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ABSTRACT

The emergence of deep learning models has revolutionized
various industries over the last decade, leading to a surge in
connected devices and infrastructures. However, these mod-
els can be tricked into making incorrect predictions with high
confidence, leading to disastrous failures and security con-
cerns. To this end, we explore the impact of adversarial at-
tacks on multivariate time-series forecasting and investigate
methods to counter them. Specifically, we employ untargeted
white-box attacks, namely the Fast Gradient Sign Method
(FGSM) and the Basic Iterative Method (BIM), to poison
the inputs to the training process, effectively misleading the
model. We also illustrate the subtle modifications to the in-
puts after the attack, which makes detecting the attack using
the naked eye quite difficult. Having demonstrated the fea-
sibility of these attacks, we develop robust models through
adversarial training and model hardening. We are among the
first to showcase the transferability of these attacks and de-
fenses by extrapolating our work from the benchmark elec-
tricity data to a larger, 10-year real-world data used for pre-
dicting the time-to-failure of hard disks. Our experimental
results confirm that the attacks and defenses achieve the de-
sired security thresholds, leading to a 72.41% and 94.81%
decrease in RMSE for the electricity and hard disk datasets
respectively after implementing the adversarial defenses.

1. INTRODUCTION

A time-series records a series of metrics over regular inter-
vals of time as a sequence of values. Time-series forecast-
ing refers to the task of estimating the output at a certain
time step, given the previous values. It is used in a variety
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of domains such as finance (Sezer, Gudelek, & Ozbayoglu,
2020), power consumption prediction (Divina, Garcı́a Torres,
Goméz Vela, & Vázquez Noguera, 2019), health prediction
of equipment (C.-Y. Lin, Hsieh, Cheng, Huang, & Adnan,
2019), healthcare (Kaushik et al., 2020), and weather fore-
casting (Karevan & Suykens, 2020). The widespread use
of sensors and actuators has resulted in a proliferation of
data, leading to the shift from traditional time-series forecast-
ing methods to deep learning architectures (Siami-Namini,
Tavakoli, & Siami Namin, 2018), which are more capable of
gleaning insights and identifying long-term trends from the
data. However, it is a double-edged sword as deep learning
models can be easily compromised by attacks, causing the
models to produce incorrect forecasts based on manipulated
input data. This gullible nature of deep learning models to at-
tacks paves the way for catastrophic failures in safety-critical
applications and leads to the wastage of valuable resources,
time, money, and productivity (Akhtar & Mian, 2018). This
opens up a new area of research to develop models resistant
to these types of attacks.

Adversarial attacks on deep learning models are classified
into white-box or black-box attacks, and targeted or untar-
geted attacks depending on the ease of access, and the at-
tacker’s goal respectively. In white-box attacks, the attacker
knows sensitive model-specific information such as inputs,
targets, and gradients (Melis et al., 2021). Conversely, in
black-box attacks, the model is viewed as an oracle that out-
puts values given input data and the attack is crafted based on
observed model behavior (Oh, Schiele, & Fritz, 2019; Tsin-
genopoulos, Preuveneers, & Joosen, 2019). In targeted at-
tacks, the adversary tries to not only delude the model but
also prompts it to produce an output from a particular distri-
bution (Fursov et al., 2021) whereas in untargeted attacks the
attacker intends to trigger the model to generate incorrect out-
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puts belonging to any distribution (Miller, Xiang, & Kesidis,
2020; J. Lin, Dang, Rahouti, & Xiong, 2021).

Adversarial defense involves training the deep learning net-
work with augmented data that captures the noise distribution
that the attacker plans on using, or modifying the model ar-
chitecture to enhance the robustness of the model (Tariq et al.,
2020; Akhtar, Mian, Kardan, & Shah, 2021).

In this study, we train a Long Short-Term Memory (LSTM)
model (Hochreiter & Schmidhuber, 1997) on a toy dataset
that is used to predict future power consumption, given the
past values to avoid under-utilization or over-utilization of
resources. After conducting numerous training experiments,
we select the best-performing LSTM model. We then sub-
ject this model to two untargeted white box attacks – the
Fast Gradient Sign Method (FGSM), and the Basic Iterative
Method (BIM), causing it to learn the underlying distribu-
tion incorrectly and leading to an increased error rate. Once
we demonstrate the impact and the ease of the attacks, we
move on to implement adversarial defense using both a data
augmentation-based approach, and a layer-wise hardening of
the neural network weights enabling the model to learn over
the poisoned noise distribution in addition to the actual train-
ing samples. We then repeat the above set of experiments
on a large-scale hard disk drive dataset that predicts the Re-
maining Useful Life (RUL) to show the transferability of the
attacks and defense schemes proposed.

Our key contributions are:

1. Efficient training: We run multiple experiments to iden-
tify the best deep learning model.

2. Effective attacks: We successfully demonstrate the im-
pact of the adversarial attacks in all the datasets used.

3. Risk mitigation: We perform different adversarial de-
fenses to develop models resilient to attacks.

4. Imperceptibility of perturbation: We visualize the in-
discernible changes to the input after the attack.

5. Widespread applicability: We use two datasets to prove
the efficacy and transferability of the attacks and de-
fenses.

The paper is outlined as follows: In Section 2, we will go
over previous literature and identify the opportunities in this
domain. In Section 3 we will walk through the preprocess-
ing of the datasets used in the experiments. In Section 4, we
provide insights into the deep learning models and training
parameters used. In Section 5 we summarize the overall at-
tack and defense schemes used in this paper. We summarize
the results in Section 6. In Section 7 we outline the future
directions, and finally conclude our work in Section 8.

2. RELATED WORK

(Stergiou & Psannis, 2017) outline the interdependence be-
tween Internet of Things (IoT) and Big Data. With the prolif-

eration of sensors that record and share information between
devices on the Internet, there is no shortage of data, and de-
veloping deep learning models to predict future sensor val-
ues has become easy. This has led to a shift from traditional
methods of time-series forecasting using model-driven meth-
ods to a data-driven method involving multiple deep learn-
ing models for time-series forecasting problems (Faloutsos,
Gasthaus, Januschowski, & Wang, 2018). (Muzaffar & Af-
shari, 2019) found that LSTM models are better at predicting
electricity consumed, given exogenous attributes such as tem-
perature, humidity, wind speed, etc. (Wu, Liao, Miao, & Du,
2019) prove that using a Gated Recurrent Unit (GRU) (Cho
et al., 2014) to predict power consumed in New South Wales
in Australia led to much better forecasting results than using
traditional models. (Mishra, Basu, & Maulik, 2019) use a di-
lated temporal CNN to capture load consumption using mul-
tiple synthetic and real-world datasets accurately. (Bohan &
Yun, 2019) prove that a Bidirectional Recurrent Neural Net-
work (BRNN) is better at forecasting traffic flows using the
GPS data collected from the Hohhot Bus Corporation than
LSTM or GRU models. (Orimoloye, Sung, Ma, & John-
son, 2020) showcase the advantages of using deep networks
in comparison to shallow ones while predicting stock prices.
(Yan & Ouyang, 2018) compare conventional machine learn-
ing models to deep learning ones which use a combination
of wavelet decomposition and LSTMs in stock market pre-
dictions. (Chen, 2024) use an LSTM working through the
attention mechanism to predict the RUL of aircraft engines.
(Al-Dulaimi, Zabihi, Asif, & Mohammadi, 2019) have used
a neural network model combining LSTM and Convolutional
Neural Network (CNN) (LeCun, Bottou, Bengio, & Haffner,
1998) to predict the RUL of aircraft engines. (Deutsch & He,
2018) show the advantages of using a deep learning model to
predict the RUL of spinning parts.

