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ABSTRACT

The emergence of deep learning models has revolutionized
various industries over the last decade, leading to a surge in
connected devices and infrastructures. However, these mod-
els can be tricked into making incorrect predictions with high
confidence, leading to disastrous failures and security con-
cerns. To this end, we explore the impact of adversarial at-
tacks on multivariate time-series forecasting and investigate
methods to counter them. Specifically, we employ untargeted
white-box attacks, namely the Fast Gradient Sign Method
(FGSM) and the Basic Iterative Method (BIM), to poison
the inputs to the training process, effectively misleading the
model. We also illustrate the subtle modifications to the in-
puts after the attack, which makes detecting the attack using
the naked eye quite difficult. Having demonstrated the fea-
sibility of these attacks, we develop robust models through
adversarial training and model hardening. We are among the
first to showcase the transferability of these attacks and de-
fenses by extrapolating our work from the benchmark elec-
tricity data to a larger, 10-year real-world data used for pre-
dicting the time-to-failure of hard disks. Our experimental
results confirm that the attacks and defenses achieve the de-
sired security thresholds, leading to a 72.41% and 94.81%
decrease in RMSE for the electricity and hard disk datasets
respectively after implementing the adversarial defenses.

1. INTRODUCTION

A time-series records a series of metrics over regular inter-
vals of time as a sequence of values. Time-series forecast-
ing refers to the task of estimating the output at a certain
time step, given the previous values. It is used in a variety
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of domains such as finance (Sezer, Gudelek, & Ozbayoglu,
2020), power consumption prediction (Divina, Garcı́a Torres,
Goméz Vela, & Vázquez Noguera, 2019), health prediction
of equipment (C.-Y. Lin, Hsieh, Cheng, Huang, & Adnan,
2019), healthcare (Kaushik et al., 2020), and weather fore-
casting (Karevan & Suykens, 2020). The widespread use
of sensors and actuators has resulted in a proliferation of
data, leading to the shift from traditional time-series forecast-
ing methods to deep learning architectures (Siami-Namini,
Tavakoli, & Siami Namin, 2018), which are more capable of
gleaning insights and identifying long-term trends from the
data. However, it is a double-edged sword as deep learning
models can be easily compromised by attacks, causing the
models to produce incorrect forecasts based on manipulated
input data. This gullible nature of deep learning models to at-
tacks paves the way for catastrophic failures in safety-critical
applications and leads to the wastage of valuable resources,
time, money, and productivity (Akhtar & Mian, 2018). This
opens up a new area of research to develop models resistant
to these types of attacks.

Adversarial attacks on deep learning models are classified
into white-box or black-box attacks, and targeted or untar-
geted attacks depending on the ease of access, and the at-
tacker’s goal respectively. In white-box attacks, the attacker
knows sensitive model-specific information such as inputs,
targets, and gradients (Melis et al., 2021). Conversely, in
black-box attacks, the model is viewed as an oracle that out-
puts values given input data and the attack is crafted based on
observed model behavior (Oh, Schiele, & Fritz, 2019; Tsin-
genopoulos, Preuveneers, & Joosen, 2019). In targeted at-
tacks, the adversary tries to not only delude the model but
also prompts it to produce an output from a particular distri-
bution (Fursov et al., 2021) whereas in untargeted attacks the
attacker intends to trigger the model to generate incorrect out-
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puts belonging to any distribution (Miller, Xiang, & Kesidis,
2020; J. Lin, Dang, Rahouti, & Xiong, 2021).

Adversarial defense involves training the deep learning net-
work with augmented data that captures the noise distribution
that the attacker plans on using, or modifying the model ar-
chitecture to enhance the robustness of the model (Tariq et al.,
2020; Akhtar, Mian, Kardan, & Shah, 2021).

In this study, we train a Long Short-Term Memory (LSTM)
model (Hochreiter & Schmidhuber, 1997) on a toy dataset
that is used to predict future power consumption, given the
past values to avoid under-utilization or over-utilization of
resources. After conducting numerous training experiments,
we select the best-performing LSTM model. We then sub-
ject this model to two untargeted white box attacks – the
Fast Gradient Sign Method (FGSM), and the Basic Iterative
Method (BIM), causing it to learn the underlying distribu-
tion incorrectly and leading to an increased error rate. Once
we demonstrate the impact and the ease of the attacks, we
move on to implement adversarial defense using both a data
augmentation-based approach, and a layer-wise hardening of
the neural network weights enabling the model to learn over
the poisoned noise distribution in addition to the actual train-
ing samples. We then repeat the above set of experiments
on a large-scale hard disk drive dataset that predicts the Re-
maining Useful Life (RUL) to show the transferability of the
attacks and defense schemes proposed.

