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ABSTRACT

In engineering, prognostics can be defined as the estimation
of the remaining useful life of a system given current and
past health conditions. This field has drawn attention from
research, industry, and government as this kind of technol-
ogy can help improve efficiency and lower the costs of main-
tenance in a variety of technical applications. An approach
to prognostics that has gained increasing attention is the use
of data-driven methods. These methods typically use pat-
tern recognition and machine learning to estimate the resid-
ual life of equipment based on historical data. Despite their
promising results, a major disadvantage is that it is difficult
to interpret this kind of methodologies, that is, to understand
why a certain prediction of remaining useful life was made
at a certain point in time. Nevertheless, the interpretability of
these models could facilitate the use of data-driven prognos-
tics in different domains such as aeronautics, manufacturing,
and energy, areas where certification is critical. To help ad-
dress this issue, we use Local Interpretable Model-agnostic
Explanations (LIME) from the field of eXplainable Artificial
Intelligence (XAI) to analyze the prognostics of a Gated Re-
current Unit (GRU) on the C-MAPSS data. We select the
GRU as this is a deep learning model that a) has an explicit
temporal dimension and b) has shown promising results in
the field of prognostics and c) is of simplified nature com-
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pared to other recurrent networks. Our results suggest that it
is possible to infer the feature importance for the GRU both
globally (for the entire model) and locally (for a given RUL
prediction) with LIME.

1. INTRODUCTION

Improved reliability is one of the key drivers of the develop-
ment of more efficient maintenance strategies (J. Lee, Hol-
gado, Kao, & Macchi, 2014). The vision here is to have
machines that can monitor themselves and alert the operator
ahead of time of future maintenance needs to maximize func-
tion time and avert failure. The framework behind this vision
is that of Reliability Centered Maintenance (RCM) (NASA,
RCM, 2008), a discipline that aims to propose tools and prac-
tices to better monitor, predict and understand the behavior
of physical assets (Moubray, 2001). Major goals are to im-
prove safety, availability, reduce logistics and maintenance
costs, and to drive customer satisfaction and loyalty. Impor-
tantly, successful adoption of RCM aims to provide a greater
understanding of the nature of the risk that is being managed.

For a given physical asset, the outcome of an RCM program
is the implementation of an appropriate maintenance strat-
egy (NASA, RCM, 2008, pp. 3-1). A strategy that many
industries have followed for years due to its simplicity and
generality is the preventive or time-based maintenance. In
Time-Based Maintenance (TBM), repair and replacement are
based on simple measures of the expected life of the equip-
ment, such as calendar or usage time (NASA, RCM, 2008, pp.
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5-4). However, with advances in sensor technologies, preven-
tive maintenance has been giving place to Predictive Mainte-
nance (PM). This advanced form of maintenance uses mainly
non-intrusive and non-destructive monitoring technologies to
assess performance and detect defects before actual failure
(NASA, RCM, 2008, pp. 5-7). Predictive algorithms are used
in the process of establishing the real condition of a machine
or equipment. Hence, the designation of predictive mainte-
nance.

One of the most challenging and beneficial aspects of RCM
and PM is prognostics. The engineering discipline of prog-
nostics concerns the forecasting of an event of interest based
on the current and past condition data (Bonissone & Goebel,
1999). For example, it can be the estimation of the Remain-
ing Useful Life (RUL), failure margin or overall performance
prediction. The maturity of condition monitoring technology
coupled with the significance of prognostics has led to an in-
creasing interest in the field over the past few years (Nguyen
et al., 2019; Ucar, Karakose, & Kırımça, 2024).

Prognostics can be performed in two approaches, model-based
and data-driven (Jardine, Lin, & Banjevic, 2006). Model-
based methods exploit domain knowledge of the system and
its failure mechanisms as they rely on principles from physics
to describe the behavior of the assets. Despite the perfor-
mance of these methods (Kulkarni, Daigle, Gorospe, & Goebel,
2018), they require extensive experimentation and verifica-
tion during development. As an alternative, there are data-
driven methods, which use large amounts of data to train ma-
chine learning algorithms to capture degradation trends in a
black-box manner (Schwabacher & Goebel, 2007).

Prognostics models have the primary purpose of precisely
predicting the behavior of a system. However, the quality of
interpretability (or understandability) should also be a prop-
erty of these models (Baptista, Goebel, & Henriques, 2022).
In contexts such as aeronautics, energy, or other domains
where safety plays a critical role, it is often necessary to pro-
vide an explanation for the predictions of the model, and in-
terpretability here is of relevance. Furthermore, this property
is important for better understanding the underlying mecha-
nisms of the models as well as the associated limitations and
potential pitfalls (Antamis et al., 2024).

The model-based approach is often preferred in prognostics
over the data-driven approach (Daigle, 2014) due to the fact
that these techniques are easier to interpret due to the exis-
tence of an underlying physics model of the system (Celaya,
Saxena, & Goebel, 2012), where model variables have phys-
ical meaning and promote a better understanding of the be-
havior of the system. In contrast, data-driven methods can be
seen as black-boxes, because of the lack of explicit equations.
Leaving not much space for interpretation, black-box systems
map the input features to a target output without exposing the
reasons why (Tzeng & Ma, 2005). There are a few exceptions

to this rule, such as decision trees (Quinlan, 1986; Hu, Rudin,
& Seltzer, 2019), but even in these techniques, which provide
some disclosure of how decisions are made, it is not always
clear how individual predictions are made.

To address the general lack of transparency of machine learn-
ing techniques, a number of interpretability methods have
been proposed (Schoenborn & Althoff, 2019). Here, post-
hoc (agnostic) methods have become increasingly popular, as
they allow to explain any type of model. A post-hoc model
in Explainable AI (XAI) refers to a method applied after a
machine learning model is trained to interpret or explain its
predictions, without altering the original model. These mod-
els provide insights into the decision-making process of com-
plex, often black-box models by using techniques like feature
importance, local explanations, or visualization tools. Post-
hoc models can help explain a model around a specific input
sample (locally) or for the entire model space (globally).

