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ABSTRACT

The rapid advancement of machine learning algorithms has
significantly enhanced tools for monitoring system health,
making data-driven approaches predominant in Prognostics
and Health Management (PHM). In contrast, model-based
approaches have seen modest progress, as they are often con-
strained by the need for prior knowledge of specific governing
equations, limiting their applicability to a wide range of prob-
lems. Recently, rigorous theoretical foundations have been
established to extend dynamical systems theory by incorpo-
rating prognosis of uncertain events. This article leverages
this formal framework to introduce and demonstrate a fun-
damental mathematical result for one-dimensional linear dy-
namical systems. The presented theorem offers an analyti-
cal expression for approximating the expected time at which
an event will first occur in the future. Unlike typical thresh-
olds, this event is triggered by a hazard zone, defined as an
uncertain event likelihood function over the system’s state
space. Applications of this theorem can be found in imple-
menting real-time prognostic frameworks, where it is crucial
to quickly estimate the magnitude of impending failures. Em-
phasis is placed on minimizing computational burden to facil-
itate prognostic decision-making.

David Acuña-Ureta et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

NOMENCLATURE

kp Natural number denoting the present time.
k Natural number denoting any time in the

future so that k > kp.
Xk Random system state at time k.

Xkp+1:k Random system state trajectory between kp
and k: Xkp+1:k = {Xkp+1, Xkp+2, . . . , Xk}.

Xk Domain of Xk: Xk = R.
Xkp+1:k Domain of Xkp+1:k: Xkp+1:k = Rk−kp .

E Qualitative description of an event.
Ek Binary random variable denoting the

occurrence or not the event E at time k.
τE Random variable depicting the first future

occurrence time of the event E .
P(·) Probability mass function.
p(·) Probability density function.
E{·} Expectation operator.
δx(·) Dirac delta distribution located at x.
1A(·) Indicator function of an arbitrary set A.

N (µ, σ2) Gaussian distribution with mean µ and
standard deviation σ.

Φ(·) Cumulative distribution function of a
standard Gaussian distribution.

erf(·) Error function.
el(·) Elementary symmetric polynomial of

degree l.

1. INTRODUCTION

The event prognostic problem is undoubtedly the most chal-
lenging regarding system health monitoring for different rea-
sons (Vachtsevanos & Zahiri, 2022). Frequently, the failure
data available is rather scarce since, normally, and under a
reliability engineering approach, preventive maintenance is
carried out periodically to ensure a failure situation is rarely
reached. On the other hand, the monitored systems tend to
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be complex and governed by sophisticated differential equa-
tions that are difficult to model due to the number of vari-
ables involved. Even with this, it is extremely difficult to find
real-time numerical solutions whose information can be fused
with empirical information obtained from sensor networks.
Among these are the main reasons that have resulted in pre-
dominantly data-driven research efforts (Fink et al., 2020).
This approach allows us to distance ourselves from complex
equations governing degradation phenomena, since these al-
gorithms can find underlying structures through the correla-
tion of variables. This abstraction results in predictions such
as correlations, which in practice can be effective; however,
the causal relationships inherent to understanding physical
phenomena are lost and, therefore, the ability to offer math-
ematical guarantees about the results (Zanga, Ozkirimli, &
Stella, 2022). Even though the future is uncertain, it is desir-
able to have guarantees about the performance of prognostic
algorithms.

Although Prognostics and Health Management (PHM) is a
relatively young discipline, the problem of prognosticating
the time at which a future event will occur predates PHM
(Beichelt, 2001; Lee & Whitmore, 2003). Under the names
“First-Passage Time” (FPT) (Siegert, 1951) or “First Hitting
Time” (FHT) (Salminen, 1988), this problem has been ad-
dressed for years in mathematics, economics, physics, chem-
istry, among other disciplines (Redner, 2001). The problem
is typically set in continuous time to model physical phenom-
ena, and aims to find the probability distribution for when a
variable reaches predetermined thresholds (Blake & Lindsey,
1973). It is assumed that the dynamic evolution of the vari-
able is characterized by a specific stochastic process, such as
a Poisson or Gamma process, or, alternatively, as a diffusion
process via Brownian motion.

