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ABSTRACT

This paper explores the development and application of data-
driven prognostic models for estimating the Remaining Use-
ful Life (RUL) of Nuclear Power Plant (NPP) condensers ex-
periencing tube fouling. Due to the unavailability of run-to-
failure industry sensor data, we utilized simulated data gen-
erated by the Asherah Nuclear Power Plant Simulator (ANS),
initially designed by the International Atomic Energy Agency
(IAEA) and programmed in Simulink for cyber security sim-
ulations. ANS’s adaptability allows it to simulate Pressurized
Water Reactor (PWR) behaviors given a time series of op-
erating conditions and to introduce degradation modules to
mimic fouling effects. Our study compares two primary ap-
proaches applied to data generated by ANS: inference-based
and direct prediction methods. The selected inference-based
approach estimates the health state of the condenser using
a pipeline formed by an Auto Associative Kernel Regressor
and a Hidden Markov Model (HMM), which subsequently
combines the state estimates with its parameters to predict
the RUL. The direct prediction method employs a Gradient
Boosting Regressor Decision Tree (GBRDT) to map input
variables directly to RUL. Our findings demonstrate the ef-
ficacy and limitations of each method through the case study,
providing valuable insights for the adoption of data-driven
RUL estimation techniques in industrial and energy applica-
tions.

1. INTRODUCTION

In industrial and energy settings, the ability to predict the Re-
maining Useful Life (RUL) of critical components is essential
for effective maintenance planning and operational efficiency.
Accurate prognostics can lead to significant economic bene-
fits by minimizing unplanned downtimes, optimizing mainte-
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nance schedules, and extending the service life of equipment
(Elattar et al., 2016). These advantages have spurred consid-
erable interest in data-driven methods for RUL estimation.

The motivation for exploring data-driven approaches stems
from their potential to leverage vast amounts of operational
data generated by modern industrial systems. Traditional
physics-based models, while useful, often require extensive
domain knowledge and may not fully capture the complex be-
haviors of advanced machinery (Cubillo et al., 2016). In con-
trast, data-driven methods can uncover hidden patterns and
relationships within the data, providing robust and scalable
solutions for RUL estimation (An et al., 2013).

In this context, two primary approaches have emerged:
inference-based and direct prediction methods. Inference-
based approaches involve a two-step pipeline where the
health state of the investigated component or system is first
estimated, and then the RUL is inferred from the estimated
health state (Yu, 2015; Peng et al., 2019; Sankavaram et al.,
2016). This method allows for a detailed understanding of
the degradation process and can be particularly useful when
there is a clear, interpretable path from an healthy state to
failure. On the other hand, direct prediction methods involve
mapping input variables directly to the available true RUL of
components over time (Khelif et al., 2016). This approach
simplifies the modeling process and can provide quick, accu-
rate predictions without the need for intermediate steps. Both
methods hold significant value for the industry. Inference-
based methods offer detailed insights into the degradation
mechanisms, which can be critical for diagnostic purposes
and for improving design and operational strategies. Direct
prediction methods, with their straightforward implementa-
tion and rapid results, are advantageous in scenarios where
quick decision-making is paramount.

The primary contribution of this paper is to address a com-
mon question among practitioners: which data-driven prog-
nostics approach should I adopt? This study offers a detailed
comparison of two major data-driven methodologies, using a
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nuclear power plant (NPP) condenser as a case study. By em-
ploying comprehensive quantitative and qualitative metrics,
including uncertainty assessments, we draw meaningful con-
clusions about the efficacy of each approach. Through this
comparison, we aim to shed light on the strengths and limita-
tions of both inference-based and direct prediction methods,
providing valuable insights for the implementation of data-
driven remaining useful life (RUL) estimation techniques in
industrial and energy sectors. The NPP condenser is critical
to the power generation process, as it converts steam from the
turbine back into water for reuse in the boiler. Ensuring the
condenser’s reliability and optimal performance is essential
for the efficient operation of the power plant.

The rest of this paper is organized as follows: section 2 dis-
cusses relevant literature and underscores our contributions,
section 3 details the data used, section 4 explains the method-
ology, section 5 presents the findings, and section 6 summa-
rizes the key points and suggests future work.