Local Interpretable Model-agnostic Explanations (LIME) was
one of the first local agnostic models (Ribeiro, Singh, & Guestrin,
2016) from eXplainable Artificial Intelligence (XAI). The ap-
proach builds explanation models on top of a given prediction
algorithm to give reasons for the decisions of individual ob-
servations. It is a local approach as it tries to isolate sepa-
rately the most important factors that influence each single
decision. Precisely, LIME performs small changes to a given
model input, in order to isolate the most important factors that
influence local decisions. It works by fitting these separate ex-
planations (e.g., by linear regression or decision tree models)
to the local neighborhood of an individual prediction.

In the field of prognostics, the topic of data-driven interpretabil-
ity is not fully explored. As a contribution, our aim is to in-
vestigate the capability of LIME to interpret a deep learning
prognostics model built on simulated data from the Commer-
cial Modular Aero-Propulsion System Simulation (C-MAPSS).
The C-MAPSS (Litt, Frederick, & DeCastro, 2008) is a soft-
ware from the National Aerospace Space Agency (NASA) to
model the operation of a commercial turbofan engine. Data
are provided by the Center for Excellence in Prognostics (CoE)
of NASA Research Ames (Saxena, Goebel, Simon, & Ek-
lund, 2008).

As the prognostics modeling approach for this study, we have
selected the Gated Recurrent Unit (GRU) (Cho et al., 2014).
This model has the advantage of dealing with the temporal
dimension of sensor data explicitly. There are other deep ar-
chitectures for sequence modeling, such as Long-Short Term
Memory Networks (LSTM) (Hochreiter & Schmidhuber, 1997)
or Echo State Network (ESN) (Jaeger, 2001, 2002). How-
ever, GRU is a simple and efficient alternative that has already
shown promising prognostic results. For example, Hasib,
Rahman, Khabir, and Shawon (2024) studied three types of
recurrent networks (GRU, Bi-LSTM, and LSTM) and reported
that the GRU was the best performing model on C-MAPSS.
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The remainder of this article is organized as follows. Sec-
tion 2 describes related work. We review work in the field
of eXplainable Artificial Intelligence (XAI) and include a re-
view on the use of the GRU in prognostics. Section 3 presents
the modeling framework. We describe briefly the underlying
principles of LIME and how we applied it to our GRU model.
Results of the experiments are presented and discussed in
Section 4 while Section 5 concludes the article.

2. RELATED WORK

Model interpretability (comprehensibility or understandabil-
ity) is an important aspect to prognostics, where decision-
making is often dependent on the understanding of forecasts.
The black-box nature of the machine learning used in the
data-driven approach has often led to mistrust and a lack of
understanding of this type of methods (Erasmus, Brunet, &
Fisher, 2021). Exposing explanations for the predictions could
help increase trust in the model and help achieve properties
such as reliability and certification (Doshi-Velez & Kim, 2017)
as well as understand the potential errors and limitations (Fen
et al., 2019).

Model interpretability has multiple definitions (Lipton, 2018).
It can be defined in general as the means to build trust (Kim,
2015). Other definitions can take on a more formal charac-
ter. For example, for Lou, Caruana, and Gehrke (2012), in-
terpretability is defined as the ability to understand the con-
tribution of different predictors to the model. The authors use
generalized additive models to capture the causal relation-
ships between (individual) features and output. They argue
that additive models are more accurate than generalized linear
models and still retain the intelligibility of linear approaches.
For Ribeiro et al. (2016), interpretability is the ability of a
model to provide qualitative understanding between the in-
put and the response according to the user’s limitations. For
example, a relatively simple decision tree may be considered
interpretable, but a more complex decision tree may not be
comprehensible to a human.

Lakkaraju, Bach, and Leskovec (2016) provide a more fo-
cused definition of model interpretability that applies to clas-
sification approaches. Here, the concept is defined as the abil-
ity to provide decision boundaries between classes and ex-
plain why a label is predicted in a certain way for a data point.
The authors propose interpretable decision sets arguing that
this approach is both accurate and interpretable. This kind of
predictive models relies on sets of independent causal rules
to reach a predictive decision. In this paper, we do not for-
malize the notion of model interpretability but instead adopt
a general definition of building trust and providing intuitive
explanations.

2.1. eXplainable Artificial Intelligence (XAI)

The discipline of eXplainable Artificial Intelligence (XAI)
(Gunning & Aha, 2019), which studies the development of
interpretable methods, has two main approaches− the design
of interpretable models (Agarwal et al., 2021) or the imple-
mentation of post-hoc (agnostic) models (Turbé, Bjelogrlic,
Lovis, & Mengaldo, 2023). Interpretable models are inher-
ently transparent and understandable by design, while post-
hoc methods (agnostic to the underlying predictive model) are
applied after model training to explain or interpret the predic-
tions of more complex, opaque models.

In this paper, we study Local Interpretable Model-agnostic
Explanations (LIME) (Ribeiro et al., 2016), a post-hoc local
model. LIME creates approximate models on top of a more
complex machine learning model to expose causal reasons
for the prediction of individual instances. The overall goal
of LIME is to select an explanation function over the inter-
pretable space that is locally faithful to the observed model.

The potential limitations of LIME have been shown by Melis
and Jaakkola (2018), whose results suggest that LIME expla-
nations are not always stable when applied to nonlinear mod-
els. The source of LIME instability in such cases was further
studied by Fen et al. (2019). The authors demonstrated the
presence of three sources of uncertainty, namely randomness
in sampling, variation with sampling proximity, and variation
in model credibility across different data samples. Despite its
limitations, LIME continues to be a significant and popular
model in XAI. Since it is model-agnostic and is based on a
simple and understandable idea, we opted for this approach
in this paper.