Recent work has introduced probability distributions for the
prognostic problem in continuous and discrete-time settings.
These formulations are agnostic regarding the stochastic pro-
cess characterizing system dynamics and the event declara-
tion criteria, moving beyond the simple threshold-crossing
approach. This formulation, known as the Theory of Un-
certain Event Prognosis (Acuña-Ureta, Orchard, & Wheeler,
2021), lays rigorous theoretical foundations for extending dy-
namical systems theory to prognostics of future events.

Building on this formulation, this article presents and proves
a theorem that allows for determining the expected time of a
future event with minimal computational effort. The analysis
assumes a one-dimensional linear system, where the event is
declared randomly, akin to tossing a coin (Bernoulli process),
with the probability of event occurrence determined by the
system’s current state.

The expectation of future event times has been previously
studied within the context of FPT and FHT problems, al-
beit for very specific stochastic processes (Klein, 1952;

Gut, 1974; Robbins, 1976; Wickwire, 1979; Talkner, 1987;
Dominé, 1995; Latouche & V., 1995; Gitterman, 2000;
Kulkarni & Tzenova, 2002; Dybiec, Gudowska-Nowak, &
Hänggi, 2006; Agliari, 2008; Zhang, Qi, Zhou, Xie, & Guan,
2009; Lefebvre, 2010; Bo & Lefebvre, 2011; Mattos, Mejı́a-
Monasterio, Metzler, & Oshanin, 2012; Bénichou, Guérin,
& Voituriez, 2015; Polizzi, Therien, & Beratan, 2016; Van-
vinckenroye & Denoël, 2017). However, this article presents
a fundamental result for the first time, in a scenario where the
typical threshold is replaced by a more general notion of a
hazard zone in which an event is declared randomly without
crossing a specific threshold.

The article is structured as follows. Section 2 briefly illus-
trates and develops the intuition about a fundamental result
that will lead to a theorem in Section 3. In this latter section,
we will present the aforementioned theorem and proceed with
its proof step-by-step. Finally, Section 4 presents the conclu-
sions of this work.

2. OUTLINE OF A FUNDAMENTAL RESULT

Let us assume a one-dimensional linear system:

xk+1 = axk + ωk, ωk ∼ N (0, σω
2), (1)

where xk ∈ Xk = R is the system state at time k ∈ N, that
might describe the evolution over time of a health indicator,
for example. Let kp ∈ N denote the present time and xkp the
current system state. Depending on the value of the parameter
a, the state of the system will have an increasing (a > 1) or
decreasing (a < 1) dynamic, as shown in Figs. 1 and 2,
respectively. We establish that an event E occurs with some
probability depending on the state of the system, which is
known as “hazard zone” (Orchard & Vachtsevanos, 2009). In
the context of PHM, the event could be defined qualitatively
as

E = “System failure”. (2)

Without loss of generality, we can say that a < 1. We can
define a binary stochastic process {Ek}k>kp

such that

P (Ek = E|xk) = 1− Φ

(
xk − µh

σh

)
, (3)

where Φ(·) is the cumulative distribution function of a stan-
dard Gaussian distribution. The binary random variable Ek

indicates whether the event E occurs or not at each time k,
k > kp. The probabilities are given by Eq. (3). This can
be understood as a particular way of defining a hazard zone.
Note that the probability is never zero for any xk that might
be picked.