2. LITERATURE REVIEW

Condenser tube fouling is the accumulation of debris on the
surface of the condenser tubes. This process causes an in-
crease in thermal resistivity and a slight reduction of the
cross-sectional area of the flow (Ibrahim & Attia, 2015).
As a consequence, the heat exchanger’s effectiveness de-
creases, leading to plants’ performance drops. Researchers
have addressed this issue by developing methods that can de-
tect fouling within condensers. For instance, the authors in
(Sundar et al., 2020) outline several methods for detecting
fouling in heat exchangers, incorporating both traditional and
modern approaches such as empirical and analytical models,
data-driven prediction approaches, and deep learning models.
However, this article and many others do not explicitly cover
prognostics and RUL prediction. Another research (Zhang et
al., 2023) proposes a method for generating fouling data us-
ing a Digital Twin and performs online prognostics by com-
bining particle filtering and differential modeling to reduce
uncertainty. However, the employed method required defin-
ing an equation for fouling thermal resistance and did not ex-
plicitly consider NPPs. NPP condensers have slightly differ-
ent requirements compared to thermal power plants like coal.
Specifically, NPP condensers must manage a higher level of
safety and regulatory compliance, and they often operate un-
der different thermal and pressure conditions, necessitating
our research.

Prognostics algorithms are designed to predict when a sys-
tem or component will cease to function as intended by an-
alyzing its deviation and degradation from normal operat-
ing conditions. Although the health state of an item gener-
ally degrades linearly with usage, predicting failures is chal-
lenging due to varying operational conditions, environments,
and the complex nature of different parameters. To achieve

this, three main modeling techniques are used: regression
models, which model the degradation path to predict fail-
ure time; classification models, which predict if failure will
occur within a specific time window; and survival models,
which assess how the risk of failure changes over time. In
this study, the regression approach is taken due to its appli-
cability to the investigated system and available data. These
regression strategies can be implemented using data-driven
models that could fall into two broad categories: statistical,
and machine learning-based models.

2.1. Statistical Models

a) General Path Models (GPMs): These models capture the
degradation trend of a system over time using parametric
regression. They work by fitting a probabilistic model to
the degradation data, assuming that degradation follows
a specific path influenced by both population and indi-
vidual effects. (Coble & Hines, 2011) paper proposes a
specific formulation of the General Path Model with dy-
namic Bayesian updating as one effects-based prognostic
algorithm. The method is illustrated with an application
to the prognostics challenge problem posed at PHM ’08.

b) Stochastic Process Models (SPMs): These models are
advantageous in situations where the accumulation of
the degradation is random and requires a probabilistic
approach. They model degradation as a stochastic pro-
cess, accounting for randomness and environmental in-
fluences. Examples are Wiener processes (Wang, Ma, &
Zhao, 2019), Gamma processes (K. Song & Cui, 2022),
Gaussian processes (Valladares et al., 2022), Markovian-
based models, which will be further revised later, and
Filtering-based models (Cui, Li, Wang, Zhao, & Wang,
2022).

2.2. Machine Learning Models

a) Support Vector Machines (SVMs): Initially developed
for classification, SVMs have been adapted to regres-
sion tasks (Support Vector Regression, SVR) and further
employed for RUL prediction (Rezki & Rezgui, 2024).
SVMs are effective in high-dimensional spaces and work
well when the number of features exceeds the number of
samples. However, they can struggle with noisy data.

b) Decision Trees (DTs) and Random Forests (RFs): DTs
create a tree-like model to make predictions based on
features, while RFs aggregate the predictions of multiple
DTs to improve accuracy and robustness. These models
are intuitive and easy to interpret but can become unsta-
ble with slight changes in data (Patil et al., 2018; Kundu,
Darpe, & Kulkarni, 2020). RFs, in particular, are effec-
tive in handling large datasets with diverse features (Patil
et al., 2018).

c) Back Propagation Neural Networks (BPNNs): BPNNs
are a type of artificial neural network that uses gradient
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descent to minimize prediction errors iteratively. They
are flexible and powerful in capturing non-linear rela-
tionships between inputs and outputs. However, BPNNs
can get stuck in local minima, limiting their performance
(Ma, Yao, Liu, & Tang, 2022).