Our key contributions are:

1. Efficient training: We run multiple experiments to iden-
tify the best deep learning model.

2. Effective attacks: We successfully demonstrate the im-
pact of the adversarial attacks in all the datasets used.

3. Risk mitigation: We perform different adversarial de-
fenses to develop models resilient to attacks.

4. Imperceptibility of perturbation: We visualize the in-
discernible changes to the input after the attack.

5. Widespread applicability: We use two datasets to prove
the efficacy and transferability of the attacks and de-
fenses.

The paper is outlined as follows: In Section 2, we will go
over previous literature and identify the opportunities in this
domain. In Section 3 we will walk through the preprocess-
ing of the datasets used in the experiments. In Section 4, we
provide insights into the deep learning models and training
parameters used. In Section 5 we summarize the overall at-
tack and defense schemes used in this paper. We summarize
the results in Section 6. In Section 7 we outline the future
directions, and finally conclude our work in Section 8.

2. RELATED WORK

(Stergiou & Psannis, 2017) outline the interdependence be-
tween Internet of Things (IoT) and Big Data. With the prolif-

eration of sensors that record and share information between
devices on the Internet, there is no shortage of data, and de-
veloping deep learning models to predict future sensor val-
ues has become easy. This has led to a shift from traditional
methods of time-series forecasting using model-driven meth-
ods to a data-driven method involving multiple deep learn-
ing models for time-series forecasting problems (Faloutsos,
Gasthaus, Januschowski, & Wang, 2018). (Muzaffar & Af-
shari, 2019) found that LSTM models are better at predicting
electricity consumed, given exogenous attributes such as tem-
perature, humidity, wind speed, etc. (Wu, Liao, Miao, & Du,
2019) prove that using a Gated Recurrent Unit (GRU) (Cho
et al., 2014) to predict power consumed in New South Wales
in Australia led to much better forecasting results than using
traditional models. (Mishra, Basu, & Maulik, 2019) use a di-
lated temporal CNN to capture load consumption using mul-
tiple synthetic and real-world datasets accurately. (Bohan &
Yun, 2019) prove that a Bidirectional Recurrent Neural Net-
work (BRNN) is better at forecasting traffic flows using the
GPS data collected from the Hohhot Bus Corporation than
LSTM or GRU models. (Orimoloye, Sung, Ma, & John-
son, 2020) showcase the advantages of using deep networks
in comparison to shallow ones while predicting stock prices.
(Yan & Ouyang, 2018) compare conventional machine learn-
ing models to deep learning ones which use a combination
of wavelet decomposition and LSTMs in stock market pre-
dictions. (Chen, 2024) use an LSTM working through the
attention mechanism to predict the RUL of aircraft engines.
(Al-Dulaimi, Zabihi, Asif, & Mohammadi, 2019) have used
a neural network model combining LSTM and Convolutional
Neural Network (CNN) (LeCun, Bottou, Bengio, & Haffner,
1998) to predict the RUL of aircraft engines. (Deutsch & He,
2018) show the advantages of using a deep learning model to
predict the RUL of spinning parts.

Despite these advances, deep learning models remain vulner-
able to adversarial attacks. (Szegedy et al., 2014) reported
vulnerabilities in deep learning models in image recognition,
where Convolutional Neural Networks (CNNs) can be ma-
nipulated by injecting minute modifications into the data,
thereby leading the network to miscalculate the input with
high conviction. (Akhtar & Mian, 2018) have presented a
survey of all types of antagonistic manipulations and their im-
pacts on image recognition such as self-driving cars (Eykholt
et al., 2018), robotic vision (Melis et al., 2017), cyberspace
attacks (Papernot et al., 2017), etc. With the development
of multiple threat models to perform adversarial attacks, it is
no surprise that a lot of effort went into developing adversar-
ial defense strategies for these attacks in image recognition.
(Akhtar et al., 2021) summarize the adversarial attacks and
defense mechanisms developed in computer vision in recent
years.