In summary, we have a linear system and a hazard zone de-
fined through the statistics of a random variable Ek that de-
scribes the occurrence of an event E , which could correspond
to a catastrophic failure of the system. The prognostic prob-
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Figure 1. Illustration of the uncertain decreasing dynamics described by the Gaussian system state Xk of Eq. (1) when it is
stable (a < 1). In the graph above it is shown its mean x̄k (in yellow) with 95% confidence intervals (in green), and a hazard
zone (as a red gradient) that triggers the occurrence of the event E . The more intense the red color is for a value of xk, the
greater the probability that E occurs. The graph below shows the probability distribution of τE and its expected value E {τE}
using a vertical line. Two cases are simultaneously shown: when σω > 0 (E {τE}, light blue) and when σω = 0 (E {τ̄E},
orange). Regardless of the case, the expected value of the first occurrence time of E is shown to be apparently invariant. This is
actually true for the hazard zone under study, and is stated as a theorem in Section 3.

lem consists of finding the time at which this event first occurs
in the future, whose mathematical definition can be expressed
as (Acuña-Ureta et al., 2021)

τE(kp) = inf
{
k ∈ N : {k > kp} ∧ {Ek = E}

}
. (4)

Naturally, since the system has uncertain dynamics, this un-
certainty results in {Ek}k>kp

being a binary stochastic pro-
cess and, subsequently, τE becoming a random variable.

A logical question could arise: What is the expected value of
τE? Is there an analytical way to calculate it? The answer is
“yes”, the fundamental result presented in this article. Figure
1 is shown to facilitate understanding and generate intuition
of a fundamental result framed as a theorem in Section 3.

In the upper graph of Figure 1, the vertical axis corresponds
to the system state, and the horizontal axis is the time k. Since
the system is linear with Gaussian additive process noise, then
Xk is a Gaussian random variable, for each k, whose mean
has been denoted as x̄k and is plotted as a yellow line over
time. The uncertainty associated with Xk is expressed with
95% confidence intervals shown through the area included in
green. Finally, the red hue depicts the hazard zone, where red

color intensity reflects the probability with which the event
E occurs. With all this information, in the lower graph of
Figure 1, the probability distribution of τE is shown in green
and is calculated according to the definition provided in Eq.
(4). Note that its expected value is also shown there with a
vertical line, which is E {τE}.

Suppose that σω = 0. This would be equivalent to estab-
lishing that the dynamics of the system state is deterministic.
This is, Xk = x̄k, for all k > kp. The upper graph of Figure
1 shows this deterministic dynamic in yellow. Nonetheless,
the event declaration criteria are still uncertain, so this deter-
ministic trajectory of the system state still yields a probability
distribution for the first time at which E occurs in the future.
We denote this random variable as τ̄E , and its probability dis-
tribution is shown in the lower graph of Figure 1, in yellow
color. Its expected value, therefore, is E {τ̄E} and is shown
by a vertical line.

An analogous case for when the dynamics are increasing is
shown in Figure 2.

Given what is evidenced by Figures 1 and 2, it is valid to raise
the following questions:

• Could it be that E {τE} ≈ E {τ̄E}?
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Figure 2. Illustration of the uncertain increasing dynamics described by the Gaussian system state Xk of Eq. (1) when it is
unstable (a > 1). In the graph above it is shown its mean x̄k (in yellow) with 95% confidence intervals (in green), and a hazard
zone (as a red gradient) that triggers the occurrence of the event E . The more intense the red color is for a value of xk, the
greater the probability that E occurs. The graph below shows the probability distribution of τE and its expected value E {τE}
using a vertical line. Two cases are simultaneously shown: when σω > 0 (E {τE}, light blue) and when σω = 0 (E {τ̄E},
orange). Regardless of the case, the expected value of the first occurrence time of E is shown to be apparently invariant. This is
actually true for the hazard zone under study, and is stated as a theorem in Section 3.

• Will the above always be true in this type of system, re-
gardless of the defined parameters?

• If all of the above is true. Will there be any advantage to
calculating E {τ̄E} instead of E {τE}?