Reviewing work in post-hoc interpretability models for prog-
nostics and health management, an early work of note is that
of Zeldam (2018) who applied XAI methods to fault diagno-
sis. The research addressed the problem of incomplete or in-
accurate maintenance reports, filled with free-form text. The
author proposed a custom XAI methodology to explain why a
particular failure diagnosis was made by comparing the fea-
tures of the failure to expected values across different fault
modes.

In terms of work with post hoc XAI models, an important
contribution is by Serradilla et al. (2020). This work focused
on interpreting Remaining Useful Life (RUL) estimations in
industrial settings with two Explainable Artificial Intelligence
(XAI) techniques. Their model used Random Forest as the
core machine learning model. To enhance interpretation, they
applied LIME and ELI5 XAI techniques.

Kundu and Hoque (2023) highlight the limitations of post-
hoc XAI methods like LIME and SHAP due to inconsisten-
cies in feature ranking. They argue that no single explanation
method is universally best for all scenarios in predictive main-
tenance. Instead, they propose using a trust score to quantify
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the reliability of each explanation method.

More recently, Gawde et al. (2024) studied the effectiveness
of predictive maintenance in industrial settings, specifically
for steam generators. The researchers addressed the problem
of using multiple data sources to perform fault diagnostics.
The key aspect of the study is the use of Explainable AI
(XAI) techniques, including LIME, SHAP, PDP, and ICE.
This study is different from ours in that it focused on diag-
nostics and not prognostics. Their study was also focused on
multi-modal learning and XAI.

Another work in diagnostics that was applied to the turbofan
engine dataset C-MAPSS was by Ji, Zhang, and Yan (2024).
The approach aimed to predict equipment failures using in-
terpretable AI methods such as SHAP and LIME. The main
contribution was the exploration of knowledge graphs to ob-
tain more comprehensive insights into faulty components and
enhance the interpretability of machine learning in predictive
maintenance applications.

A similar work to ours is by Dogga, Sathyan, and Cohen
(2024). The authors studied the application of SHAP and
LIME to turbofan engines on C-MAPSS. In contrast to our
approach, the authors did not focus on recurrent neural net-
works. Balasubramani, Shi, and DeLaurentis (2024) studied
in more detail the application of SHAP to turboengines using
convolutional neural networks.

Hasib et al. (2024) studied the interpretability of three types
of recurrent networks (GRU, Bi-LSTM, and LSTM) using
LIME. This is the closest to our work, but differently to our
contribution, the authors do not focus on global and local in-
terpretability at the same time.

2.2. Recurrent Neural Networks in Prognostics

In the domain of prognostics, a data-driven method that has
shown promising results when handling the temporal dimen-
sion of sensor data is Recurrent Neural Networks (RNN) (An,
Kim, & Choi, 2015). This method involves some complexity
and could benefit from further interpretation. Since we will
apply LIME to RNNs and to better contextualize the reader,
we hereafter review some of the results of RNNs in prognos-
tics.

Several works based in Recurrent Neural Networks (RNNs)
have been proposed in prognostics over the years. One of the
earliest contributions (Tse & Atherton, 1999) compared a typ-
ical feedforward neural network, to a classical autoregressive
model and an RNN. The three approaches were applied to the
prediction of nonlinear sunspot activities and vibration fault
trends of industrial machines. In both cases, the recurrent
network showed superior performance. Interestingly, these
results were obtained with a considerably simple recurrent
neural network having four input nodes, four hidden nodes,
one output node and a feedback loop linked to an extra input

node.

A work of note in prognostics is that of Heimes (2008) who
proposed an ensemble model of RNNs for the IEEE 2008
Prognostics and Health Management challenge. The proposed
ensemble model was compared against a multi-layer percep-
tron network. Both models were trained using the Extended
Kalman Filter method. Comparing results, the RNN models
showed superior performance near the end of useful life of
the equipment.

Several works have used Long-Short Term Memory (LSTMs)
to estimate the RUL of aero engines (Yuan, Wu, & Lin, 2016;
Dong, Li, & Sun, 2017; W. Zhang, Jin, Zhang, Zhao, &
Hou, 2019) and other equipment such as lithium-ion batteries
(Y. Zhang, Xiong, He, & Liu, 2017; Hinchi & Tkiouat, 2018;
Long, Li, Gao, & Liu, 2019), fuel cells (Ma et al., 2018) and
bearings (K. Lee, Kim, Kim, Hur, & Kim, 2018b). LSTM
is a type of RNN that uses memory cells instead of recurrent
units. In LSTMs each cell is updated according to the acti-
vation of gates which control the operation performed on the
memory cell: write (input gate), read (output gate) and reset
(forget gate).

The Gated Recurrent Unit (GRU) is another RNN that also
uses the gating mechanism. It uses an update and a reset
gate. The update gate determines how much the inputs can
change the new state while the reset gate determines to what
extent memory persists. GRUs have similar performance to
LSTMs (Chung, Gulcehre, Cho, & Bengio, 2014) but have
fewer parameters and a faster learning process. GRUs have
been applied with success in prognostics (Song, Li, Peng, &
Liu, 2018; K. Lee, Kim, Kim, Hur, & Kim, 2018a).

We choose to investigate the capability of LIME to interpret
an RNN as this the RNN is one of the most complex forms of
deep learning. Due to the explicit modeling of time inside the
network, there are several feedback looks which make it dif-
ficult to understand why and how the approach works. Here,
we hope to advance knowledge on how to use LIME in prog-
nostics and also to improve our understanding of the specific
type of RNN, the GRU.

