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ABSTRACT

Computational simulations of dynamical systems often in-
volve the use of mathematical models and algorithms to
mimic and analyze complex real-world phenomena. By lever-
aging computational power, simulations enable researchers
to explore and understand systems that are otherwise chal-
lenging to study experimentally. They offer a cost-effective
and efficient means to predict and analyze the behavior of en-
gineering, biological, and social systems. However, model
form error arises in computational simulations from simpli-
fications, assumptions, and limitations inherent in the math-
ematical model formulation. Several methods for address-
ing model form error have been proposed in the literature,
but their robustness in the face of challenges inherent to real-
world systems has not been thoroughly investigated. In this
work, a data assimilation-based approach for model form er-
ror estimation is investigated in the presence of sparse ob-
servation data. An extension for including physics-based do-
main knowledge to improve estimation performance is pro-
posed. A computational simulation based on the Lotka-
Volterra equations is used for demonstration.

1. INTRODUCTION

Model form error (MFE) is a significant challenge in compu-
tational simulations, where mathematical models are used to
represent complex physical phenomena. It refers to the differ-
ence between the mathematical model and the true behavior
of the system being simulated. This error can arise from var-
ious sources, such as neglecting certain physical phenomena,
using simplified mathematical equations, or making assump-
tions about parameter values. MFE is a fundamental aspect
of the model itself and is independent of any specific data or
observations. Addressing MFE involves refining the math-
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ematical representation of the system (Oberkampf, DeLand,
Rutherford, Diegert, & Alvin, 2002).

A related but distinct concept from MFE is model discrep-
ancy. Model discrepancy refers to the difference between the
simulation results obtained from a particular model and the
observed or experimental data. It represents the difference
between the model predictions and the actual behavior of the
system. Model discrepancy can arise due to various factors,
including measurement errors, uncertainties in input data, or
limitations in the experimental setup. Model discrepancy is
typically quantified by comparing the simulation results with
experimental data and can be influenced by both MFE and
other sources of uncertainty (Kennedy & O’Hagan, 2001).

To further illustrate the distinction between MFE and model
discrepancy, let’s consider an example in the context of fluid
dynamics simulations. In fluid dynamics, MFE would refer
to the simplifications and assumptions made in the mathe-
matical equations used to represent fluid flow. For instance,
the Navier-Stokes equations, which govern fluid flow, often
require assumptions such as incompressibility, isotropy, and
neglecting certain small-scale turbulent effects (Reynolds,
1976). These simplifications may introduce differences be-
tween the model and the true behavior of fluid flow in specific
scenarios.

Model discrepancy, on the other hand, would refer to the dif-
ferences between the predictions of the fluid dynamics model
and the observed flow behavior in a specific system. This
discrepancy can arise due to various factors, including mea-
surement errors in data collection, uncertainties in estimat-
ing model parameters, or unaccounted-for physical phenom-
ena that influence fluid flow. Model discrepancy captures the
overall difference between the model predictions and the ac-
tual behavior of the fluid flow, taking into account both MFE
and other sources of uncertainty.

An ongoing research challenge is that MFE cannot be directly
estimated since the true equations governing a real-world sys-
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tem are unknown. At best, all that is available from the true
system is observations of system response quantities. Hence
historically, most research has focused on addressing model
discrepancy. One of the most popular approaches was pro-
posed by Kennedy and O’Hagan where they represent model
discrepancy using a Gaussian process model (GPM) that in-
corporates test settings and estimates the hyper parameters
of the GPM simultaneously with uncertain model parame-
ters from measured system responses (Kennedy & O’Hagan,
2001). In their study, Neal et al. (Neal, Hu, Mahadevan,
& Zumberge, 2019) addressed model discrepancy in a time-
dependent simulation of an air cycle machine by utilizing
state estimation.

Recently there has been a push to correct models at the
source, meaning to address MFE in the mathematical model
underpinning the computational simulation. Oliver et al.
(Oliver, Terejanu, Simmons, & Moser, 2015) suggest that
correcting simulations at the source of the error improves
prediction accuracy beyond the observed data. Sargsyan et
al. (Sargsyan, Najm, & Ghanem, 2015) embed a correc-
tion within the model by augmenting certain model param-
eters with probabilistic correction terms. Morrison et al.
(Morrison, Oliver, & Moser, 2018) represented MFE by a
finite-dimensional operator acting on a vector of state vari-
ables, which was further investigated by Portone and Moser
(Portone & Moser, 2022) for a contaminant transport problem
through heterogeneous media. Subramanian and Mahadevan
(Subramanian & Mahadevan, 2019) used Bayesian state es-
timation to estimate MFE as an additive forcing term from
available experimental data of system responses.

In real-world applications, there is often limited observation
data of system states. Observations require instrumentation
and monitoring of systems, which can be expensive or in-
feasible given physical limitations in the environments of in-
terest. Sparse data creates a challenge for data assimilation
methodologies like the one proposed in (Subramanian & Ma-
hadevan, 2019). However, there may be domain knowledge
available for real-world applications. An expert in a particular
field may have an idea of the missing physics even if the ex-
act equations are unknown. Inclusion of domain knowledge
offers the potential to improve MFE estimation.

In this work, the MFE estimation approach developed by
(Subramanian & Mahadevan, 2019) is investigated in the
presence of sparse observation data and is extended to in-
corporate subject matter expert (SME) knowledge about the
MFE.