The answers to all the questions posed are: “Yes”. The third
question, in particular, is very interesting since it leads us to
analytically calculate these expected values from a single de-
terministic trajectory of the system’s state, which is its ex-
pected trajectory x̄kp+1:k. In Section 3 that follows, this idea
is formulated as a theorem immediately proven below. How-
ever, it is worth stopping first to analyze the implications of
this fundamental theoretical result.

This theoretical result presents a novel strategy to reduce the
computational load of failure prognostic algorithms for faster
failure probability assessment. While it is relatively easy
to compute the expected time of the event when the hazard
zone is described by a threshold (just check the time at which
the average state trajectory crosses the threshold), it is not
straightforward to do this computation when the hazard zone
is described in terms of an uncertain event likelihood, illus-
trated in Figures 1 and 2 as a gradient of red hues. It would
be possible to simulate some state trajectories and average

the times at which the events are recorded, in which case the
accuracy of the estimate would be subject to the number of
simulations: the more trajectories, the greater the accuracy
of the average. All this effort would be just to know the av-
erage time of occurrence of the event, which could in fact
occur even earlier than expected. It would be prudent to sup-
plement this information in some way, but with the computa-
tional burden already assumed, it becomes difficult to obtain
it through additional computing efforts, thus undermining the
aspirations to make decisions in real-time. The theorem pre-
sented in Section 3 allows the computation to be done almost
instantaneously by simulating a single deterministic state tra-
jectory, and whose result is exact (with infinite precision).

From the point of view of a user that has to make decisions,
the expected value for the time an event will occur could be
of greater or lesser use. When the event is desirable, such
as a particle reaching a certain energy level in physics, for
example, knowing this expectation is fundamental. Given
the speed of the phenomenon, an appropriate experimental
setting would be needed to study this event in particles. If
the standard deviation is also known, it would be even better.
In such a case, we could quantify uncertainty with levels of
precision. In contrast, the perspective is different when the

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

event is undesirable, such as a catastrophic equipment fail-
ure. Here, the decision to make is when to repair or abort a
mission. The expected value for the time a catastrophic fail-
ure will occur might not seem very useful at first glance since
there is a probability of 0.5 that the event had occurred be-
fore. In this example of an undesirable event, the key is to
characterize the uncertainty of the tail of the failure time dis-
tribution associated with early times, not late ones. However,
even with these considerations, knowing the expected failure
time means knowing the time window in which the decision
must be made, and the further away it is from the expected
time, the more conservative it will be. Having additional in-
formation could improve decision-making even more.

3. THEOREM FORMULATION

The theorem previously outlined in Section 2 is formulated
and proven below. The code that generates Figures 1 and 2 is
available1 to replicate these results as well as to experiment
with different parameters the veracity of this theorem.

Theorem (First Occurrence Time Expectation). Let us as-
sume a one-dimensional linear system:

xk+1 = axk + ωk,

where k ∈ N depicts discrete-time, xk ∈ Xk = R denotes the
system state, a ∈ R+ is a model parameter, and ωk is process
noise such that E{ωk} = 0. Considering that kp ∈ N is the
present time, assume xkp

> 0. Let {Ek}k>kp
be a binary

stochastic process describing the occurrence of an event E ,
such that the probability with which it occurs at time k, k >
kp, depends on the value of xk and is given by

P (Ek = E|xk) =

1− Φ
(

xk−µh

σh

)
, if a < 1

Φ
(

xk−µh

σh

)
, if a > 1.

(5)

where µh ∈ R and σh ∈ R+ are fixed parameters, and
the function Φ(·) corresponds to the cumulative distribution
function of a standard Gaussian distribution. If the first oc-
currence time of E in the future exists and is denoted by the
random variable τE , i.e. P (τE < +∞) = 1, then its expected
value can be approximated as

E{τE} ≈
∑
k>kp

kP (Ek = E|x̄k)

k−1∏
j=kp+1

[1− P (Ej = E|x̄j)] ,

(6)

where x̄k = ak−kpxkp .