In recent times, adversarial attacks and defense strategies
used in time-series analysis have garnered the interest of re-
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searchers. (Karim, Majumdar, & Darabi, 2020) have pro-
posed an Adversarial Transformation Network (ATN) to at-
tack univariate temporal sequential data models used in clas-
sification tasks. They have also successfully defended against
these attacks using a naive method of data augmentation.
(Harford, Karim, & Darabi, 2020) have extended the previ-
ous work to multivariate time-series classification problems.
(Rathore, Basak, Nistala, & Runkana, 2020) have demon-
strated the effect of FGSM, BIM, and Universal targeted
and untargeted attacks on univariate time-series classification
tasks, and defense based on the primitive data augmentation
technique. (Mode & Hoque, 2020) have proposed traditional
attacks on multivariate time-series regression datasets such
as the Google Stock dataset from Nasdaq and the Electricity
dataset (Hebrail & Berard, 2012). They show the vulnera-
bility of CNNs, LSTMs, and GRUs. (Govindarajulu, Am-
balla, Kulkarni, & Parmar, 2023) have carried out targeted
attacks based on amplitude, direction, and temporal compo-
nents of the model and showed their effectiveness using sta-
tistical tests on the Google stock exchange and Electricity
datasets. This is visually represented in Figure 1.

Figure 1. Overview of previous attacks and defenses work in
the time-series forecasting domain.

Our extensive review of the literature opened up a realm
of opportunities for improvement of current state-of-the-art
methods. We observed the following:

1. All previous work has been done only on toy datasets
such as the Electricity and stock exchange datasets

2. Adversarial defense has not been performed on the mul-
tivariate time-series datasets

3. The literature also lacked in demonstrating the impercep-
tible nature of the adversarial attacks on visualization of
training sample inputs

We were motivated to address the research gaps by:

1. Extending our experiments on the toy Electricity dataset
to a real-world dataset predicting the Remaining Useful
Life (RUL) of Hard Disk Drives (HDDs)

2. Performing adversarial defenses:

(a) Using data augmentation-based adversarial training
(b) Using model hardening techniques that perturb the

gradients of the model during the training process
to successfully defend against adversarial attacks

3. Demonstrating the indiscernible nature of the attacks to
the naked-eye by visualizing the training sample inputs
to the machine learning models, after performing the ad-
versarial attacks

3. EXPERIMENTAL SETUP

We first carry out our experiments on a smaller dataset which
is used to predict the power consumed sometime in the future,
given the past readings. Once we have shown the success of
the attacks and defense techniques in the electricity dataset,
we repeat the experiments on a substantially larger dataset
which is used to predict the RUL of HDDs proving the ease
of transferability of these attacks and defenses. We describe
the datasets used in this research and the preparation steps
done to make the data more viable for ingestion by the deep
learning models, in this section.

3.1. Individual Household Power Consumption Dataset

Power consumption prediction is a vital task to estimate the
amount of power that has to be supplied to various locations
at any given time. It has a direct bearing on the environ-
ment and helps to cut costs. Motivated by the applications
of power consumption prediction and to demonstrate the ef-
fects of antagonistic manipulation and fortification on a mul-
tivariate time-series dataset, we chose the Electricity dataset
from the UCI machine learning repository (Hebrail & Berard,
2012) in this research.

The Electricity dataset from the UCI machine learning repos-
itory consists of over 2 million rows and 9 columns sampled
by the minute in a household for 4 years from the end of 2006
to the end of 2010. global active power refers to the total ac-
tual power consumed in kW and global reactive power corre-
sponds to the unused power in the transmission wires in kW.
voltage and global intensity represents the mean voltage in
volts and mean current in amperes respectively. sub metering
1 refers to the total energy consumed in the kitchen in Watt-
Hour, sub metering 2, refers to the active energy readings in
the laundry room in Watt-Hour, and sub metering 3 represents
the total energy consumed by the electric water heating and
air conditioning equipments in Watt-Hour.