2. DEMONSTRATION PROBLEM

The Lotka-Volterra equation, also known as the predator-prey
equation, is a mathematical model that describes the inter-
action between two species in an ecosystem. It was devel-
oped independently by Alfred J. Lotka and Vito Volterra in

the early 20th century. The equation consists of a pair of
first-order nonlinear differential equations, one representing
the population growth of the prey species and the other rep-
resenting the population decline of the predator species. The
model assumes that the prey population grows exponentially
in the absence of predators, while the predator population de-
clines proportionally to the rate at which it consumes the prey.
The Lotka-Volterra equation provides valuable insights into
the dynamics of predator-prey relationships and has applica-
tions in various fields, including ecology, population biology,
and economics.

The two species Lotka-Volterra equation is

dx

dt
= αx− βxy

dy

dt
= δxy − γy ,

(1)

where x is the number of prey and y is the number of preda-
tors. For this demonstration, the model parameters are de-
fined as

[α, β, δ, γ] = [1.5, 1, 3, 1] , (2)

where α is the maximum prey per capita growth rate, β is the
effect of the presence of predators on the prey growth rate, δ
is the effect of the presence of prey on the predator’s growth
rate, and γ is the predator’s per capita death rate. For demon-
stration, the initial conditions for the two states are set at

[x0, y0] = [1, 1] . (3)

Solving the coupled ODEs defined in Eqs. 1-3 using a numer-
ical integration scheme produces the time-dependent system
states shown in Fig. 1.

Figure 1. True system states for the Lotka-Volterra model

Synthetic experimental data is generated from the true system
states in Fig. 1 by specifying an observation time step. Two
data scenarios are considered: dense observation data shown
in Fig. 2 and sparse observation data shown in Fig. 3. The
effect of measurement noise is not considered in this example
but could be studied in the future.
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Figure 2. Dense observation data

Figure 3. Sparse observation data

To emulate the scenario where the modeled mathematical
equations do not capture the true behavior of the real system,
the following deficient mathematical model is proposed

dx

dt
= αx

dy

dt
= δxy − γy ,

(4)

where the second term in the first equation has been omitted.

We will assume that it is known that the MFE, Q, exists in the
first equation as

dx

dt
= αx−Q , (5)

so MFE estimation will involve estimating Q from observa-
tion data of x and y. Because this is a contrived example, the
true MFE term is known and is

Qtrue = βxy . (6)

We will investigate two formulations for how Q evolves in
time. In the case where there is no knowledge about how Q
evolves, the hypothesized dynamics #1 is written as

Qt = Qt−1 +N(0, 5e−1) , (7)

where N(0, 5e−1) indicates a normal distribution with 0
mean and a variance of 0.5. Eq. (7) means that Q at the cur-
rent time step is equal to Q at the previous time step plus
some Gaussian noise. The ∆t is a constant 2

150 . Alterna-
tively, a SME may have an inclination of how Q evolves in
time but not be confident in their understanding. In this case,
the hypothesized dynamics #2 is

Qt = βxy +N(0, 1e−1) , (8)

so the SME did indeed provide the true functional relation-
ship to system states for Q, but their uncertainty is captured
through additive 0-mean Gaussian noise with a 0.1 variance.
Within data assimilation, either formulation of Q, i.e. Eq. (7)
or Eq. (8), can be utilized to simulate how Q evolves over
time.

3. RESULTS

Data assimilation is performed through a basic particle filter
implementation (Carpenter, Clifford, & Fearnhead, 1999) to
simultaneously estimate the system states, x and y, and the
MFE term Q.

The resulting estimated system states are plotted next for
three cases; (1) dense data and the uninformed model of Q,
(2) sparse data and the uninformed model of Q, and (3) sparse
data and the informed model of Q. In Fig. 4, the uncertainty

Figure 4. Estimate of system states with dense data and hy-
pothesized dynamics #1.

grows as the model advances in time, but the uncertainty is
quickly reduced at each time step where an observation is
present. In Fig. 5, the sparsity of observations allows the esti-
mated states to diverge from the true states by orders of mag-
nitude between the five data observations. Clearly the best es-
timation occurs when using the SME-informed hypothesized
dynamics #2 for Q, even in the presence of sparse data. In
Fig. 6, the median estimates have close agreement with the
known true states and the interquartile range (IRQ) shows that
the variance is small.

Next, the estimates of Q are shown, and they tell a similar
story as the state estimates. Q is different from x and y,
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Figure 5. Estimate of system states with sparse data and hy-
pothesized dynamics #1.

Figure 6. Estimate of system states with sparse data and hy-
pothesized dynamics #2.

Figure 7. Estimate of the missing MFE term with dense data
and hypothesized dynamics #1.

though, since it cannot be directly observed as it is a hid-
den state. In Fig. 8, the variance grows between observations
while the median is relatively constant, which is expected
given the evolution of Q defined in Eq. 7. A noticeable dif-
ference in the bias and variance of the estimates of Q exist
between Fig. 7 and Fig. 9, which indicates that even dense
observation data cannot compensate for the absence of SME
knowledge.

Figure 8. Estimate of the missing MFE term with sparse data
and hypothesized dynamics #1.

Figure 9. Estimate of the missing MFE term with sparse data
and hypothesized dynamics #2.

4. CONCLUSIONS

This study implemented a recent data assimilation-based ap-
proach for MFE estimation in the context of the Lotka-
Volterra (predator-prey) model. Performance of the method-
ology was investigated in the presence of sparse data and
with the incorporation of domain knowledge. This limited
study indicates that sparse data does reduce the performance
of MFE estimation; however, inclusion of SME knowledge
through a physics-informed process model for the evolution
of MFE can more than mitigate the challenges with sparse
data.

The Lotka-Volterra model examined here is a relatively sim-
ple system of two ODEs. Many real-world problems will be
governed by high-dimensional PDEs, so we will pursue ex-
tending this work to PDEs in the future.
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