Proof. According to the Theory of Uncertain Events Prog-
nosis (Acuña-Ureta et al., 2021), the probability distribution

1Code available at: https://github.com/SPAE-Research-Group/PHM24

of the future time of the first occurrence of the event E , de-
noted as τE , is obtained using the joint probability distribution
p(xkp+1:k) as

P(τE = k) :=

∫
Xkp+1:k

P (Ek = E|xk)

k−1∏
j=kp+1

[
1

. . .− P (Ej = E|xj)
]
p(xkp+1:k)dxkp+1:k. (7)

Since P(τE = k) is calculated as an expected value, by
the Law of Large Numbers it can be approximated with
Monte Carlo simulations. If we draw N samples x(i)

kp+1:k ∼
p(xkp+1:k) (equivalent to simulate N random trajectories),
then we have the following weak convergence:

1

N

N∑
i=1

δ
x
(i)
kp+1:k

(
xkp+1:k

) w→
N→+∞

p(xkp+1:k), (8)

where δ
x
(i)
kp+1:k

(
xkp+1:k

)
is a Dirac delta located at x(i)

kp+1:k.

Replacing p(xkp+1:k) by 1
N

∑N
i=1 δx(i)

kp+1:k

(xkp+1:k) in Eq.

(7) leads to an approximation of that expression. Therefore,
we can associate the approximated expression with another
random variable τNE such that

P(τNE = k) =

∫
Xkp+1:k

P (Ek = E|xk)

k−1∏
j=kp+1

[
1−

. . .P (Ej = E|xj)
]( 1

N

N∑
i=1

δ
x
(i)
kp+1:k

(
xkp+1:k

))
dxkp+1:k

(9)

=
1

N

N∑
i=1

∫
Xkp+1:k

P (Ek = E|xk)

k−1∏
j=kp+1

[
1−

. . .P (Ej = E|xj)
]
δ
x
(i)
kp+1:k

(
xkp+1:k

)
dxkp+1:k (10)

=
1

N

N∑
i=1

P
(
Ek = E|x(i)

k

) k−1∏
j=kp+1

[
1− P

(
Ej = E|x(i)

j

) ]
.

(11)

By weak convergence, we have

P(τE = k) = lim
N→+∞

P(τNE = k). (12)

From here, it follows that

⇒ E{τE} = lim
N→+∞

E{τNE }. (13)

Since we know that the previous equation is true, it is impor-
tant to highlight that the strategy followed in the proof con-

5
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sists of finding an alternative expression for E{τNE }. Then,
we take the limit N → +∞.

Keeping the above in mind, we can express the i-th simulated
future state at time k as

x
(i)
k = ax

(i)
k−1 + ω

(i)
k−1 (14)

= a
(
ax

(i)
k−2 + ω

(i)
k−2

)
+ ω

(i)
k−1 (15)

= a2x
(i)
k−2 + aω

(i)
k−2 + ω

(i)
k−1 (16)

... (17)

= ak−kpxkp
+

k−kp∑
n=1

an−1ω
(i)
k−n, (18)

from which we can define

x̄k = ak−kpxkp (19)

ω̄
(i)
k =

k−kp∑
n=1

an−1ω
(i)
k−n. (20)

Note that E
{
ω̄
(i)
k

}
= 0. Indeed,

E
{
ω̄
(i)
k

}
= E


k−kp∑
n=1

an−1ω
(i)
k−n

 (21)

=

k−kp∑
n=1

an−1E
{
ω
(i)
k−n

}
(22)

= 0. (23)

Therefore, we can write

x
(i)
k = x̄k + ω̄

(i)
k . (24)

If we are in the case that a < 1, then

P
(
Ek = E|x(i)

k

)
= 1− Φ

(
x
(i)
k − µh

σh

)
(25)

= 1− Φ

(
x̄k − µh + ω̄

(i)
k

σh

)
(26)

= 1− 1

2

[
1 + erf

(
x̄k − µh + ω̄

(i)
k√

2σh

)]
(27)

= 1− 1

2

1 + 2√
π

∫ x̄k−µh+ω̄
(i)
k√

2σh

0

e−z2

dz

 (28)

= 1− 1

2

[
1 +

2√
π

(∫ x̄k−µh√
2σh

0

e−z2

dz+

. . .