While preprocessing the dataset, we treated the missing val-
ues represented by ’?’ as null values represented by ’NaN’
for simplicity. Each column contains ’NaN’ values, and since
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machine learning models do not handle missing data very
well, we replace the null values in each column with the mean
of the respective column values. To ensure that the values be-
tween columns are in a comparable scale, the values in the
dataset are normalized using the smallest and largest values
of the samples and they all lie in the range 0 and 1 to ensure
consistency in predictions. We resampled the dataset daily,
by extrapolating the average of the per-minute values as the
value of the samples per day thereby generating a dataset with
1400 samples to predict global active power. From Figure 2,
which shows the distribution of global active power per day,
per week, per month, and per quarter, it is evident that the
periodicity of the distribution decreases as the time interval
increases. This suggests that using more samples from the
past does not contribute in making accurate predictions into
the future.
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Figure 2. Periodicity decreases as time interval increases.

3.2. Backblaze Hard Disk Drive Dataset

Before the surge in big data, model-driven approaches to
Prognostic Health Management (PHM) depended on reac-
tive maintenance and preventative maintenance techniques.
In reactive maintenance, the hard disks are replaced only af-
ter failure resulting in disruption of normal operations until
the drive is fixed. In preventative maintenance, the hard disks
are replaced well before failure leading to the replacement
of a fully functioning disk and resulting in wastage of re-
sources. In data-driven approaches, predictive maintenance
is performed using the Remaining Useful Life (RUL) metric.
RUL is an important metric used to indicate the time to failure
of any equipment. To prove the transferability of the attacks
and defenses on any real-world dataset, we employ the data
store from Backblaze (2023) housing the hard drive sensor
readings for a period of 9 years from 2014 to 2022. We con-
centrate on the Seagate family of hard disk drives since they
have the most amount of reliable data (Mohapatra, Coursey,
& Sengupta, 2023).

The dataset consists of attributes such as date, serial number,
model, capacity, failure and multiple S.M.A.R.T features.
S.M.A.R.T records various attributes of the hard disk drive.
The date represents the time the reading is recorded in
YYYY-MM-DD format, serial number, and model columns
represent the serial number and model number assigned by
the manufacturer. The model number of the dataset used is
ST4000DM000 where ST stands for Seagate. The capacity
column refers to the capacity of the HDD, and the final fail-
ure column consists of a binary 0/1 value which represents
whether the hard disk drive has failed or not. Using the fail-
ure column, the RUL column is created to generate 5 different
types of datasets each giving the time to failure of the disk
starting from 5, 15, 25, 35, or 45 days. Remaining Useful
Life can be calculated from the degradation curve shown in
Figure 3.

Time

C
on

di
tio

n

T (Failure Threshold)

t (Current Time)

RUL = T - t

Figure 3. Remaining Useful Life curve.

If t is the current time at which the disk is healthy and func-
tioning properly, and T is the time at which the disk fails
(given by the failure column), then the RUL of the disk is
given by T-t. In other words, the day before the failure is
marked as 1, the penultimate day before the failure is marked
as 2, and so on up to 5, 15, 25, 35, and 45 days generating 5
different kinds of datasets with an increasing number of sam-
ples with an increase in look back days for the experiments.
RUL is given by:

RUL = Date of failure of HDD�First log date of HDD (1)

The dataset can now be modeled as a multivariate time-series
problem (Mohapatra & Sengupta, 2023). The dataset is pre-
processed by dropping any null or missing values and by nor-
malizing the data values between 0 and 255 which is the stan-
dard proposed by Backblaze to account for the wide fluctua-
tion of data values between 0 and 1014.

4. TRAINING PROCESSES

We use a vanilla LSTM model (Hochreiter & Schmidhu-
ber, 1997) on the Electricity dataset and an Encoder-Decoder
LSTM model (Sutskever, Vinyals, & Le, 2014) on the HDD
dataset. We use the Python programming language in con-
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junction with the tensorflow and keras libraries to perform
our experiments on the Intel Xeon CPU with 13GB RAM.
The next two subsections consist of details about the experi-
ments performed.

4.1. Individual Household Power Consumption Dataset

We propose a vanilla LSTM model due to the fixed number
of attributes and target values and also because it is the most
prevalent model for multivariate time-series regression tasks
on the Electricity dataset (Alden, Gong, Ababei, & Ionel,
2020) (Ibrahim, Megahed, & Abbasy, 2021) (da Silva, Geller,
dos Santos Moura, & de Moura Meneses, 2022).