3. MODEL

This section overviews the theory of GRU and LIME. It also
describes the case study.

3.1. Gated Recurrent Unit (GRU)

We selected the Gated Recurrent Unit (GRU) as our black-
box for two main reasons: 1) its capacity to deal with the
temporal dimension of sensor data and 2) the popularity of
Recurrent Neural Networks (RNNs) in prognostics and 3) the
simplified nature of GRU compared to other recurrent net-
works. GRU (Gated Recurrent Unit) is also often considered
better than traditional RNNs because it mitigates the vanish-
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Figure 1. Gated Recurrent Unit (GRU) architecture.

ing gradient problem through gating mechanisms that control
the flow of information, enabling better retention of long-term
dependencies. GRUs have shown to be more computationally
efficient than LSTMs as they use fewer gates, simplifying the
architecture while maintaining similar performance for many
sequence-based tasks.

Fig. 1 illustrates the used GRU architecture and its building
blocks. The main elements are the GRU hidden layers which
are used mainly to automatically learn new features from the
input data and the time distributed layer which is responsible
for making the final forecast.

The GRU supports different types of input to output struc-
tures. In our case, we are interested in the many-to-many
architecture, i.e. predicting sequence of vectors based on
time series data. In order to implement the many-to-many
paradigm we used the time distributed dense layer. This layer
applies a dense (fully full connected) function across every
output over time to ensure that there is the same number of
outputs as inputs. This is important to estimate the Remain-
ing Useful Life (RUL) at each time step. Formally, the goal
is to provide at each time step t a RUL estimation (y) given a
multi-dimensional sensor input (x).

We make use of two common techniques in order to train
the GRU: dropout and early stopping. We apply dropout
(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov,
2014) to avoid overfitting and make the network generalize
better. This means that, during training, each GRU cell can be
discarded from the network according to a certain probabil-
ity. Second, and also to avoid model overfitting, the networks
are trained using the classical “early stopping” mechanism
(Morgan & Bourlard, 1990). The data are split into training
and validation sets in proportion 3:1. The validation set is
used to evaluate the generalization error. Training stops when
the error on the validation set is below a minimum delta. The

best network is selected according to training loss.

The GRU architecture used in this paper was optimized us-
ing Talos (Autonomio Talos [Computer Software], 2019). Ta-
los is a tool which permits running hyperparameter optimiza-
tion experiments. To evaluate model performance we used
the randomized grid search optimization strategy (Bergstra &
Bengio, 2012). The following hyperparameters were opti-
mized: (a) number of hidden layers, (b) number of GRU cells
per layer, (c) optimizer, (d) activation function of the hidden
layers and (e) dropout (see Table 1). As number of timesteps,
we chose a window of 10 time steps. Please note that we
use stateful networks (Bulı́n, Šmı́dl, & Švec, 2019) and as
such we do not need a wide time window. Within each batch
of data, the network state (or memory) is maintained and it
is possible to learn the relationships among the different se-
quences. In other words, network memory persists across the
batch of data.

Table 1. Hyperparameter search ranges of Gated Recurrent
Unit (GRU).

Hyperparameter Search Range
Time steps [10]
Hidden Layers [1, 2, 3, 4]
Nodes per Layer [5, 10, 25, 50]
Optimizer [Adam, Nadam, RMSProp]
Activation [Relu, Elu, Linear]
Output Activation [Linear]
Dropout [1, 0, 0.5]
Loss [Mean Squared Error]

3.2. LIME

Given a model f : X → Y and an instance x ∈ X , the goal
of local interpretability is to explain f(x), the individual pre-
diction of model f for data point x (Ribeiro et al., 2016). To
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achieve this goal, the Local Interpretable Model-agnostic Ex-
planations (LIME) generates M explanation functions g ∈ G.
The learned explanation function gL(x) is selected from func-
tional space G as the function that minimizes loss, i.e. is a
good local approximation of f , and has low complexity.

To build an explanation g ∈ G, LIME generates N samples
around a given data point x. Every sample x′ represents a
perturbed version of x where perturbations are obtained ac-
cording to a “perturbation distribution” based on πx. The best
explanation function gL(x) is selected from functional space
G by solving

gL(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (1)

where L(f, g, πx) is a measure of the fidelity of local model
g, πx(x

′) is a proximity measure between a sample x′ and x,
and Ω is a penalty for model complexity.

This formulation can be used with different explanation func-
tions g, fidelity functions L, and complexity measures Ω. In
this paper, we follow the original formulation of Ribeiro et
al. (2016). Concretely, we consider G to be the class of linear
models, such that

g(x′) = wg · x′ (2)

where wg denotes the coefficients of the linear model g. We
use the locally weighted square loss as L(f, g, πx) and the
complexity function Ω(g) is the number of non-zero weights
of function g.

Concerning the perturbation distribution and as in the original
work of Ribeiro et al. (2016), we use as proximity measure

πx(x
′) = exp(D(x, x′)/σ2) (3)

where πx(x
′) is an exponential kernel defined on distance D

with kernel width σ. As D we use Euclidean distance and as
σ we use 3

4

√
p (the recommended value by the authors in their

implementation), where p is the number of input features.

Algorithm 1 illustrates how a single explanation function g
is created from x. LIME builds the local model by sampling
N x′ instances around x. Every new instance x′ is a per-
turbed version of x. LIME fits a weighted linear regression
(WLR) around the set of points f(x′) weighted according to
the similarity kernel function πx(x

′). In Fig. 2 we provide an
overview on how LIME creates an explanation function g.