Despite these advances, deep learning models remain vulner-
able to adversarial attacks. (Szegedy et al., 2014) reported
vulnerabilities in deep learning models in image recognition,
where Convolutional Neural Networks (CNNs) can be ma-
nipulated by injecting minute modifications into the data,
thereby leading the network to miscalculate the input with
high conviction. (Akhtar & Mian, 2018) have presented a
survey of all types of antagonistic manipulations and their im-
pacts on image recognition such as self-driving cars (Eykholt
et al., 2018), robotic vision (Melis et al., 2017), cyberspace
attacks (Papernot et al., 2017), etc. With the development
of multiple threat models to perform adversarial attacks, it is
no surprise that a lot of effort went into developing adversar-
ial defense strategies for these attacks in image recognition.
(Akhtar et al., 2021) summarize the adversarial attacks and
defense mechanisms developed in computer vision in recent
years.

In recent times, adversarial attacks and defense strategies
used in time-series analysis have garnered the interest of re-
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searchers. (Karim, Majumdar, & Darabi, 2020) have pro-
posed an Adversarial Transformation Network (ATN) to at-
tack univariate temporal sequential data models used in clas-
sification tasks. They have also successfully defended against
these attacks using a naive method of data augmentation.
(Harford, Karim, & Darabi, 2020) have extended the previ-
ous work to multivariate time-series classification problems.
(Rathore, Basak, Nistala, & Runkana, 2020) have demon-
strated the effect of FGSM, BIM, and Universal targeted
and untargeted attacks on univariate time-series classification
tasks, and defense based on the primitive data augmentation
technique. (Mode & Hoque, 2020) have proposed traditional
attacks on multivariate time-series regression datasets such
as the Google Stock dataset from Nasdaq and the Electricity
dataset (Hebrail & Berard, 2012). They show the vulnera-
bility of CNNs, LSTMs, and GRUs. (Govindarajulu, Am-
balla, Kulkarni, & Parmar, 2023) have carried out targeted
attacks based on amplitude, direction, and temporal compo-
nents of the model and showed their effectiveness using sta-
tistical tests on the Google stock exchange and Electricity
datasets. This is visually represented in Figure 1.

Figure 1. Overview of previous attacks and defenses work in
the time-series forecasting domain.

Our extensive review of the literature opened up a realm
of opportunities for improvement of current state-of-the-art
methods. We observed the following:

1. All previous work has been done only on toy datasets
such as the Electricity and stock exchange datasets

2. Adversarial defense has not been performed on the mul-
tivariate time-series datasets

3. The literature also lacked in demonstrating the impercep-
tible nature of the adversarial attacks on visualization of
training sample inputs

We were motivated to address the research gaps by:

1. Extending our experiments on the toy Electricity dataset
to a real-world dataset predicting the Remaining Useful
Life (RUL) of Hard Disk Drives (HDDs)

2. Performing adversarial defenses:

(a) Using data augmentation-based adversarial training
(b) Using model hardening techniques that perturb the

gradients of the model during the training process
to successfully defend against adversarial attacks

3. Demonstrating the indiscernible nature of the attacks to
the naked-eye by visualizing the training sample inputs
to the machine learning models, after performing the ad-
versarial attacks

3. EXPERIMENTAL SETUP

We first carry out our experiments on a smaller dataset which
is used to predict the power consumed sometime in the future,
given the past readings. Once we have shown the success of
the attacks and defense techniques in the electricity dataset,
we repeat the experiments on a substantially larger dataset
which is used to predict the RUL of HDDs proving the ease
of transferability of these attacks and defenses. We describe
the datasets used in this research and the preparation steps
done to make the data more viable for ingestion by the deep
learning models, in this section.

3.1. Individual Household Power Consumption Dataset

Power consumption prediction is a vital task to estimate the
amount of power that has to be supplied to various locations
at any given time. It has a direct bearing on the environ-
ment and helps to cut costs. Motivated by the applications
of power consumption prediction and to demonstrate the ef-
fects of antagonistic manipulation and fortification on a mul-
tivariate time-series dataset, we chose the Electricity dataset
from the UCI machine learning repository (Hebrail & Berard,
2012) in this research.

The Electricity dataset from the UCI machine learning repos-
itory consists of over 2 million rows and 9 columns sampled
by the minute in a household for 4 years from the end of 2006
to the end of 2010. global active power refers to the total ac-
tual power consumed in kW and global reactive power corre-
sponds to the unused power in the transmission wires in kW.
voltage and global intensity represents the mean voltage in
volts and mean current in amperes respectively. sub metering
1 refers to the total energy consumed in the kitchen in Watt-
Hour, sub metering 2, refers to the active energy readings in
the laundry room in Watt-Hour, and sub metering 3 represents
the total energy consumed by the electric water heating and
air conditioning equipments in Watt-Hour.

While preprocessing the dataset, we treated the missing val-
ues represented by ’?’ as null values represented by ’NaN’
for simplicity. Each column contains ’NaN’ values, and since
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machine learning models do not handle missing data very
well, we replace the null values in each column with the mean
of the respective column values. To ensure that the values be-
tween columns are in a comparable scale, the values in the
dataset are normalized using the smallest and largest values
of the samples and they all lie in the range 0 and 1 to ensure
consistency in predictions. We resampled the dataset daily,
by extrapolating the average of the per-minute values as the
value of the samples per day thereby generating a dataset with
1400 samples to predict global active power. From Figure 2,
which shows the distribution of global active power per day,
per week, per month, and per quarter, it is evident that the
periodicity of the distribution decreases as the time interval
increases. This suggests that using more samples from the
past does not contribute in making accurate predictions into
the future.
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Figure 2. Periodicity decreases as time interval increases.

3.2. Backblaze Hard Disk Drive Dataset

Before the surge in big data, model-driven approaches to
Prognostic Health Management (PHM) depended on reac-
tive maintenance and preventative maintenance techniques.
In reactive maintenance, the hard disks are replaced only af-
ter failure resulting in disruption of normal operations until
the drive is fixed. In preventative maintenance, the hard disks
are replaced well before failure leading to the replacement
of a fully functioning disk and resulting in wastage of re-
sources. In data-driven approaches, predictive maintenance
is performed using the Remaining Useful Life (RUL) metric.
RUL is an important metric used to indicate the time to failure
of any equipment. To prove the transferability of the attacks
and defenses on any real-world dataset, we employ the data
store from Backblaze (2023) housing the hard drive sensor
readings for a period of 9 years from 2014 to 2022. We con-
centrate on the Seagate family of hard disk drives since they
have the most amount of reliable data (Mohapatra, Coursey,
& Sengupta, 2023).