The dataset is divided into 80%, 10%, and 10% for the train-
ing, validation, and test sets respectively. We trained the
vanilla LSTM model consisting of a sequential layer fol-
lowed by 100 hidden nodes with the ReLu activation func-
tion. ReLU overcomes the problem of vanishing gradients by
outputting a value equal to the input if the input is positive.
We also added a 10% dropout to regularize the network and
prevent overfitting. Finally, we added a dense fully connected
layer to the LSTM. Adam (Kingma & Ba, 2017) is used as the
optimizer and the metric defined is Root Mean Squared Error
(RMSE).

We divided the experiment into 3 parts to validate our findings
and the behavior of the model:

1) Without using cross-validation: We trained the vanilla
LSTM model to predict the global active power target vari-
able by using the same validation set every time to inform
training. This training process only looked back 1 day before
to predict the next day’s power consumption.

2) Using walk-forward cross-validation: We repeated the ex-
periment with 3, 5, and 10-fold cross-validation. Since classi-
cal k-fold and stratified cross-validation schemes shuffle the
data and disrupt the order and seasonality of time-series in-
put, we used walk-forward cross-validation. In walk-forward
cross-validation, the first few data points in a finite window
correspond to the training set and the next few data points cor-
respond to the validation set. In the next iteration, more data
points that were formerly in the validation set are included in
the train set, and the window is expanded to include subse-
quent data points in the validation set as shown in Figure 4.
Based on the amount of folds, this process is repeated and the
average RMSE score is reported as the final training and val-
idation RMSE scores. These k-fold cross validation schemes
were also carried out by only looking back 1 day into the past
to predict the next day’s consumption.

3) Using look-back: The vanilla LSTM model trained so far
looked back one day in the past to predict the future. We
conducted experiments by increasing the look-back window
size to allow the model to consider more samples from the
past while making future predictions. The look-back window
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Time
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Walk Forward Cross Validation

Training set
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Figure 4. Walk-forward cross-validation.

sizes we used in our experiments are 3, 6, 9, 12 and 15 days.
The graph of the RMSE values for the train and test sets for
varying look-back window sizes are shown in Figure 5. It is
evident that as the look-back interval increases, the test set er-
ror increases, showing that looking further into the past wors-
ens predictions. This can be attributed partly to the fact that
LSTMs do not work well with long sequences and partly to
the property inherent in the dataset, where increasing the time
interval decreases the periodicity as shown in Fig. 2. Since we
have already down-sampled the dataset from minutes to days,
samples further in the past do not contribute to the seasonal
trends.
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Train RMSE
Test RMSE

Figure 5. Error rate for varying look back window sizes.

The RMSE scores of the train, validation, and test sets pro-
duced while running the experiments are tabulated in Table 1.
It is clear that the train RMSE is consistently higher than the
test RMSE in all types of experiments performed. To elim-
inate sampling bias as a reason for this, we split the dataset
into 60-20-20 to check if the test RMSE is still lower than
the training RMSE. We found the test RMSE (0.0746) to still
be lower than the train RMSE (0.1053) elucidating that the
test set distribution mirrors the training set distribution due
to the conspicuous seasonality inherent in the dataset making
the process of predicting the global active power easier, once
the model has learned using the training set.

It is seen that 3-fold walk-forward cross-validation with 1-day
look-back gives the best test RMSE result. Figure 6 shows the
actual and predicted values.

We conclude our experiments and select the 3-fold walk-
forward cross-validation model using 1-day look-back and no
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Table 1. Experimental Results of the Vanilla LSTM Network
on the Unpoisoned Dataset

Experiments Train Validation Test
Without using CV 0.0997 0.0703 0.0807
Using 3-fold CV 0.1120 0.0849 0.0764
Using 5-fold CV 0.1166 0.0858 0.0805
Using 10-fold CV 0.1156 0.0857 0.0805
Using 3-day look-back 0.3241 0.3073 0.3181
Using 6-day look-back 0.3102 0.2758 0.3512
Using 9-day look-back 0.2674 0.2744 0.4113
Using 12-day look-back 0.2909 0.1805 0.4195
Using 15-day look-back 0.3336 0.1830 0.5490
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Figure 6. True vs. predicted values of the best LSTM model.

feature selection as the model to conduct further experiments
on.