In our implementation, we consider the GRU to be the model
to be interpreted (f ). This model receives at each time a
multidimensional input vector (x) and generates an output
y = f(x) which is the predicted RUL at that time step, as can
be seen in Fig. 1. LIME generates M explanation functions

Algorithm 1 Generation of a LIME Explanation

1: procedure LIME(f, x,N ) ▷ Explain sample x
2: Y ′ ← {}
3: for i ∈ 1, 2, ..., N do
4: x′

i ← samplearound(x) ▷ Perturb features of x
5: Y ′ ← Y ′∪ < x′

i, f(x
′
i), πx(x

′
i) >

6: wg ←WLR(Y ′) ▷ Weighted Linear Regression
return wg

Figure 2. LIME creates an explanation function g by observ-
ing the relationship between perturbed input and output and
by applying a weighted linear regression fit on f(x′).

g ∈ G for a given x and solves equation 1 to obtain the final
explanation gL. This can be done several times for different
x, each time creating a new LIME explanation. The learned
function gL intends to be a good approximation of f in the lo-
cal space around x, but not necessarily a good global approx-
imation. This is designed as local interpretability (Ribeiro et
al., 2016). In this study we also investigate how to explore
global interpretability using LIME.

3.3. Case Study

In this paper, we study jet engine data from the Commercial
Modular Aero-Propulsion System Simulation (C-MAPSS).
The C-MAPSS (Litt et al., 2008) was developed by National
Aerospace Space Agency (NASA) to simulate the operation
of a commercial turbofan engine. It simulates an engine of
the 90, 000 lb thrust class and it allows simulating (i) alti-
tudes ranging from sea level to 40,000 ft, (ii) Mach numbers
from 0 to 0.90, and (iii) sea-level temperatures from -60 to
103°F. Process and measurement noises have been added to
the data resulting in complex noise dynamics. At the start of
operation, each engine has a given level of wear and man-
ufacturing variation. This wear and variation should not be
considered fault condition.

In C-MAPSS data, an engine is characterized by a set of 21
prognostics sensors and 3 additional sensors (Altitude, Mach
Number and Throttle Resolver Angle) indicators of operating
conditions. More details about C-MAPSS data can be found
in Saxena, Goebel, et al. (2008). In this work, we use the first
dataset (FD001) to limit the scope of the study. In dataset
FD001 there is only one operating condition which simplifies

6
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Table 2. Prognostics features available in C-MAPSS data.
The features used in this paper are highlighted in gray.

Parameter Description Units

T2 Total temperature at fan inlet °R1

T24 Total temperature at LPC outlet °R
T30 Total temperature at HPC outlet °R
T50 Total temperature at LPT outlet °R
P2 Pressure at fan inlet psia
P15 Total pressure in bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed rpm
Nc Physical core speed rpm
epr Engine pressure ratio (P50/P2) –
Ps30 Static pressure at HPC outlet psia
phi Ratio of fuel flow to Ps30 pps/psi
NRf Corrected fan speed rpm
NRc Corrected core speed rpm
BPR Bypass Ratio –
farB Burner fuel-air ratio –
htBleed Bleed Enthalpy –
Nfdmd Demanded fan speed rpm
PCNfRdmd Demanded corrected fan speed rpm
W31 HPT coolant bleed lbm/s
W32 LPT coolant bleed lbm/s

our analysis.

Table 2 lists all the sensor signals of C-MAPSS and high-
lights in gray the ones that were used to build the models. We
selected 14 condition signals to monitor the effects of faults
and degradation in the five rotating components of the en-
gine: Fan, Low Pressure Compressor (LPC), High Pressure
Compressor (HPC), High Pressure Turbine (HPT), and Low
Pressure Turbine (LPT). Our goal here was to select a set of
signals (features) which could adequately represent the degra-
dation process.

3.4. Evaluation Measures

Different evaluation metrics provide distinct perspectives on
how well a model fits the data. Used metrics include Root
Mean Squared Error (RMSE), which measures the magnitude
of prediction errors, and R-squared (R²), which assesses the
proportion of variance explained by the model. Table 3 sum-
marizes information about these two measures.

4. RESULTS

In this section, we present and discuss results. We start by ex-
amining classical feature importance ranking using Extremely
Random Trees (Extratrees). The interpretability results, in lo-
cal and global terms, produced by LIME are then analyzed.

1°R is a temperature measurement used in aeronautics.

Metric Formula Interpretation

RMSE
√

1
n

∑n
i=1(yi − ŷi)2 Lower values indicate

fewer large errors and
better performance.

R² 1−
∑n

i=1(yi−ŷi)
2∑n

i=1(yi−ȳ)2 Higher values indicate
better fit, with 1 be-
ing perfect and 0 no ex-
planatory power.

Table 3. Evaluation Measures

(a) ExtraTrees

(b) LIME

Figure 3. Feature importance.

4.1. Baseline: Extremely Random Trees (XT)

As a baseline for LIME, we use Extremely Random Trees
(ExtraTrees) (XT) (Geurts, Ernst, & Wehenkel, 2006) to glob-
ally rank the features. The ExtraTrees method is a pure ran-
domization method that has a node splitting strategy different
from that of traditional random forests (Breiman, 2001). The
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method has been shown to be competitive on ranking prob-
lems while requiring less parameter tuning than other boost-
ing techniques (Geurts & Louppe, 2011).

We have analyzed the ranking output of three randomly choosen
ExtraTrees models (XT1, XT2 and XT3) and the results were
congruent. Our intention was to analyze three distinct models
and see if they reported similar results. The small variation of
results from model to model gave credibility to the analysis.
Please note that several other experiments were carried out to
verify the stability of the results. As shown in Fig. 3a, the
most important features, according to (all) the tested models,
were the variables of time, Ps30, T50, phi, and P30. The most
determinant variable, time, was expected to be this relevant,
since aging is a fundamental determinant of degradation.