∫ x̄k−µh+ω̄
(i)
k√

2σh

x̄k−µh√
2σh

e−z2

dz

)]
(29)

= 1− Φ

(
x̄k − µh

σh

)
− 1√

π

∫ x̄k−µh+ω̄
(i)
k√

2σh

x̄k−µh√
2σh

e−z2

dz. (30)

We can define

hk(w) :=
1√
π

∫ x̄k−µh+w√
2σh

x̄k−µh√
2σh

e−z2

dz (31)

=
1√
2πσh

∫ w

0

e
−
(

x̄k−µh+ζ√
2σh

)2

dζ. (32)

Provided E
{
ω̄
(i)
k

}
= 0,

⇒ E
{
hk

(
ω̄
(i)
k

)}
≈ 0. (33)

This step is an important resource that we use at the end of
the demonstration.

Eq. (25) can be re-expressed as

P
(
Ek = E|x(i)

k

)
= P (Ek = E|x̄k)− hk

(
ω̄
(i)
k

)
. (34)

Analogously, if we have a > 1, then

P
(
Ek = E|x(i)

k

)
= Φ

(
x
(i)
k − µh

σh

)
(35)

= Φ

(
x̄k − µh

σh

)
+

1√
π

∫ x̄k−µh+ω̄
(i)
k√

2σh

x̄k−µh√
2σh

e−z2

dz, (36)

and Eq. (35) can be re-expressed as

P
(
Ek = E|x(i)

k

)
= P (Ek = E|x̄k) + hk

(
ω̄
(i)
k

)
. (37)

Without loss of generality, from now on, we will assume in
the proof that a < 1, since it only affects the sign that pre-
cedes hk

(
ω̄
(i)
k

)
in Eqs. (34) and Eq. (37), but the conclusion

is indistinct from this sign since the terms associated with
hk

(
ω̄
(i)
k

)
in both cases will be approximately zero in the end.

Hence, we can rewrite Eq. (11)

P(τNE = k)

=
1

N

N∑
i=1

P
(
Ek = E|x(i)

k

) k−1∏
j=kp+1

[
1− P

(
Ej = E|x(i)

j

) ]
(38)
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=
1

N

N∑
i=1

(
P (Ek = E|x̄k)− hk

(
ω̄
(i)
k

)) k−1∏
j=kp+1

[
1−

. . .
(
P (Ej = E|x̄j)− hj

(
ω̄
(i)
j

)) ]
(39)

=
1

N

N∑
i=1

(
1− 1 + P (Ek = E|x̄k)− hk

(
ω̄
(i)
k

))
. . . ·

k−1∏
j=kp+1

[
1− P (Ej = E|x̄j) + hj

(
ω̄
(i)
j

) ]
(40)

=
1

N

N∑
i=1

(
1−

[
1− P (Ek = E|x̄k) + hk

(
ω̄
(i)
k

)])
. . . ·

k−1∏
j=kp+1

[
1− P (Ej = E|x̄j) + hj

(
ω̄
(i)
j

) ]
(41)

=
1

N

N∑
i=1

(
k−1∏

j=kp+1

[
1− P (Ej = E|x̄j) + hj

(
ω̄
(i)
j

) ]

. . .−
k∏

j=kp+1

[
1− P (Ej = E|x̄j) + hj

(
ω̄
(i)
j

) ])
(42)

If we define r
(i)
j = −

hj

(
ω̄

(i)
j

)
1−P(Ej=E|x̄j)