The dataset consists of attributes such as date, serial number,
model, capacity, failure and multiple S.M.A.R.T features.
S.M.A.R.T records various attributes of the hard disk drive.
The date represents the time the reading is recorded in
YYYY-MM-DD format, serial number, and model columns
represent the serial number and model number assigned by
the manufacturer. The model number of the dataset used is
ST4000DM000 where ST stands for Seagate. The capacity
column refers to the capacity of the HDD, and the final fail-
ure column consists of a binary 0/1 value which represents
whether the hard disk drive has failed or not. Using the fail-
ure column, the RUL column is created to generate 5 different
types of datasets each giving the time to failure of the disk
starting from 5, 15, 25, 35, or 45 days. Remaining Useful
Life can be calculated from the degradation curve shown in
Figure 3.

Time

C
on

di
tio

n

T (Failure Threshold)

t (Current Time)

RUL = T - t

Figure 3. Remaining Useful Life curve.

If t is the current time at which the disk is healthy and func-
tioning properly, and T is the time at which the disk fails
(given by the failure column), then the RUL of the disk is
given by T-t. In other words, the day before the failure is
marked as 1, the penultimate day before the failure is marked
as 2, and so on up to 5, 15, 25, 35, and 45 days generating 5
different kinds of datasets with an increasing number of sam-
ples with an increase in look back days for the experiments.
RUL is given by:

RUL = Date of failure of HDD−First log date of HDD (1)

The dataset can now be modeled as a multivariate time-series
problem (Mohapatra & Sengupta, 2023). The dataset is pre-
processed by dropping any null or missing values and by nor-
malizing the data values between 0 and 255 which is the stan-
dard proposed by Backblaze to account for the wide fluctua-
tion of data values between 0 and 1014.

4. TRAINING PROCESSES

We use a vanilla LSTM model (Hochreiter & Schmidhu-
ber, 1997) on the Electricity dataset and an Encoder-Decoder
LSTM model (Sutskever, Vinyals, & Le, 2014) on the HDD
dataset. We use the Python programming language in con-
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junction with the tensorflow and keras libraries to perform
our experiments on the Intel Xeon CPU with 13GB RAM.
The next two subsections consist of details about the experi-
ments performed.

4.1. Individual Household Power Consumption Dataset

We propose a vanilla LSTM model due to the fixed number
of attributes and target values and also because it is the most
prevalent model for multivariate time-series regression tasks
on the Electricity dataset (Alden, Gong, Ababei, & Ionel,
2020) (Ibrahim, Megahed, & Abbasy, 2021) (da Silva, Geller,
dos Santos Moura, & de Moura Meneses, 2022).

The dataset is divided into 80%, 10%, and 10% for the train-
ing, validation, and test sets respectively. We trained the
vanilla LSTM model consisting of a sequential layer fol-
lowed by 100 hidden nodes with the ReLu activation func-
tion. ReLU overcomes the problem of vanishing gradients by
outputting a value equal to the input if the input is positive.
We also added a 10% dropout to regularize the network and
prevent overfitting. Finally, we added a dense fully connected
layer to the LSTM. Adam (Kingma & Ba, 2017) is used as the
optimizer and the metric defined is Root Mean Squared Error
(RMSE).

We divided the experiment into 3 parts to validate our findings
and the behavior of the model:

1) Without using cross-validation: We trained the vanilla
LSTM model to predict the global active power target vari-
able by using the same validation set every time to inform
training. This training process only looked back 1 day before
to predict the next day’s power consumption.

2) Using walk-forward cross-validation: We repeated the ex-
periment with 3, 5, and 10-fold cross-validation. Since classi-
cal k-fold and stratified cross-validation schemes shuffle the
data and disrupt the order and seasonality of time-series in-
put, we used walk-forward cross-validation. In walk-forward
cross-validation, the first few data points in a finite window
correspond to the training set and the next few data points cor-
respond to the validation set. In the next iteration, more data
points that were formerly in the validation set are included in
the train set, and the window is expanded to include subse-
quent data points in the validation set as shown in Figure 4.
Based on the amount of folds, this process is repeated and the
average RMSE score is reported as the final training and val-
idation RMSE scores. These k-fold cross validation schemes
were also carried out by only looking back 1 day into the past
to predict the next day’s consumption.

3) Using look-back: The vanilla LSTM model trained so far
looked back one day in the past to predict the future. We
conducted experiments by increasing the look-back window
size to allow the model to consider more samples from the
past while making future predictions. The look-back window
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Time
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Walk Forward Cross Validation
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Figure 4. Walk-forward cross-validation.

sizes we used in our experiments are 3, 6, 9, 12 and 15 days.
The graph of the RMSE values for the train and test sets for
varying look-back window sizes are shown in Figure 5. It is
evident that as the look-back interval increases, the test set er-
ror increases, showing that looking further into the past wors-
ens predictions. This can be attributed partly to the fact that
LSTMs do not work well with long sequences and partly to
the property inherent in the dataset, where increasing the time
interval decreases the periodicity as shown in Fig. 2. Since we
have already down-sampled the dataset from minutes to days,
samples further in the past do not contribute to the seasonal
trends.
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Figure 5. Error rate for varying look back window sizes.

The RMSE scores of the train, validation, and test sets pro-
duced while running the experiments are tabulated in Table 1.
It is clear that the train RMSE is consistently higher than the
test RMSE in all types of experiments performed. To elim-
inate sampling bias as a reason for this, we split the dataset
into 60-20-20 to check if the test RMSE is still lower than
the training RMSE. We found the test RMSE (0.0746) to still
be lower than the train RMSE (0.1053) elucidating that the
test set distribution mirrors the training set distribution due
to the conspicuous seasonality inherent in the dataset making
the process of predicting the global active power easier, once
the model has learned using the training set.

It is seen that 3-fold walk-forward cross-validation with 1-day
look-back gives the best test RMSE result. Figure 6 shows the
actual and predicted values.

We conclude our experiments and select the 3-fold walk-
forward cross-validation model using 1-day look-back and no
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Table 1. Experimental Results of the Vanilla LSTM Network
on the Unpoisoned Dataset

Experiments Train Validation Test
Without using CV 0.0997 0.0703 0.0807
Using 3-fold CV 0.1120 0.0849 0.0764
Using 5-fold CV 0.1166 0.0858 0.0805
Using 10-fold CV 0.1156 0.0857 0.0805
Using 3-day look-back 0.3241 0.3073 0.3181
Using 6-day look-back 0.3102 0.2758 0.3512
Using 9-day look-back 0.2674 0.2744 0.4113
Using 12-day look-back 0.2909 0.1805 0.4195
Using 15-day look-back 0.3336 0.1830 0.5490
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Figure 6. True vs. predicted values of the best LSTM model.

feature selection as the model to conduct further experiments
on.

4.2. Backblaze Hard Disk Drive Dataset

We propose an Encoder-Decoder LSTM (Sutskever et al.,
2014) as the model to learn the underlying distribution of the
HDD dataset from Backblaze. We chose this model archi-
tecture because of the varying nature of the input sequence
due to the addition of S.M.A.R.T features over the years, and
also since we are aiming to predict a sequence of RUL values
given the sequence of inputs. This Encoder-Decoder model
generates the most likely sequence given a sequence of data.
The encoder scans the input and outputs a constant-size ar-
ray called the context vector, and the decoder reads from the
context vector.