4.2. Backblaze Hard Disk Drive Dataset

We propose an Encoder-Decoder LSTM (Sutskever et al.,
2014) as the model to learn the underlying distribution of the
HDD dataset from Backblaze. We chose this model archi-
tecture because of the varying nature of the input sequence
due to the addition of S.M.A.R.T features over the years, and
also since we are aiming to predict a sequence of RUL values
given the sequence of inputs. This Encoder-Decoder model
generates the most likely sequence given a sequence of data.
The encoder scans the input and outputs a constant-size ar-
ray called the context vector, and the decoder reads from the
context vector.

Similar to the electricity dataset, this dataset is split follow-
ing the 80-10-10 rule for the train, validation, and test sets
respectively. Our Encoder-Decoder LSTM model consists of
a Sequential Layer of one hundred hidden units with ReLu
activation. We look 5, 15, 25, 35, and 45 days into the past
to check the effect of feeding more past data to the model.
Since we are looking back ‘t’ periods, the output of the en-
coder is repeated ‘t’ times before passing it through another
ReLu layer with 100 units We added a 10% dropout to pre-
vent overfitting and help in generalization. A dense layer is
added to every period of the decoder’s output series using the
Time Distributed wrapper thereby enabling the model to pre-
dict the RUL for each time step. Adam optimizer is utilized
to fine-tune the weights during training, and RMSE is used
as metrics. For higher lookback time steps, the gradients can

become excessively large, a phenomenon often referred to as
‘exploding gradients.’ To prevent NaN metrics, the gradients
are clipped if they exceed 0.5.

We divide our experiments into two to choose the top-
performing model to execute the attacks and defenses as fol-
lows:

1) Using look-back: We facilitate the learning of the Encoder-
Decoder LSTM model by providing the five different kinds of
datasets generated in Section 3.2. From Figure 7, it is clear
that increasing the look-back window exacerbates predictions
since the main disadvantage of an Encoder-Decoder LSTM
is its inability to handle long sequences. We conduct cross-
validation experiments on the 5-day look-back dataset.
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Figure 7. Error rate for varying look back window sizes.

2) Using walk-forward cross validation: Like the electricity
dataset, we perform 3, 5, and 10-fold walk-forward cross-
validation on the 5-day look-back dataset. The results are
tabulated in Table 2.

Table 2. Results of the LSTM Network on the Unpoisoned
Dataset

Experiments Train Validation Test
Using 3-fold CV 0.0677 1.1446 0.3084
Using 5-fold CV 0.0808 0.4718 0.2085
Using 10-fold CV 0.1065 0.8493 0.0715
Using 5-day look-back 0.2156 1.0192 0.2886
Using 15-day look-back 20.0390 6.0372 4.9856
Using 25-day look-back 6.6315 7.5154 6.3345
Using 35-day look-back 23.2777 19.0839 15.9206
Using 45-day look-back 38.7680 52.4585 79.9001

It is seen that 10-fold walk-forward cross-validation on the
dataset which looks back 5 days gives the best results. Fig-
ure 8 shows the true versus predicted values of this Encoder-
Decoder LSTM model.

We choose the 10-fold cross validated 5-day look-back model
as the final one to attack and defend against.
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Figure 8. True vs. predicted values of the best Encoder-
Decoder LSTM.

5. ATTACKS AND DEFENSE STRATEGIES

We illustrate the process of performing adversarial attacks
and adversarial defenses in this section.

5.1. Overview of Process Flow

We demonstrate that the adversarial attacks are successful and
exploit the sequential nature of deep learning networks and
their susceptibility to adversarial perturbations using FGSM,
and BIM attacks. Once the best LSTM models selected in
Section 4.1 and Section 4.2 succumb to the two types of at-
tacks mentioned above, we perform adversarial defenses us-
ing data augmentation at the data plane, and layer-wise per-
turbations at the gradient plane to inform the training process.
This ensures model robustness to adversarial attacks. The en-
tire process flow is summarized in Figure 9.

Adversarial Defense

Attacked model output

Robust model output 

Adversary

Input

ML Model

actual

predicted

actual

predicted

Δ = predicted - actual

Δ = predicted - actual

Figure 9. Overall System Architecture.

5.2. Adversarial Attacks

We perform two types of adversarial perturbations of the data.