, we can apply Viète’s
Theorem (Viète, 1646) to yield a polynomial expansion
in terms of elementary symmetric polynomials (Macdonald,
1995):

k∏
j=kp+1

(
λ− r

(i)
j

)
= λ+

. . .

k−kp∑
l=1

(−1)lλk−kp−lel

(
r
(i)
kp+1, r

(i)
kp+2, . . . , r

(i)
k

)
, (43)

where el

(
r
(i)
kp+1, r

(i)
kp+2, . . . , r

(i)
k

)
is an elementary symmet-

ric polynomial of degree l. Adopting λ = 1, we can go back
to Eq. (42) and make use of this property:

P(τNE = k)

=
1

N

N∑
i=1

[
k−1∏

j=kp+1

[1− P (Ej = E|x̄j)]
(
1− r

(i)
j

)
−

. . .

k∏
j=kp+1

[1− P (Ej = E|x̄j)]
(
1− r

(i)
j

)]
(44)

=
1

N

N∑
i=1

[
k−1∏

j=kp+1

[1− P (Ej = E|x̄j)]

(
1+

. . .

k−kp−1∑
l=1

(−1)lel

(
r
(i)
kp+1, r

(i)
kp+2, . . . , r

(i)
k−1

))
−

. . .

k∏
j=kp+1

[1− P (Ej = E|x̄j)]

(
1+

. . .

k−kp∑
l=1

(−1)lel

(
r
(i)
kp+1, r

(i)
kp+2, . . . , r

(i)
k

))]
(45)

= P (Ek = E|x̄k)

k−1∏
j=kp+1

[1− P (Ej = E|x̄j)]

. . .+

k−1∏
j=kp+1

[1− P (Ej = E|x̄j)]

k−kp−1∑
l=1

(−1)l

[
1

N

. . .

N∑
i=1

el

(
r
(i)
kp+1, r

(i)
kp+2, . . . , r

(i)
k−1

)]
−

. . .

k∏
j=kp+1

[1− P (Ej = E|x̄j)]

k−kp∑
l=1

(−1)l

[
1

N

. . .

N∑
i=1

el

(
r
(i)
kp+1, r

(i)
kp+2, . . . , r

(i)
k

)]
. (46)

Let us define

ϕN
k =

k∏
j=kp+1

[1− P (Ej = E|x̄j)]

k−kp∑
l=1

(−1)l

[
1

N

. . .

N∑
i=1

el

(
r
(i)
kp+1, r

(i)
kp+2, . . . , r

(i)
k

)]
, (47)

so that Eq. (46) can be briefly expressed as

P(τNE = k) = P (Ek = E|x̄k)

k−1∏
j=kp+1

[1− P (Ej = E|x̄j)]

. . .+ ϕN
k−1 − ϕN

k . (48)

Recall that

E{τE} = lim
N→+∞

E{τNE } (49)

= lim
N→+∞

∑
k>kp

kP(τNE = k) (50)

=
∑
k>kp

kP (Ek = E|x̄k)

k−1∏
j=kp+1

[1− P (Ej = E|x̄j)] +

. . . lim
N→+∞

∑
k>kp

k
(
ϕN
k−1 − ϕN

k

)
. (51)

However,∑
k>kp

k
(
ϕN
k−1 − ϕN

k

)
=
∑
k>kp

kϕN
k−1 −

∑
k>kp

kϕN
k (52)
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=
∑
k>kp

(k − 1 + 1)ϕN
k−1 −

∑
k>kp

kϕN
k (53)

=
∑
k>kp

ϕN
k−1 +

∑
k>kp

(k − 1)ϕN
k−1 −

∑
k>kp

kϕN
k (54)

=
∑
k>kp

ϕN
k−1 + kp�

��
0

ϕN
kp
. (55)

Thus,

E{τE} =
∑
k>kp

kP (Ek = E|x̄k)

k−1∏
j=kp+1

[1− P (Ej = E|x̄j)]

. . .+ lim
N→+∞

∑
k>kp

ϕN
k−1. (56)

The proof is completed if lim
N→+∞

∑
k>kp

ϕN
k−1 ≈ 0. Indeed,

lim
N→+∞

ϕN
k−1

= lim
N→+∞

k∏
j=kp+1

[1− P (Ej = E|x̄j)]

k−kp∑
l=1

(−1)l

[
1

N

. . .