Similar to the electricity dataset, this dataset is split follow-
ing the 80-10-10 rule for the train, validation, and test sets
respectively. Our Encoder-Decoder LSTM model consists of
a Sequential Layer of one hundred hidden units with ReLu
activation. We look 5, 15, 25, 35, and 45 days into the past
to check the effect of feeding more past data to the model.
Since we are looking back ‘t’ periods, the output of the en-
coder is repeated ‘t’ times before passing it through another
ReLu layer with 100 units We added a 10% dropout to pre-
vent overfitting and help in generalization. A dense layer is
added to every period of the decoder’s output series using the
Time Distributed wrapper thereby enabling the model to pre-
dict the RUL for each time step. Adam optimizer is utilized
to fine-tune the weights during training, and RMSE is used
as metrics. For higher lookback time steps, the gradients can

become excessively large, a phenomenon often referred to as
‘exploding gradients.’ To prevent NaN metrics, the gradients
are clipped if they exceed 0.5.

We divide our experiments into two to choose the top-
performing model to execute the attacks and defenses as fol-
lows:

1) Using look-back: We facilitate the learning of the Encoder-
Decoder LSTM model by providing the five different kinds of
datasets generated in Section 3.2. From Figure 7, it is clear
that increasing the look-back window exacerbates predictions
since the main disadvantage of an Encoder-Decoder LSTM
is its inability to handle long sequences. We conduct cross-
validation experiments on the 5-day look-back dataset.
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Figure 7. Error rate for varying look back window sizes.

2) Using walk-forward cross validation: Like the electricity
dataset, we perform 3, 5, and 10-fold walk-forward cross-
validation on the 5-day look-back dataset. The results are
tabulated in Table 2.

Table 2. Results of the LSTM Network on the Unpoisoned
Dataset

Experiments Train Validation Test
Using 3-fold CV 0.0677 1.1446 0.3084
Using 5-fold CV 0.0808 0.4718 0.2085
Using 10-fold CV 0.1065 0.8493 0.0715
Using 5-day look-back 0.2156 1.0192 0.2886
Using 15-day look-back 20.0390 6.0372 4.9856
Using 25-day look-back 6.6315 7.5154 6.3345
Using 35-day look-back 23.2777 19.0839 15.9206
Using 45-day look-back 38.7680 52.4585 79.9001

It is seen that 10-fold walk-forward cross-validation on the
dataset which looks back 5 days gives the best results. Fig-
ure 8 shows the true versus predicted values of this Encoder-
Decoder LSTM model.

We choose the 10-fold cross validated 5-day look-back model
as the final one to attack and defend against.

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

0 50 100 150 200 250
Time step

0
1
2
3
4

RU
L

Actual vs Predicted

actual
predicted

Figure 8. True vs. predicted values of the best Encoder-
Decoder LSTM.

5. ATTACKS AND DEFENSE STRATEGIES

We illustrate the process of performing adversarial attacks
and adversarial defenses in this section.

5.1. Overview of Process Flow

We demonstrate that the adversarial attacks are successful and
exploit the sequential nature of deep learning networks and
their susceptibility to adversarial perturbations using FGSM,
and BIM attacks. Once the best LSTM models selected in
Section 4.1 and Section 4.2 succumb to the two types of at-
tacks mentioned above, we perform adversarial defenses us-
ing data augmentation at the data plane, and layer-wise per-
turbations at the gradient plane to inform the training process.
This ensures model robustness to adversarial attacks. The en-
tire process flow is summarized in Figure 9.

Adversarial Defense

Attacked model output

Robust model output 

Adversary

Input

ML Model

actual

predicted

actual

predicted

Δ = predicted - actual

Δ = predicted - actual

Figure 9. Overall System Architecture.

5.2. Adversarial Attacks

We perform two types of adversarial perturbations of the data.

5.2.1. Fast Gradient Sign Method (FGSM)

(Goodfellow, Shlens, & Szegedy, 2015) proposed FGSM to
perform adversarial perturbations on CNNs for image data.
The FGSM logic given by Algorithm 1, adds disturbances to
the input in the direction of the gradients with regard to the
loss function of the data. We have extended the algorithm to
multivariate time-series datasets described earlier.

Algorithm 1 FGSM Algorithm

Require: Mapping ϕ from X to y, perturbation magnitude ϵ,
features or attributes X , label or target y

Ensure: Xϵ: adversarial examples for different values of ϵ
1: Xϵ ← ∅
2: for ϵ← start to end do
3: Xadv ← ∅
4: for i← 1 to m do
5: Xadv(i)← X(i) + ϵ · sign(∇J(ϕ,X(i), y(i)))
6: end for
7: Xϵ ← Xϵ ∪Xadv
8: end for
9: return Xϵ

The equation for FGSM attack is:

Xadv = X + ϵ · sign (∇J(f,X, y)) (2)

where Xadv is the disturbed input, X is the actual input, ϵ is
a constant (perturbation intensity), sign(·) computes the sign
of the gradient, J(f,X, y) is the gradient of J with regard to
X , f is the neural network, and y is the actual output.

5.2.2. Basic Iterative Method (BIM)

(Kurakin, Goodfellow, & Bengio, 2017) proposed BIM which
applies the FGSM attack multiple times. Since in each iter-
ation, the attack forces the model to add noise or perturba-
tion in the direction of the gradients with regard to the loss
function, this attack mechanism is generally considered to be
more powerful than FGSM. We have used the BIM method
given by Algorithm 2 to attack the best-performing vanilla
LSTM and Encoder-Decoder LSTM models selected earlier.

Algorithm 2 BIM Algorithm

Require: Mapping ϕ from X to y, perturbation magnitude ϵ,
features or attributes X , label or target y, step size α

Ensure: Xϵ: adversarial examples for different values of ϵ
1: i← 1
2: Xϵ ← ∅
3: for ϵ← start to end do
4: while i ≤ min(4 + ϵ/α, 1.25× ϵ/α) do
5: for j ← 1 to m do

Xadv(j)← X(j) + α · sign (∇J(ϕ,X(j), y(j)))
Xadv(j)← min (X(j) + ϵ,max (X(j)− ϵ,Xadv(j)))

6: end for
7: X ← Xadv
8: i← i+ 1
9: end while

10: Xϵ ← Xϵ ∪Xadv
11: end for
12: return Xϵ

Its equation is given as follows:

Xadv = X + α · sign(∇J(f,X, y)) (3)

Xadv = min(X + ϵ,max(X − ϵ,Xadv)) (4)

7
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where Xadv is the disturbed input, X is the actual input, α is
the step size, ϵ is a constant (perturbation intensity), sign(·)
computes the sign of the gradient, J(f,X, y) is the gradient
of J with regard to X , f is the neural network, and y is the
actual output.

5.3. Adversarial Defenses

We enumerate the two types of adversarial defenses per-
formed, in this section.

5.3.1. Data Augmentation-based Adversarial Training
(DAAT)

DAAT given by Algorithm 3 is a naı̈ve process of using adver-
sarial attacks to create adversarial examples and augmenting
the dataset to incorporate these examples during the training
of the deep learning models (Goodfellow et al., 2015).