d) Convolutional Neural Networks (CNNs): CNNs are
widely used for their ability to extract both local and
global features from input data, such as time-series or im-
age data. They consist of multiple layers, including con-
volutional, pooling, and fully connected layers, which al-
low them to learn complex patterns. CNNs are highly
effective in feature extraction but require large datasets
and significant computational resources (Xu, Li, Ming,
& Chen, 2022; A. O. Ifeanyi, Coble, & Saxena, 2024).

e) Recurrent Neural Networks (RNNs) and Long Short-
Term Memory Networks (LSTMs): RNNs are designed
to capture sequential dependencies in data, making them
ideal for time-series forecasting (Y. Song, Li, Peng, &
Liu, 2018). LSTMs, a variant of RNNs, are particularly
useful for modeling long-term dependencies and avoid-
ing issues like gradient vanishing (Zhang, Xiong, He, &
Liu, 2017). These models are effective for RUL predic-
tion but can be challenging to train. Graph-based CNNs
and RNNs have also been proposed for prognostic appli-
cations (A. Ifeanyi, 2024).

f) Bayesian Deep Learning: This approach extends deep
learning into a probabilistic framework, where uncer-
tainty in model predictions is quantified by placing prior
distributions over the model’s parameters. Bayesian deep
learning is particularly valuable when dealing with lim-
ited data or when quantifying the uncertainty of predic-
tions is critical, though it tends to be computationally ex-
pensive (Zhu, Chen, Peng, & Ye, 2022).

g) Transfer Learning: Transfer learning leverages knowl-
edge from one domain (the source) and applies it to a
different but related domain (the target). This is espe-
cially useful in RUL prediction when data in the target
domain is scarce. Transfer learning can significantly im-
prove model performance, but it requires the source and
target domains to be sufficiently similar to avoid negative
transfer (L. Song et al., 2024).

These methods are used in various industrial applications,
such as rotating machinery, aircraft, power systems, and elec-
tronics, to predict equipment failure and optimize mainte-
nance schedules (Wen, Rahman, Xu, & Tseng, 2022).

In this work, we want to compare two prognostic models,
each belonging to one of the aforementioned categories: the
hidden Markov models (inference-based and statistical) and
the Gradient Boosting Regressor (direct prediction and ma-
chine learning-based). The first one can estimate the future
health states and use these predictions to compute the RUL,
while the second model directly predicts the RUL. Although

these models were already applied for prognostics, no com-
parison between the results and applicability has been made.
For instance, (Dong & He, 2007) presents a unified frame-
work for these tasks using a segmental hidden semi-Markov
model (HSMM), enhancing the accuracy and efficiency of
failure prognostics by incorporating state duration model-
ing and a modified forward-backward algorithm for param-
eter estimation. Similarly, (Tobon-Mejia et al., 2010) pro-
pose a data-driven diagnostic and prognostic method based on
Mixture of Gaussians Hidden Markov Models (MoG-HMM),
which processes sensor data to model component degrada-
tion and predict remaining useful life (RUL). Another article
discusses the development of a Hidden Markov Model with
auto-correlated observations (HMM-AO) for predicting the
remaining useful life (RUL) of manufacturing systems (Chen
et al., 2019). This model, which incorporates previous obser-
vations to improve accuracy also proposes an improved main-
tenance policy based on RUL predictions and demonstrates
its effectiveness through a case study. More recently, (Zhao,
Shi, & Wang, 2020) developed a method for diagnosing and
predicting bearing faults using an HMM with multiple fea-
tures, including time domain, frequency domain, and wavelet
packet decomposition, combined with PCA for dimension-
ality reduction. Another work, (Martins, Fonseca, Farinha,
Reis, & Cardoso, 2021), involved developing an improved
Degenerated Hidden Markov Model (DGHMM) with a quasi-
power relation to better describe gradual performance degra-
dation over time. It uses an improved genetic algorithm for
parameter estimation, overcoming the limitations of the con-
ventional EM algorithm. Additionally, a greed approximation
algorithm based on the Viterbi algorithm is proposed to pre-
dict the residual life of the system. This method is validated
with data from caterpillar hydraulic pumps, showing effec-
tiveness in diagnosing system health and predicting residual
life.