4.2. Global Interpretability with LIME

We were interested in studying global interpretability using
LIME. To estimate feature importance and as a first approach,
we calculated the number of times a feature is mentioned in
a local explanation, i.e. associated to a non-zero weight, con-
sidering the first 10 weights. Three GRU models (see Table 4)
were examined according to this evaluation measure. These
three models were randomly chosen. Our intention was to
analyze three distinct models and see if they reported simi-
lar results. Results are presented in Fig. 3b. As shown, the
models agree to some extent in the importance of some fea-
tures: Nc and NRc were the most frequently used by LIME to
provide explanations for the GRU models. The importance of
the remaining parameters was not so apparent.

To quantify how well LIME approximated the observed mod-
els and in order to measure how faithful local models are to
GRU, we averaged the R2 score of the linear regression ex-
planations. As shown in Tab. 4, the average fidelity of LIME
to the models was considerably low (< 30%) and the stabil-
ity of the models was also low, as measured by the standard
deviation of the R2. This result raises some concerns about
the tractability of LIME.

Interestingly, the features most often used by LIME were not
always the most relevant features of ExtraTrees. Some vari-
ables were important predictors both for LIME and Extra-
Trees, such as the variable of time, but other features were
assigned different importance. For example, phi is an impor-
tant parameter for ExtraTrees but is almost ignored by LIME.
The opposite situation also occurred. This can possibly be
because the underlying observed model is different and the
reasoning process may be different. This may even be true
for the same architecture under different configurations and
this might explain why different GRU models have different
global interpretations.

We also note the more “focused” reasoning of GRU. Accord-
ing to the interpretation in Fig. 3b, the GRU models seem to

Table 4. Prognostics performance measured in Root Mean
Squared Error (RMSE) and LIME fidelity measured in R2

score2, on average, and considering a single unit.

Fidelity of Single Unit
Model RMSE R2 (%) R2 (%)

t = 10 t = 90 t = 180

GRU1 45.50 14.00±6.1 48.17 10.70 16.50
GRU2 46.65 14.12±6.2 23.98 9.14 13.92
GRU3 45.96 28.12±17.6 60.54 10.17 22.83

look mainly at essential features (e.g. NRc, Nc and time) to
base their decisions. This kind of reasoning comes in line
with what a human usually does and also with what a hu-
man tends to understand better. Even if this is not exactly
how GRU works, the local models that LIME generates help
to extract these rules that provide enhanced interpretability.
Having access to these explanations, rather than the classi-
cal feature importance charts, is of relevance to the field of
prognostics.

4.3. Local Interpretability with LIME

Although global interpretability is important for understand-
ing the underlying mechanisms of prognostics, local inter-
pretability can help the operator in her dedicated decision
process. To analyze local interpretability in prognostics, we
use the interval chart and the local feature importance chart.
Examples of the interval chart are in Fig. 4a, 4d and 4g. This
type of chart provides an idea of the interpretable search space
G used to generate the LIME explanations g ∈ G. In other
words, the interval chart shows the interval of perturbed de-
cisions. It also shows the predicted RUL against the actual
RUL.

Examples of the local feature importance chart are shown in
Fig. 4c, 4f and 4i. This type of chart allows one to analyze
the importance of local features with LIME. Here, we follow
the convention of Ribeiro et al. (2016) where the height of
the bar represents how much the feature contributes to the es-
timation. The positive bars, shown in blue, represent features
that contribute to a large estimated value indicating we are far
from the End Of Life (EoL). The negative bars, shown in or-
ange, contribute towards moving closer to the EoL. In other
words, positive bars are predictors of non-failure while nega-
tive bars are predictors of failure. We analyze the predictions
of a single unit at different time instants (t = 10, 90, 180) in
Fig. 4, 5 and 6. As shown, as we get closer to the EoL, the
more orange bars we can see in the third column charts.

Fig. 4b, 4b and 4b illustrate the predictions of the three dif-
ferent GRU models applied to input instance at time t = 10.
Here, GRU1 is the most accurate model (absolute error of
zero) but the model that is most interpretable is GRU3 with an

2R2 is a measure of how close data are to the fitted regression line.
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(a) Prediction interval of GRU1 at time = 10 (b) Cone of accuracy of GRU1 at time = 10 (c) Local feature importance of GRU1 at time = 10

(d) Prediction interval of GRU2 at time = 10 (e) Cone of accuracy of GRU2 at time = 10 (f) Local feature importance of GRU2 at time = 10

(g) Prediction interval of GRU3 at time = 10 (h) Cone of accuracy of GRU3 at time = 10 (i) Local feature importance of GRU3 at time = 10

Figure 4. Local Interpretability of a decision made at time t = 10 for three GRU models. The fidelity of the explanation models
measured in R2 is 48.17, 23.98 and 60.54% for each GRU.
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(a) Prediction interval of GRU1 at time = 90 (b) Cone of accuracy of GRU1 at time = 90 (c) Local feature importance of GRU1 at time = 90

(d) Prediction interval of GRU2 at time = 90 (e) Cone of accuracy of GRU2 at time = 90 (f) Local feature importance of GRU2 at time = 90

(g) Prediction interval of GRU3 at time = 90 (h) Cone of accuracy of GRU3 at time = 90 (i) Local feature importance of GRU3 at time = 90

Figure 5. Local Interpretability of a decision made at time t = 90 for three GRU models. The fidelity of the explanation models
measured in R2 is 10.70, 9.14 and 10.17% for each GRU.
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(a) Prediction interval of GRU1 at time = 180 (b) Cone of accuracy of GRU1 at time = 180 (c) Local feature importance of GRU1 at time = 180

(d) Prediction interval of GRU2 at time = 180 (e) Cone of accuracy of GRU2 at time = 180 (f) Local feature importance of GRU2 at time = 180

(g) Prediction interval of GRU3 at time = 180 (h) Cone of accuracy of GRU3 at time = 180 (i) Local feature importance of GRU3 at time = 180

Figure 6. Local Interpretability of a decision made at time t = 180 for three GRU models. The fidelity of the explanation
models measured in R2 is 16.50, 13.92 and 22.83% for each GRU.
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R2 of 60.54% versus the R2 of 48.17% of GRU1 and 23.98%
of GRU2 (see Table 4). This is despite GRU3 having the
largest local error. This result reinforces the notion that ac-
curacy is only one of the evaluation measures to consider in
prognostics (Saxena, Celaya, et al., 2008).