5.2.1. Fast Gradient Sign Method (FGSM)

(Goodfellow, Shlens, & Szegedy, 2015) proposed FGSM to
perform adversarial perturbations on CNNs for image data.
The FGSM logic given by Algorithm 1, adds disturbances to
the input in the direction of the gradients with regard to the
loss function of the data. We have extended the algorithm to
multivariate time-series datasets described earlier.

Algorithm 1 FGSM Algorithm

Require: Mapping � fromX to y, perturbation magnitude �,
features or attributes X , label or target y

Ensure: X�: adversarial examples for different values of �
1: X�  ;
2: for � start to end do
3: Xadv  ;
4: for i 1 to m do
5: Xadv(i) X(i) + � � sign(rJ(�;X(i); y(i)))
6: end for
7: X�  X� [Xadv
8: end for
9: return X�

The equation for FGSM attack is:

Xadv = X + � � sign (rJ(f;X; y)) (2)

where Xadv is the disturbed input, X is the actual input, � is
a constant (perturbation intensity), sign(�) computes the sign
of the gradient, J(f;X; y) is the gradient of J with regard to
X , f is the neural network, and y is the actual output.

5.2.2. Basic Iterative Method (BIM)

(Kurakin, Goodfellow, & Bengio, 2017) proposed BIM which
applies the FGSM attack multiple times. Since in each iter-
ation, the attack forces the model to add noise or perturba-
tion in the direction of the gradients with regard to the loss
function, this attack mechanism is generally considered to be
more powerful than FGSM. We have used the BIM method
given by Algorithm 2 to attack the best-performing vanilla
LSTM and Encoder-Decoder LSTM models selected earlier.

Algorithm 2 BIM Algorithm

Require: Mapping � fromX to y, perturbation magnitude �,
features or attributes X , label or target y, step size �

Ensure: X�: adversarial examples for different values of �
1: i 1
2: X�  ;
3: for � start to end do
4: while i � min(4 + �=�; 1:25� �=�) do
5: for j  1 to m do

Xadv(j) X(j) + � � sign (rJ(�;X(j); y(j)))
Xadv(j) min (X(j) + �;max (X(j)� �;Xadv(j)))

6: end for
7: X  Xadv
8: i i+ 1
9: end while

10: X�  X� [Xadv
11: end for
12: return X�

Its equation is given as follows:

Xadv = X + � � sign(rJ(f;X; y)) (3)

Xadv = min(X + �;max(X � �;Xadv)) (4)

7
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where Xadv is the disturbed input, X is the actual input, � is
the step size, � is a constant (perturbation intensity), sign(�)
computes the sign of the gradient, J(f;X; y) is the gradient
of J with regard to X , f is the neural network, and y is the
actual output.

5.3. Adversarial Defenses

We enumerate the two types of adversarial defenses per-
formed, in this section.

5.3.1. Data Augmentation-based Adversarial Training
(DAAT)

DAAT given by Algorithm 3 is a naı̈ve process of using adver-
sarial attacks to create adversarial examples and augmenting
the dataset to incorporate these examples during the training
of the deep learning models (Goodfellow et al., 2015).

Algorithm 3 DAAT Algorithm

Require: Mapping �best from X to y, features or attributes
X , label or target y, perturbation magnitude �, step size
� (Present/Absent based on the attack algorithm chosen)

Ensure: Mapping � from Xaug to yaug
1: X�  attack(�best; �;X; y; �)
2: Xaug  X +X�

3: yaug  concat(y; len(�) + 1 times)
4: Find an optimal mapping �daat such that �(Xaug) � yaug
5: Calculate rmse(yaug; �(Xaug))

This mechanism is used after anticipating the types of pertur-
bations the adversary can use during the attack. DAAT pro-
vides the deep learning models with prior information neces-
sary to stay resilient to attacks during the training process. We
used the adversarial attacks introduced earlier to augment the
dataset with adversarial examples for different values of per-
turbation magnitude epsilon. Then we trained a robust classi-
fier on the augmented dataset. This robust classifier is more
resistant to adversarial attacks since it has been trained to pre-
dict the right values, given the perturbed values in its training
set. The system architecture of DAAT is shown in Figure 10.