Algorithm 3 DAAT Algorithm

Require: Mapping ϕbest from X to y, features or attributes
X , label or target y, perturbation magnitude ϵ, step size
α (Present/Absent based on the attack algorithm chosen)

Ensure: Mapping ϕ from Xaug to yaug
1: Xϵ ← attack(ϕbest, ϵ,X, y, α)
2: Xaug ← X +Xϵ

3: yaug ← concat(y, len(ϵ) + 1 times)
4: Find an optimal mapping ϕdaat such that ϕ(Xaug) ≈ yaug
5: Calculate rmse(yaug, ϕ(Xaug))

This mechanism is used after anticipating the types of pertur-
bations the adversary can use during the attack. DAAT pro-
vides the deep learning models with prior information neces-
sary to stay resilient to attacks during the training process. We
used the adversarial attacks introduced earlier to augment the
dataset with adversarial examples for different values of per-
turbation magnitude epsilon. Then we trained a robust classi-
fier on the augmented dataset. This robust classifier is more
resistant to adversarial attacks since it has been trained to pre-
dict the right values, given the perturbed values in its training
set. The system architecture of DAAT is shown in Figure 10.

5.3.2. Layer-wise Perturbation-Based Adversarial Train-
ing (LPAT)

This defense technique is inspired by the LPAT algorithm
proposed by (Zhang, Wang, He, Li, & Yu, 2018) to handle
class imbalances in hard drive health prediction. This robust
LSTM network is trained by going through two rounds of
feed-forward and backpropagation in each iteration. The first
round is similar to any neural network architecture where the
outputs are computed in the forward propagation step, and
the gradients are updated in the backpropagation step. In the
second round, however, the gradients in each layer are per-
turbed using FGSM and BIM attacks before the forward and

actual

predicted

Generation of Adversarial Examples

Retraining

Inputs Poisoning Poisoned examples

Augmented dataset
ML modelRobust model output

Δ = predicted - actual

Figure 10. System Architecture of Data Augmentation-based
Adversarial Training (DAAT).

backward propagation steps are performed again. We have
extended this algorithm to include a deterministic gradient
update, where a predetermined value is always used as the
magnitude of gradient perturbation, and a stochastic gradient
update, where any random value between a specified range is
used to perturb the gradients. The entire algorithm is given in
Algorithm 4.

Algorithm 4 LPAT Algorithm

Require: Features or attributes X , label or target y, pertur-
bation magnitude ϵ

Ensure: Mapping ϕ from X to y
1: for each epoch in epochs do
2: Learn the mapping ϕ in the forward pass
3: Compute the gradients and update the parameters in the

backward pass
4: Perturb the gradients in each of the network layers:
5: if dlpat then
6: grads← grads + avg(ϵ) · sign(grads)
7: else if slpat then

grads← grads + random(ϵ, start, end) · sign(grads)
8: end if
9: Perform feedforward process to learn the new mapping

ϕ
10: Perform backpropagation again to update parameters
11: end for
12: Calculate rmse(y, ϕ(X))

The system architecture of LPAT is shown in Figure 11.

6. RESULTS

In this section, we disclose the findings from carrying out the
attacks and defenses on the final deep learning models se-
lected in Section 3. The accompanying code has been made
available on GitHub.1.

1Accompanying code can be found at https://github.com/
micosyslab/mts-adv-attack-defense.
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actual

predicted

Poisoned gradient
backpropagation

Inputs

Adversary

ML model Robust model output
Δ = predicted - actual

Figure 11. System Architecture of Layer-wise Perturbation-
based Adversarial Training (LPAT).

6.1. Individual Household Power Consumption Dataset

6.1.1. Results of Adversarial Attacks

We contaminate the inputs to the vanilla LSTM model during
the evaluation stage using the FGSM and BIM attacks men-
tioned in Section 5.2. For this experiment with the electricity
dataset, we find that smaller orders of perturbation magnitude
between 0.05 and 0.25, incremented in steps of 0.05 give test
set RMSE values in the range of 0.117 and 0.3746 for FGSM,
and between 0.1287 and 0.4575 for BIM.

α parameter in Equation 4 is always set to 0.01 for all the
experiments conducted. The total iterations I is given as fol-
lows:

I = min
(
4 +

ϵ

α
, 1.25 · ϵ

α

)
(5)

where ϵ is the degree of fluctuation and α is the step size.

The results of the attacks on the electricity dataset are tabu-
lated in Table 3. It is seen that RMSE increases with increas-
ing ϵ.

Table 3. RMSE Values on the Test Electricity Dataset after
Attack

Attack Type ϵ Attack RMSE % increase in error

FGSM
0.05 0.117 54.14
0.1 0.1741 127.88

0.15 0.237 210.21
0.2 0.3039 297.79

0.25 0.3746 390.31

BIM
0.05 0.1287 68.46
0.1 0.2029 165.58

0.15 0.2866 275.13
0.2 0.3776 394.24

0.25 0.4575 498.82

We see that BIM is a stronger attack than FGSM from Fig-
ure 12.

Figure 13 and Figure 14 show the estimations on the altered
evaluation dataset after the FGSM and BIM attacks respec-
tively. Figure 15 and Figure 16 show the changes in a subset
of input data after the FGSM and BIM attacks respectively.
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Figure 12. Comparison of test RMSE for FGSM and BIM
with varying ϵ on the Electricity dataset.
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Figure 13. Predictions on the FGSM perturbed electricity test
dataset for varying ϵ.
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Figure 14. Predictions on the BIM perturbed electricity test
dataset for varying ϵ.
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Figure 15. Imperceptibility of the FGSM attack on the elec-
tricity dataset.

It is obvious that the changes in the train set distribution for
all ϵ values are almost imperceptible to the naked eye, but
the predictions on the test set vary widely demonstrating the
danger of these attacks.
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Figure 16. Imperceptibility of the BIM attack on the electric-
ity dataset.

6.1.2. Results of Adversarial Defenses

We carry out two different types of adversarial defense strate-
gies to harden the best-performing vanilla LSTM model on
the electricity dataset. In DAAT, we augment the dataset with
perturbed input attributes created by performing adversarial
perturbations on the original feature samples. We train the
vanilla LSTM network to learn the fluctuations in the fea-
tures and predict the correct target. The different RMSE val-
ues obtained after performing DAAT on the electricity dataset
are tabulated in Table 4. Although BIM is a stronger attack
than FGSM, DAAT on the electricity dataset is slightly more
resilient to BIM attack. The observed phenomenon can be
ascribed to the broader range of variations in the test features
perturbed by BIM enhancing the model’s capability to iden-
tify noisy outliers within the underlying distribution more ef-
fectively.

Table 4. Results after Performing DAAT on the Electricity
Dataset

Type of Attack RMSE Metrics Values

FGSM
Train 0.0994
Validation 0.1271
Test (clean data) 0.0761
Test (poisoned data) 0.0847

BIM
Train 0.0986
Validation 0.1279
Test (clean data) 0.0802
Test (poisoned data) 0.0949

In the second method, we harden the vanilla LSTM model
by perturbing the gradients of the model during backprop-
agation, allowing it to account for the outliers better. We
introduced two types of gradient update - deterministic and
stochastic. In the deterministic update, the mean of ϵ (in
this case 0.15) is used, whereas in the stochastic process, we
choose from a range of ϵ (in this case between 0.05 and 0.25).
The various RMSE metrics obtained after using LPAT on the
electricity dataset are tabulated in Table 5.

The RMSE values after the FGSM and BIM attacks and de-
fenses are shown in Figure 17 and Figure 18 respectively.
Figure 19 a line chart representing the percentage decrease
in error on the electricity dataset for different ϵ after per-
forming the defenses showing that BIM DAAT followed by
FGSM DAAT gives the maximum reduction in error during
training. This is followed by BIM-based DLPAT and SLPAT
techniques and finally FGSM-based DLPAT and SLPAT.