Analyzing the feature importance charts of Fig. 4c, 4f and 4i,
it can be seen that for all the considered GRUs, the results are
consistent, in that there are more factors that indicate that we
are far from the failure, i.e. more blue bars. If we consider
the charts of Fig. 6c, 6f and 6i, in which we are closer to
failure (time = 180), the situation is the opposite: we have
more factors indicating failure, i.e. more orange bars. The
charts of Fig. 5c, 5f and 5i depict how the factors indicate
that we are at the half of the residual life of the equipment.

Interestingly, in Fig. 4i, the features NRc and Nc appear dis-
tinctively as the primary explanations to still be far from ac-
tual failure. These explanations were provided by the LIME
model with the largest R2 (highest fidelity) (see Tab. 4). Please
note that these were also the features considered to be glob-
ally important (see Fig. 3b).

Analysis of the interval charts is also of significance. For in-
stance in Fig. 4a, 4d and 4g, GRU2 has a small local error but
is the least interpretable model (R2 of 23.98%). In fact, the
interval of perturbed decisions is the widest of all of the con-
sidered three. The R2 is hence an important property of the
explanation functions that should be considered when evalu-
ating results.

As a final note, we analyze the results of Tab. 4. It can be seen
that the local models may differ greatly in fidelity, i.e. in R2

score. This result suggests that it is essential to understand the
fidelity of the explanations in order to select the appropriate
models.

5. CONCLUSION

To estimate the remaining useful life of a physical system
or component is a complex and often decisive decision. In
this paper we addressed this problem from the perspective
of model interpretability. We study LIME, a locally inter-
pretable model-agnostic approach and its ability to provide
understanding about the prognostics of a commercial turbo-
fan engine with the gated recurrent unit architecture. Our
contribution is to advance the field of data-driven prognostics
using interpretable models from eXplainable artificial intel-
ligence to provide further insights into prognostics for better
informed decision making.

In this work, we studied global and local interpretability using
LIME. Even though LIME is a model originally designed for
local interpretability we have shown that it can be used to ob-
tain a better global understanding of a prognostics model. In
addition, we have shown that the most important features ac-
cording to the decision trees, the classical global interpretabil-

ity method, may not necessarily be associated with the higher
weights in LIME. This can be explained by the fact that cer-
tain characteristics, which can significantly influence individ-
ual decisions, may lose relevance between trees (Kazemitabar,
Amini, Bloniarz, & Talwalkar, 2017). LIME can therefore be
a way to obtain this important information.

Regarding local interpretability, the results suggest that it may
be possible to trust local LIME models provided there is an
examination of their fidelity and limitations. An interesting
and consistent trend that we observed is that as we approach
failure, the number of factors, and the intensity by which they
signal failure, increases. The results also suggest that R2 is an
important trait to take into account when estimating the level
of confidence to have in an explanation.

Future research directions include the use of new interpretabil-
ity models such as DLIME (Zafar & Khan, 2019) or ALIME
(Shankaranarayana & Runje, 2019) which try to address some
of the limitations of LIME. Further studies on the consistency
and stability of LIME results in prognostics are needed. This
work intends to be an exploratory contribution to the field.

In this paper we evaluated LIME in a formal manner on a case
study. It is also possible to informally evaluate interpretable
models with maintenance staff in real-world scenarios. From
this analysis it may be possible to assess if LIME explanations
are correct (subjectively), and most importantly, if they are
intuitive. This is another future research direction.
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NOMENCLATURE

x input sample
N sampling size
M number of explanation functions
x′ perturbed input sample
f observed model
g explanation model
gL best explanation local model
πx proximity measure
wg coefficients of linear model g
L fidelity function
Ω penalty function
t time step
T time window size
EoL End of Life
CBM Condition-Based Maintenance
HPC High Pressure Compressor
HPT High Pressure Turbine
GRU Gated Recurrent Unit
LIME Local Interpretable Model-agnostic Explanations
LPC Low Pressure Compressor
LPT Low Pressure Turbine
LSTM Long-Short Term Memory
PM Predictive Maintenance
WLR Weighted Linear Regression
RCM Reliability Centered Maintenance
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
RUL Remaining Useful Life
TBM Time-Based Maintenance
XAI eXplainable Artificial Intelligence
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Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., & Bengio, Y. (2014).
Learning phrase representations using RNN encoder-
decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Em-
pirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv preprint arXiv:1412.3555.

Daigle, M. (2014). Model based prognostics. PHM Society.
Dogga, B., Sathyan, A., & Cohen, K. (2024). Explainable

ai based remaining useful life estimation of aircraft en-
gines. In Aiaa scitech 2024 forum (p. 2530).

Dong, D., Li, X.-Y., & Sun, F.-Q. (2017). Life prediction of
jet engines based on LSTM-recurrent neural networks.
In International conference of prognostics and system
health management (pp. 1–6).

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous sci-
ence of interpretable machine learning. arXiv preprint
arXiv:1702.08608.

Erasmus, A., Brunet, T. D., & Fisher, E. (2021). What is in-
terpretability? Philosophy & Technology, 34(4), 833–
862.

Fen, H., Song, K., Udell, M., Sun, Y., Zhang, Y., et al. (2019).
Why should you trust my interpretation? understand-
ing uncertainty in lime predictions. arXiv preprint
arXiv:1904.12991.

