27, and 1−4. T denotes the time domain feature,
and m is the number among the 16 time domain features. For
example, S05T 15 represents the 15th time domain feature ex-
tracted from the fifth sensor variable.

4.2. Results and Discussion

The fault diagnosis method proposed in this paper has been
validated using the above ACS data. The specific feature se-
lection and fault diagnosis results are analyzed and discussed
in the following paragraphs.

Table 2. The samples collected in experiment

Fault type Fault location Number Labels
Normal None 185 1

Constant deviation Second CMG 185 2
Noise increase First gyroscope 185 3

Saturation Third gyroscope 185 4
Constant deviation Fourth gyroscope 185 5

4.2.1. Feature selection

The Boruta algorithm is employed to eliminate irrelevant fea-
tures and obtain the feature set along with feature weights.
After dealing with the original feature set f R containing 1712
features, 56 features are identified as important and 10 fea-
tures are considered tentative, resulting in a feature set f B

comprising 66 features. A comparison between f R and f B

reveals a large number of irrelevant features in f R. By av-
eraging the feature importance obtained at each iteration of
Boruta, the feature importance of 66 selected features is de-
rived, as illustrated in Fig. 3. Finally, by normalizing feature
importance scores, their respective weights in w are deter-
mined based on their proportionate contribution to the total
sum of importance across all selected features.

4.2.2. FOFWRF based fault classification

The FWRF-based fault diagnosis model was constructed on
the feature dataset XB ∈ R925×66 optimized by the Boruta al-
gorithm. To illustrate the advantages of the proposed method
in the fault diagnosis of ACSs, the proposed method is com-
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pared with other ML algorithms, support vector machine
(SVM), artificial neural network (ANN), K nearest neighbor
(KNN), and naive Bayes (NB). Each algorithm is run on the
feature set f B, and the performance of each algorithm is com-
pared in terms of fault diagnosis accuracy and running time
metrics. The comparison results are shown in Table 3. It can
be seen that the metrics of the proposed method are better
than other ML methods. These comparison results illustrate
the superiority of the proposed method in terms of the ACS
fault diagnosis.

Table 3. Performance comparison of different methods

Method Accuracy (%) Running time (s)
SVM 49.95 1.52
ANN 70.05 5.51
KNN 93.84 0.37
NB 93.95 0.22

FWRFB 94.05 0.21
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Figure 4. Performance comparison of different methods

5. CONCLUSIONS

This paper proposes a fault diagnosis method based on
FWRFB for ACSs. First, the Boruta feature selection algo-
rithm is employed to eliminate irrelevant features and obtain
a feature set along with accurate feature weights. Subse-
quently, a feature-weighted RF-based fault diagnosis model
is constructed by using the dataset under the enhanced fea-
ture set. Finally, the telemetry data from ACSs are used to
validate the effectiveness of the proposed method. Experi-
mental results demonstrate that the proposed method exhibits
superior fault diagnosis accuracy and operational efficiency
compared to other typical machine learning methods. Due to
certain randomness of the feature selection, it is still tricky
for the feature set obtained by the Boruta to completely over-
come the effect of redundant features. In future work, the
transition pattern from feature importance to weighted sam-

pling weights will be optimized to enhance the classification
performance of the feature-weighted RF algorithm.
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