5.3.2. Layer-wise Perturbation-Based Adversarial Train-
ing (LPAT)

This defense technique is inspired by the LPAT algorithm
proposed by (Zhang, Wang, He, Li, & Yu, 2018) to handle
class imbalances in hard drive health prediction. This robust
LSTM network is trained by going through two rounds of
feed-forward and backpropagation in each iteration. The first
round is similar to any neural network architecture where the
outputs are computed in the forward propagation step, and
the gradients are updated in the backpropagation step. In the
second round, however, the gradients in each layer are per-
turbed using FGSM and BIM attacks before the forward and

actual

predicted

Generation of Adversarial Examples

Retraining

Inputs Poisoning Poisoned examples

Augmented dataset
ML modelRobust model output

Δ = predicted - actual

Figure 10. System Architecture of Data Augmentation-based
Adversarial Training (DAAT).

backward propagation steps are performed again. We have
extended this algorithm to include a deterministic gradient
update, where a predetermined value is always used as the
magnitude of gradient perturbation, and a stochastic gradient
update, where any random value between a specified range is
used to perturb the gradients. The entire algorithm is given in
Algorithm 4.

Algorithm 4 LPAT Algorithm

Require: Features or attributes X , label or target y, pertur-
bation magnitude �

Ensure: Mapping � from X to y
1: for each epoch in epochs do
2: Learn the mapping � in the forward pass
3: Compute the gradients and update the parameters in the

backward pass
4: Perturb the gradients in each of the network layers:
5: if dlpat then
6: grads grads + avg(�) � sign(grads)
7: else if slpat then

grads grads + random(�; start; end) � sign(grads)
8: end if
9: Perform feedforward process to learn the new mapping
�

10: Perform backpropagation again to update parameters
11: end for
12: Calculate rmse(y; �(X))

The system architecture of LPAT is shown in Figure 11.

6. RESULTS

In this section, we disclose the findings from carrying out the
attacks and defenses on the final deep learning models se-
lected in Section 3. The accompanying code has been made
available on GitHub.1.

1Accompanying code can be found at https://github.com/
micosyslab/mts-adv-attack-defense.
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actual

predicted

Poisoned gradient
backpropagation

Inputs

Adversary

ML model Robust model output
ȹ = predicted - actual

Figure 11. System Architecture of Layer-wise Perturbation-
based Adversarial Training (LPAT).

6.1. Individual Household Power Consumption Dataset

6.1.1. Results of Adversarial Attacks

We contaminate the inputs to the vanilla LSTM model during
the evaluation stage using the FGSM and BIM attacks men-
tioned in Section 5.2. For this experiment with the electricity
dataset, we find that smaller orders of perturbation magnitude
between 0.05 and 0.25, incremented in steps of 0.05 give test
set RMSE values in the range of 0.117 and 0.3746 for FGSM,
and between 0.1287 and 0.4575 for BIM.

� parameter in Equation 4 is always set to 0.01 for all the
experiments conducted. The total iterations I is given as fol-
lows:

I = min
�

4 +
�

�
; 1:25 � �

�

�
(5)

where � is the degree of fluctuation and � is the step size.

The results of the attacks on the electricity dataset are tabu-
lated in Table 3. It is seen that RMSE increases with increas-
ing �.

Table 3. RMSE Values on the Test Electricity Dataset after
Attack

Attack Type � Attack RMSE % increase in error

FGSM
0.05 0.117 54.14
0.1 0.1741 127.88

0.15 0.237 210.21
0.2 0.3039 297.79

0.25 0.3746 390.31

BIM
0.05 0.1287 68.46
0.1 0.2029 165.58

0.15 0.2866 275.13
0.2 0.3776 394.24

0.25 0.4575 498.82

We see that BIM is a stronger attack than FGSM from Fig-
ure 12.

Figure 13 and Figure 14 show the estimations on the altered
evaluation dataset after the FGSM and BIM attacks respec-
tively. Figure 15 and Figure 16 show the changes in a subset
of input data after the FGSM and BIM attacks respectively.
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Figure 12. Comparison of test RMSE for FGSM and BIM
with varying � on the Electricity dataset.
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Figure 13. Predictions on the FGSM perturbed electricity test
dataset for varying �.
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Figure 14. Predictions on the BIM perturbed electricity test
dataset for varying �.
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Figure 15. Imperceptibility of the FGSM attack on the elec-
tricity dataset.

It is obvious that the changes in the train set distribution for
all � values are almost imperceptible to the naked eye, but
the predictions on the test set vary widely demonstrating the
danger of these attacks.
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