Table 5. Results after Performing LPAT on the Electricity
Dataset

Attack Type Training Type RMSE Metrics Value

FGSM Deterministic
Train 0.1413
Test 0.0974

Stochastic
Train 0.1424
Test 0.0979

BIM Deterministic
Train 0.1304
Test 0.0985

Stochastic
Train 0.1389
Test 0.101
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Figure 17. RMSE of FGSM attack and defenses for electricity
test set perturbed by varying ϵ.
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Figure 18. RMSE of BIM attack and defenses for electricity
test set perturbed by varying ϵ.
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Figure 19. Percentage Reduction in Error Values after Adver-
sarial Defense on the Electricity Dataset

6.1.3. Comparative Analysis of the Results

Mode et. al (Mode & Hoque, 2020) have used an LSTM
network to perform the adversarial attacks on the Electric-
ity dataset down-sampled to the per-hour values. They have
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reported a 12.3% and 22.9% increase in RMSE values af-
ter performing the FGSM and BIM attacks respectively for
an ϵ value of 0.2. For the same ϵ value of 0.2, but by
down-sampling the dataset to include the per-day values, we
have proved an increase in RMSE values of 297.79%, and
394.24% for the FGSM and BIM attacks respectively, prov-
ing that our attack algorithms severely compromise the model
for the same input distribution. While the authors explore
ideas for a defense algorithm, this work is limited by the
lack of implementation of actual defense techniques. Our
research bridges this gap by exploring two different defense
techniques on the Electricity dataset.

Govindarajulu et. al (Govindarajulu et al., 2023) have ex-
plored different attack strategies based on the direction, am-
plitude and temporal components of the attack on the Elec-
tricity dataset. The only direct comparison we can make is
that their RMSE value on the LSTM model at a 60% data
split for the training dataset down-sampled to per-hour val-
ues is 0.085 whereas our model at the 60-20-20 split, yields
a better RMSE value of 0.0746 for the per-day dataset. This
work is also limited by the lack of implementation of defense
techniques.

6.2. Backblaze Hard Disk Drive Dataset

6.2.1. Results of Adversarial Attacks

We poison the test inputs to the best-performing model identi-
fied in Section 4.2 using the FGSM and BIM attacks. We used
epsilon ranging from 3 to 11 incremented in steps of 2 such
as 3, 5, 7, 9, and 11 since the Encoder-Decoder LSTM model
is inherently robust to lower ϵ resulting in only a 0.92% to
3.87% increase in error rate for FGSM and a 1.12% to 4.7%
increase in error rate for BIM for ϵ between 0.05 and 0.2.

α in Equation 4 is set to 0.01 for all the experiments. The
number of iterations I is given by Equation 5.

The results for the perturbations performed on the HDD
dataset tabulated in Table 6 show that RMSE increases with
increasing ϵ.

Table 6. RMSE Values on the Test Hard Disk Drive (HDD)
Dataset after Attack

Attack Type ϵ Attack RMSE % increase in error

FGSM
3 0.124 73.43
5 0.1683 135.39
7 0.2154 201.26
9 0.2605 264.34

11 0.298 316.78

BIM
3 0.1344 87.97
5 0.1904 166.29
7 0.2505 250.35
9 0.3075 330.07

11 0.3609 404.76

We see that BIM is a stronger attack than FGSM in Figure 20.

Figure 21 and Figure 22 show the forecasts on the disrupted
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Figure 20. Comparison of test RMSE for FGSM and BIM
with varying ϵ on the HDD dataset.

test set corresponding to the FGSM and BIM attacks respec-
tively. Figure 23 and Figure 24 show the changes in a subset
of input data after performing the FGSM and BIM attacks re-
spectively thereby substantiating the fact that predictions on
the attacked test set are worse while the inputs look the same
to the naked eye.

0 50 100 150 200 250
Time step

0
1
2
3
4

RU
L

Actual vs Predicted
actual
epsilon = 3
epsilon = 5
epsilon = 7
epsilon = 9
epsilon = 11

Figure 21. Predictions on the FGSM perturbed HDD test
dataset for varying ϵ.
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Figure 22. Predictions on the BIM perturbed HDD test
dataset for varying ϵ.
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Figure 23. Imperceptibility of the FGSM attack on the HDD
dataset.

6.2.2. Results of Adversarial Defenses

We performed two types of adversarial defenses to make the
best-performing Encoder-Decoder LSTM more resilient to

11



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

0 100 200 300 400
Time step

0
50

100
150
200
250

RU
L

Imperceptibility of the BIM attack
actual
epsilon = 3
epsilon = 5
epsilon = 7
epsilon = 9
epsilon = 11

Figure 24. Imperceptibility of the BIM attack on the HDD
dataset.

adversarial attacks seen in Section 6.2.1. In the first method,
we augmented the input feature samples with perturbed data
in the course of model training to permit the model to learn
the true values given perturbed features. The results of the
different RMSE values obtained while performing DAAT on
the HDD dataset are tabulated in Table 7. Although BIM is
stronger than FGSM, DAAT on the HDD dataset is more re-
silient to the BIM attack due to the wide variations in feature
values enabling the model to detect the noisy outliers in the
underlying distribution better, as seen earlier.

Table 7. Results after Performing DAAT on the HDD Dataset

Type of Attack RMSE Metrics Values

FGSM
Train 0.0334
Validation 0.0858
Test (clean data) 0.0206
Test (poisoned data) 0.0313

BIM
Train 0.0285
Validation 0.0425
Test (clean data) 0.0129
Test (poisoned data) 0.0130

In the next method, we perturb the gradients of the model
during training hoping that the model learns a more robust
distribution. We modified LPAT to include two different types
of gradient perturbation during training - deterministic where
ϵ is 7 i.e. the average of all expected ϵ values, and stochastic
where ϵ takes a value between 3 and 11 i.e. the expected
range. The RMSE metrics after applying LPAT to the HDD
dataset are tabulated in Table 8.

Table 8. Results after Performing LPAT on the HDD Dataset

Attack Type Training Type RMSE Metrics Value

FGSM Deterministic
Train 0.23
Test 0.1422

Stochastic
Train 0.5457
Test 0.1457

BIM Deterministic
Train 0.3538
Test 0.0926

Stochastic
Train 0.2848
Test 0.0455

Figure 25 and Figure 26 compare the RMSE values after the
FGSM and BIM attacks and defenses respectively. Figure 27
shows the reduction in error after defense for different ϵ and
different attacks.

It is seen that DLPAT and SLPAT for FGSM when ϵ = 3 have

RMSE values higher than the attack RMSE. Although LPAT
leads to more robust models resistant to attacks in most cases,
in this case, we see that an average ϵ value of 7 did not help
in learning a robust model when poisoned with a smaller ϵ
value of 3. The same can be said for the deterministic gradient
update where the random values picked during SLPAT do not
effectively contribute to learning the underlying distribution
with allowance for noise.
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Figure 25. RMSE values of FGSM attack and defenses for
HDD test set perturbed by varying ϵ.
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Figure 26. RMSE values of BIM attack and defenses for
HDD test set perturbed by varying ϵ.