N∑
i=1

el

(
r
(i)
kp+1, r

(i)
kp+2, . . . , r

(i)
k

)]
(57)

=

k∏
j=kp+1

[1− P (Ej = E|x̄j)]

k−kp∑
l=1

(−1)l

[
lim

N→+∞

1

N

. . .

N∑
i=1

el

(
r
(i)
kp+1, r

(i)
kp+2, . . . , r

(i)
k

)]
. (58)

Notwithstanding,

lim
N→+∞

1

N

N∑
i=1

el

(
r
(i)
kp+1, r

(i)
kp+2, . . . , r

(i)
k

)
= lim

N→+∞

1

N

N∑
i=1

∑
kp+1≤k1≤k2≤...≤kl≤k

l∏
m=1

r
(i)
km

(59)

=
∑

kp+1≤k1≤k2≤...≤kl≤k

(
lim

N→+∞

1

N

N∑
i=1

l∏
m=1

r
(i)
km

)
(60)

=
∑

kp+1≤k1≤k2≤...≤kl≤k

(
− lim

N→+∞

1

N

N∑
i=1

l∏
m=1

. . .
hkm

(
ω̄
(i)
km

)
1− P (Ekm = E|x̄km)

)
(61)

= −
∑

kp+1≤...≤k

 lim
N→+∞

1
N

∑N
i=1

∏l
m=1 hkm

(
ω̄
(i)
km

)
∏l

m=1 [1− P (Ekm
= E|x̄km

)]


(62)

= −
∑

kp+1≤...≤k

 E
{∏l

m=1 hkm (ω̄km)
}

∏l
m=1 [1− P (Ekm = E|x̄km)]

 (63)

≤ −
∑

kp+1≤...≤k

( ∏l
m=1 E {hkm (ω̄km)}∏l

m=1 [1− P (Ekm = E|x̄km)]

)
(64)

≈ 0, (65)

provided we know from Eq. (33) that∣∣∣∣∣
l∏

m=1

E {hkm
(ω̄km

)}

∣∣∣∣∣≪ ∣∣E{hkq

(
ω̄kq

)}∣∣ ≈ 0, (66)

for any q ∈ {1, 2, . . .m}.

Thus, we finally conclude that

lim
N→+∞

ϕN
k−1 ≈ 0 ⇒ lim

N→+∞

∑
k>kp

ϕN
k−1 ≈ 0, (67)

and, from Eq. (56), that

E{τE} ≈
∑
k>kp

kP (Ek = E|x̄k)

k−1∏
j=kp+1

[1− P (Ej = E|x̄j)] .

(68)

4. CONCLUSION

In this article, a new theorem for one-dimensional linear sys-
tems has been stated and proved within the Theory of Un-
certain Event Prognosis framework. The theorem consists
of establishing analytically, with a simple calculation, how
to compute an estimation for the expectation of the time at
which a future event will occur when its declaration is not
based on simple thresholds but on a likelihood function cov-
ering the entire state-space, thus denoting what is known as a
“hazard zone”. That is, for each value that the system’s state
takes in time, there is a probability that the event will occur.
This, of course, induces a probability distribution over the
time the event will occur for the first time, and the theorem
precisely determines the expected value of that distribution.
Despite the simplicity assumed in the studied dynamical sys-
tem, this fundamental result constitutes an important advance
in the area of event prognostics since it is not a method but an
absolute truth within a logical-mathematical framework that
can be verified (codes are provided) and extended to more
complex systems.
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