Gawde, S., Patil, S., Kumar, S., Kamat, P., Kotecha, K., &
Alfarhood, S. (2024). Explainable predictive mainte-
nance of rotating machines using lime, shap, pdp, ice.
IEEE Access, 12, 29345–29361.

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely
randomized trees. Machine learning, 63(1), 3–42.

Geurts, P., & Louppe, G. (2011). Learning to rank with ex-

13



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

tremely randomized trees. In Jmlr: Workshop and con-
ference proceedings (Vol. 14, pp. 49–61).

Gunning, D., & Aha, D. (2019). Darpa’s explainable artificial
intelligence (xai) program. AI magazine, 40(2), 44–58.

Hasib, A. A., Rahman, A., Khabir, M., & Shawon, M. T. R.
(2023). An interpretable systematic review of machine
learning models for predictive maintenance of aircraft
engine. arXiv preprint arXiv:2309.13310.

Heimes, F. O. (2008). Recurrent neural networks for remain-
ing useful life estimation. In International conference
on prognostics and health management (pp. 1–6).

Hinchi, A. Z., & Tkiouat, M. (2018). A deep Long-Short-
Term-Memory neural network for lithium-ion battery
prognostics. In International conference on industrial
engineering and operations management (pp. 2162–
2168).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8), 1735–1780.

Hu, X., Rudin, C., & Seltzer, M. (2019). Optimal sparse
decision trees. In Advances in neural information pro-
cessing systems (pp. 7265–7273).

Jaeger, H. (2001). The “echo sttate” approach to analysing
and training recurrent neural networks– With an erra-
tum note (Tech. Rep.). German National Research Cen-
ter for Information Technology GMD Technical Re-
port.

Jaeger, H. (2002). Tutorial on training recurrent neural net-
works, covering bppt, rtrl, ekf and the “echo state net-
work” approach (Vol. 5). GMD-Forschungszentrum
Informationstechnik Bonn.

Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on
machinery diagnostics and prognostics implementing
condition-based maintenance. Mechanical Systems and
Signal Processing, 20(7), 1483–1510.

Ji, Z., Zhang, L., & Yan, W. (2024). An interpretable
fault prediction method based on machine learning and
knowledge graphs. In International conference on in-
telligent computing (pp. 30–41).

Kazemitabar, J., Amini, A., Bloniarz, A., & Talwalkar, A. S.
(2017). Variable importance using decision trees. In
Advances in neural information processing systems
(pp. 426–435).

Kim, B. (2015). Interactive and interpretable machine learn-
ing models for human machine collaboration (Unpub-
lished doctoral dissertation). Massachusetts Institute of
Technology.

Kulkarni, C. S., Daigle, M. J., Gorospe, G., & Goebel, K.
(2018). Experimental validation of model-based prog-
nostics for pneumatic valves.

Kundu, R. K., & Hoque, K. A. (2023). Explainable pre-
dictive maintenance is not enough: quantifying trust in
remaining useful life estimation. In Annual conference
of the phm society (Vol. 15).

Lakkaraju, H., Bach, S. H., & Leskovec, J. (2016). Inter-

pretable decision sets: A joint framework for descrip-
tion and prediction. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge dis-
covery and data mining (pp. 1675–1684).

Lee, J., Holgado, M., Kao, H.-A., & Macchi, M. (2014). New
thinking paradigm for maintenance innovation design.
IFAC Proceedings Volumes, 47(3), 7104–7109.

Lee, K., Kim, J.-K., Kim, J., Hur, K., & Kim, H.
(2018a). CNN and GRU combination scheme for bear-
ing anomaly detection in rotating machinery health
monitoring. In 1st international conference on knowl-
edge innovation and invention (ickii) (pp. 102–105).

Lee, K., Kim, J.-K., Kim, J., Hur, K., & Kim, H. (2018b).
Stacked convolutional bidirectional LSTM recurrent
neural network for bearing anomaly detection in rotat-
ing machinery diagnostics. In 1st international con-
ference on knowledge innovation and invention (ickii)
(pp. 98–101).

Lipton, Z. C. (2018). The mythos of model interpretability.
Queue, 16(3), 31–57.

Litt, J. S., Frederick, D. K., & DeCastro, J. (2008). Simulat-
ing operation of a large turbofan engine (Tech. Rep.).
NASA.

Long, B., Li, X., Gao, X., & Liu, Z. (2019). Prognostics
comparison of lithium-ion battery based on the shallow
and deep neural networks model. Energies, 12(17), 1–
12.

Lou, Y., Caruana, R., & Gehrke, J. (2012). Intelligible models
for classification and regression. In Proceedings of the
18th acm sigkdd international conference on knowl-
edge discovery and data mining (pp. 150–158).

Ma, R., Yang, T., Breaz, E., Li, Z., Briois, P., & Gao,
F. (2018). Data-driven proton exchange membrane
fuel cell degradation predication through deep learning
method. Applied Energy, 231, 102–115.

Melis, D. A., & Jaakkola, T. (2018). Towards robust inter-
pretability with self-explaining neural networks. In Ad-
vances in neural information processing systems (pp.
7775–7784).

Morgan, N., & Bourlard, H. (1990). Generalization and pa-
rameter estimation in feedforward nets: Some experi-
ments. In Advances in neural information processing
systems (pp. 630–637).

Moubray, J. (2001). Reliability-centered maintenance. In-
dustrial Press Inc.

NASA, RCM. (2008). Guide reliability: Centered main-
tenance guide for facilities and collateral equipment.
Aeronautics and SA NASA, Eds.

Nguyen, D., Kefalas, M., Yang, K., Apostolidis, A., Ol-
hofer, M., Limmer, S., & Bäck, T. (2019). A review:
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