3 5 7 9 11
20

0

20

40

60

80

100

%
 D

ec
re

as
e 

in
 E

rr
or

Impact of Defenses on Error Rates Across Epsilon Values for Hard Disk Dataset

FGSM DAAT
FGSM DLPAT
FGSM SLPAT
BIM DAAT
BIM DLPAT
BIM SLPAT

Figure 27. Percentage Reduction in Error Values after Adver-
sarial Defense on the HDD Dataset

6.2.3. Comparative Analysis of the Results

The use of adversarial attacks and defense techniques on the
hard disk dataset represents the first exploration of these tech-
niques on this dataset. While we modified the LPAT algo-
rithm initially proposed to handle class imbalances by Zhang
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et. al (Zhang et al., 2018) on the Backblaze dataset, there
is no other comparable literature that we can compare these
results to, to the best of our knowledge.

7. LIMITATIONS AND FUTURE WORK

Research in adversarial attacks and defenses for multivari-
ate time-series forecasting is nascent, with many areas un-
explored. This study focuses on white-box attacks, which
necessitate knowledge of model parameters and inputs. In
the future, we will explore black-box attacks to construct an
attack model using the estimates of the target model alone.
We aim to develop a model that can discern the adversary’s
ϵ range based on prediction deviations and identify the max-
imum perturbation beyond which defense fails. Adversarial
training with BIM as the perturbation method yields superior
results, suggesting further exploration of the impact of ϵ on
training, as BIM is a stronger attack than FGSM. We find that
stochastic gradient update is highly dependent on the random
values of ϵ picked during each iteration of backpropagation,
warranting research into the selection of ϵ during the training
process Investigating black-box transferability and integrat-
ing DAAT and LPAT into a hybrid approach could enhance
model robustness against adversarial attacks.

8. CONCLUSION

Our study investigates the susceptibility of deep learning
models in multivariate time-series forecasting to adversar-
ial attacks and evaluates defense mechanisms. We show
that models like vanilla LSTM and Encoder-Decoder LSTM
when tested on the Individual Household Power Consumption
and Backblaze Hard Disk Drive datasets, undergo significant
performance degradation under adversarial perturbations like
FGSM and BIM. The average error rate increases by 248.17%
and 223% on the electricity and HDD datasets respectively,
highlighting the impact of these attacks.

We also visualize the subtle changes to the input distribu-
tion post-attack, which are not easily detectable. To counter
these vulnerabilities, we implement two robust defenses:
Data Augmentation-based Adversarial Training (DAAT) and
Layer-wise Perturbation-based Adversarial Training (LPAT).
DAAT, particularly with BIM for augmentation, greatly en-
hances model resilience, reducing errors by up to 72.41% and
94.81% for the electricity and HDD datasets respectively.

LPAT also shows effectiveness, with performance varying
based on perturbation magnitude. These results emphasize
the need for adversarial defense strategies in deep learning
models for critical applications in smart and connected infras-
tructures, enhancing model reliability and ensuring secure,
dependable predictions.
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APPENDIX

A. TIME-SERIES DATA CHARACTERISTICS

Time-series data are characterized into two types - stationary
time-series where the mean or variance is a constant given by
µ = c or σ = c or non-stationary time-series in which the
mean or variance varies with time given by µ = f(t) or σ =
f(t). Figure 28 shows a stationary time-series with constant
mean and variance, and a non-stationary time-series where
the mean increases with time as shown by the dotted line, and
the variance representing the distance between consecutive
peaks decreases with time.

(a) Stationary time-series

(b) Non-stationary time-series

Figure 28. Characteristics of time-series data

Time-series data can be represented as a 2D array as:
v11 v12 . . . v1n
v21 v22 . . . v2n

...
...

. . .
...

vt1 vt2 . . . vtn


where n is the total readings recorded at any particular pe-
riod, and t is the total readings recorded over t time steps.
There are two types of time-series. The first is univariate
time-series in which the future values of the series are de-
pendent only on its past values. For example, in univariate

time-series, the value of vtn depends only on its past values
such as

[
v1n, v2n, . . . , v(t−1)n

]
. The second is a multivari-

ate time-series in which the future values depend on a com-
bination of the past values and predictors such as exogenous
variables other than the series. For example, in multivari-
ate time-series, the value of vtn depends on both its past val-
ues and other parameters captured by sensing devices such as
[v11, v12, . . . , v1n, v21, v22, . . . , v2n, . . . , vt1, vt2, . . . ,
v(t−1)n].

B. SUPPLEMENTAL BACKGROUND

(Croce & Hein, 2019) propose a new black-box attack to ap-
ply sparse perturbations to image pixels leading to unnotice-
able changes in the resultant image. (Dong et al., 2018) itera-
tively attacked the samples by introducing a momentum term
that prevents the gradients from being stuck in a local maxima
resulting in a much more powerful attack. A paper published
by (Engstrom, Tran, Tsipras, Schmidt, & Madry, 2018), out-
lines the vulnerability of CNNs (LeCun et al., 1998) to benign
rotations and transformations. (Finlay, Pooladian, & Ober-
man, 2019) use a log barrier-based optimization technique
to solve the constrained optimization problem that aims to
minimize the perturbation magnitude in adversarial attacks.
(Huang et al., 2019) show that an intermediate-level attack
ensures high transferability of adversarial attacks between ar-
chitectures. (Moosavi-Dezfooli, Fawzi, Fawzi, & Frossard,
2017) identify the presence of global perturbations which are
independent of the images and depend on the geometric mod-
eling of the decision edges of deep learning algorithms. (Su,
Vargas, & Sakurai, 2019) proved that CNNs are susceptible
to attacks of lower dimensions by modifying only one pixel
based on differential evolution to perturb images.

(Sankaranarayanan, Jain, Chellappa, & Lim, 2018) suggest
efficient layer-wise training to prevent overfitting in deep net-
works. (Mustafa et al., 2019) propose a convex polytope-
based separation of features during learning, such that inde-
pendent variables of various targets are maximally separated
from one another. (Wang & Zhang, 2019) introduce a bi-
lateral adversarial training framework by perturbing the la-
bels and the features during the training process. (Madry,
Makelov, Schmidt, Tsipras, & Vladu, 2017) perform adver-
sarial training through robust optimization, exploring the uni-
versal transferability during training. (Jeddi, Shafiee, Karg,
Scharfenberger, & Wong, 2020) introduce a framework that
introduces perturbations during the training and inference and
efficiently learns to detect noise in the input. (Dong, Deng,
Pang, Zhu, & Su, 2020) outline a process called adversar-
ial distribution training in which the internal maximization
function seeks to learn the worst distribution possible, and
the external minimization function seeks to minimize the loss
over the distribution. (Madaan, Shin, & Hwang, 2020) put
forth a novel loss function called vulnerability suppression
loss that aims to minimize the latent space feature distor-
tion. (Jang, Zhao, Hong, & Lee, 2019) develop an iterative
stochastic generator to generate diverse adversarial examples
capable of exposing the vulnerabilities in the target model.
(Liu, Park, Hoang, Hasson, & Huan, 2022) propose an attack
scheme that introduces imperceptible perturbations to create
poisoned examples and training mechanisms based on ran-
domized smoothing to enhance model robustness.
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C. INDIVIDUAL HOUSEHOLD POWER CONSUMPTION
DATASET

C.1. Data Preprocessing
We conducted experiments using an LSTM which was de-
signed to predict the global active power. To facilitate this,
we resampled the dataset daily, incorporating the mean of the
per-minute values. Figure 29 illustrates the distribution of the
mean and sum of the per-minute values when the dataset is
resampled daily. It is evident that whether we aggregate over
the mean or sum while resampling over the day, the distribu-
tion remains consistent. Therefore, the pick of the clustering
technique does not significantly impact the model estimates.
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Figure 29. Global active power resampled per day for mean
and sum of minutes.

C.2. Architecture of vanilla LSTM
The vanilla LSTM unit shown in Figure 30 consists of:

1) Forget Gate: The forget gate determines what piece of in-
formation to persist and what to delete. The input at a particu-
lar time step, i(t), and information from the preceding hidden
state, s(t-1) act as inputs for the sigmoid activation, producing
an output of 0 (forget), or 1 (remember). Its equation is:

fg(t) = σ(i(t)Xf + s(t− 1)Zf ) (6)

2) Input Gate: This gate decides the relevant information to
be passed further from the present. The input vector and the
previous hidden layer’s output are multiplied element by ele-
ment, after passing through a sigmoid and a tanh function:

j(t) = σ(i(t)Xj + s(t− 1)Zig) (7)

k(t) = tanh(i(t)Xk + s(t− 1)Zk) (8)
ig(t) = j(t) · k(t) (9)

3) Cell State:It reserves relevant long-term memory and per-
forms element-by-element multiplication of the ouput of the
forget gate and previous cell state to preserve only the rel-
evant state of the network, and then performs element-by-
element addition with the output of the input gate, given by:

Cs(t) = σ(fg(t) · Cs(t− 1) + ig(t)) (10)

4) Output Gate: This gate decides the resultant value at any
period. The input vector, i(t), and the byproduct from the
preceding hidden layer, s(t-1) are put into a sigmoid activation
to calculate og(t), which is then multiplied with the tanh of

the new cell state Cs(t), to pass on as intake of the next time
step along with the cell state, Cs(t).

og(t) = σ(i(t)Xog + s(t− 1)Zog) (11)

s(t) = tanh(Cs(t)) · og(t) (12)

Xfg

+

x x

tanh

x
tanh

cs(t-1)

s(t-1)

i(t)

s(t)

cs(t)

o(t)

Y

Zfg XjZj XkZk XogZog

fg(t)

j(t) k(t)

ig(t)

og(t)

Forget Gate Input Gate Output Gate

Figure 30. Vanilla LSTM unit

C.3. Training Process
Loss curve of the train and validation sets for the LSTM with-
out using cross-validation or look back is shown in Figure 31.

Figure 32 shows the correlation between features for the data
resampled over days. Since each feature is highly correlated
with itself, the diagonal values of the correlation matrix are 1.

We perform feature selection based on the correlation matrix
to check if it improves results. We identified the top features
as global active power, global intensity, sub-metering 1, and
sub-metering 3. Training the LSTM using these features and
without using cross-validation or look-back gives us a train
RMSE of 0.1024 and a test RMSE of 0.0783 compared to the
test RMSE of 0.0807 without using cross-validation thereby
improving model efficacy by 2.97%.

Figure 31. Loss function of the vanilla LSTM network.

C.4. Adversarial Defense Results
The overall percentage decrease in error on the electricity
dataset after performing the different fortifications is tabu-
lated in Table 9 and is illustrated in Figure 19.
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Figure 32. Correlation matrix of values resampled per day.

Table 9. Percentage Reduction in Error Values after Adver-
sarial Training on the Electricity Dataset

Attack Type Training Type ϵ % decrease in error

FGSM

DAAT

0.05 33.08
0.1 52.04
0.15 63.38
0.2 70.62
0.25 75.17

DLPAT

0.05 16.67
0.1 43.94
0.15 58.73
0.2 67.72
0.25 73.71

SLPAT

0.05 15.47
0.1 42.56
0.15 57.22
0.2 66.14
0.25 72.08

BIM

DAAT

0.05 32.79
0.1 54.66
0.15 66.02
0.2 72.7
0.25 76.55

DLPAT

0.05 21.83
0.1 47.95
0.15 60.54
0.2 67.56
0.25 71.15

SLPAT

0.05 19.81
0.1 47.41
0.15 61.17
0.2 69.09
0.25 73.38

D. BACKBLAZE HARD DISK DRIVE DATASET

D.1. Architecture of Encoder-Decoder LSTM
The components of the Encoder-Decoder model used on this
dataset are explained below and illustrated in Figure 33.

1) Encoder: The encoder is composed of several RNNs,
LSTMs, or GRUs stacked together accepting an input and
propagating that information forward to the next units. The
hidden state a(t) is computed from the input array, i(t), and
the byproduct of the previous layer, a(t-1) based on the map-
ping of the chosen unit, if it is RNN, LSTM, or GRU. The
final a(t) is composed of all the encoded information from the
previous states and hidden layers. Its equation is given by:

a(t) = f(Za(t− 1) +Xi(t)) (13)

2) Context Vector: The context vector represents the last hid-
den state output of the encoder and the first hidden state input
to the decoder. It is an encoded latent space representation of
the inputs and allows the decoder to forecast accurately.

3) Decoder: The decoder consists of similar stacked recurrent
RNN, LSTM, or GRU units, receiving a hidden state from the
preceding unit, and calculates its hidden state and the output.

b(t) = f(Za(t− 1)) (14)

Softmax activation is applied on the hidden state, b(t), and the
corresponding weight to output a probability vector as:

ô(t) = softmax(Y b(t)) (15)

Context Vector

Z Z Z

a(1) a(2) a(3)

Z Z Z

b(1) b(2) b(3)

X X X

Y Y Y

i(1) i(2) i(3)

(1) (2) (3)

Encoder

Decoder

Figure 33. Architecture of Encoder Decoder LSTM.

D.2. Training Process
The loss function of the 5-day look back Encoder-Decoder
model without cross-validation is shown in Figure 34.

Figure 34. Loss function of Encoder Decoder LSTM.
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We perform feature selection by training the 25-day look-
back Encoder-Decoder LSTM with the top 10 features identi-
fied by an eXtreme Gradient Boosting (XGB) classifier as re-
ported by (Mohapatra et al., 2023). We found the train RMSE
to be 12.1174 and the test RMSE to be 16.5570 which is much
higher than those reported in Table 2.

D.3. Adversarial Defense Results
Table 10 shows the reduction in error after performing adver-
sarial defense for different perturbation values and different
adversarial attacks. and is visualized in Figure 27.

Table 10. Percentage Reduction in Error Values after Adver-
sarial Training on the HDD Dataset

Attack Type Training Type ϵ % decrease in error

FGSM

DAAT

3 82.34
5 85.92
7 87.51
9 85.87
11 83.86

DLPAT

3 -0.81
5 30.18
7 47.31
9 56.47
11 61.18

SLPAT

3 -14.68
5 16.4
7 35.14
9 46.41
11 52.92

BIM

DAAT

3 90.4
5 93.17
7 94.78
9 95.73
11 96.35

DLPAT

3 5.13
5 16.02
7 21.4
9 23.64
11 25.44

SLPAT

3 69.94
5 75
7 77.37
9 78.02
11 77.2
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