A Gradient Boosting Regressor is an ensemble learning tech-
nique used for regression tasks that builds a series of weak
learners, in a sequential manner (Zemel & Pitassi, 2000). The
process begins with an initial prediction, often the mean of
the target values. The algorithm then calculates the residu-
als, which are the errors between the actual target values and
the predictions made by the current model. A new model
is fitted to these residuals with the goal of predicting them.
The predictions from the new model are added to the previ-
ous predictions, and scaled by a learning rate to control the
contribution of each model. This step updates the model to
improve accuracy incrementally (Friedman, 2001). Common
GBR models are decision tree-based where the described
process is repeated for a predefined number of iterations or
until the residuals are minimized, with each new tree help-
ing to correct the errors made by the existing ensemble of
trees. The final prediction is the sum of the initial prediction
and the weighted contributions from all the trees (Friedman
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& Meulman, 2003). Our research employs a decision tree-
based GBR given its recorded success in performing compli-
cated regression tasks (Huang et al., 2019) and in prognostics
(Yang et al., 2020). Furthermore, it is particularly suitable
for direct Remaining Useful Life (RUL) prediction for sev-
eral reasons. It handles non-linearity effectively, which is
crucial since RUL prediction often involves complex, non-
linear relationships between the input variables and the re-
maining useful life. By focusing on the residuals in each
step, the model continuously refines its predictions, leading
to high accuracy. It also offers flexibility with different types
of features and performs automatic feature selection, which
is useful when dealing with a variety of sensor data (Huang et
al., 2019). Additionally, parameters like learning rate and tree
depth control overfitting, making the model robust for practi-
cal applications (Friedman & Meulman, 2003). Finally, Gra-
dient Boosting can be scaled to handle large datasets, which is
essential in industrial settings where data from multiple sen-
sors over long periods is available (Huang et al., 2019).

Due to the unavailability of industry sensor data for our
study, we utilized simulated data generated by the Asherah
Nuclear Power Plant Simulator (ANS) model (Busquim e
Silva et al., 2021). Originally designed by the International
Atomic Energy Agency (IAEA) for cyber security simula-
tions, ANS is versatile and can simulate Pressurized Water
Reactor (PWR) behaviors and transients based on time se-
ries of operating conditions. This adaptability makes it an
excellent tool for our research. Previous studies have also
employed the Asherah model to generate data for prognos-
tics using particle filtering (Xiao et al., 2023), underscoring
its capability to provide reliable and relevant simulation data
for advanced analytical purposes.

3. DATA

ANS (Busquim e Silva et al., 2021) was used to simulate con-
denser performance under different fouling conditions. We
manipulated the final fouling thickness (2.5 mm, 3.0 mm, and
4.0 mm) in the condenser tubes to represent varying degrada-
tion rates. Since thicker fouling implies faster degradation,
these values allowed us to respectively simulate scenarios
with different degradation severities (low (NR 25), moderate
(NR 30), and high (NR 40)). Although ANS can simulate
immediate component repairs, none were performed in this
study (denoted by ”NR” for No Repair) to isolate the effects
of progressive tube fouling on condenser performance.

To ensure that the simulated data reflects realistic operating
conditions, several measures were taken. A consistent power
profile, similar to plants with stable industrial demands, was
used across all simulations. Each simulation lasted 10,000
seconds, with multiple runs at each fouling severity level
to generate substantial data. Sensor data was collected at
10Hz, yielding 100,000 data points per simulation. To en-

hance data clarity, mean filtering with a window size of 100
(without overlap) reduced the data points to 1,000, retain-
ing essential trends. The ANS model, initially for cyberse-
curity assessments, lacks inherent variability within simula-
tions. To mimic realistic fluctuations from measurement er-
rors and process variability, white noise was added at various
points in the ANS model.

Figure 1. Pressure profile for different fouling rates

In this study, normal operation spans a complete 10,000-
second sequence without degradation signs, while faulty op-
eration involves degradation due to fouling. Degradation be-
gan at observation 30,000 (3000 seconds) in all tests. Figure 1
displays the unfiltered pressure profiles for components with
different degradation rates, illustrating the potential of fault
detection, diagnostics, and prognostics through raw signal
analyses. Noticeable deviations occur around 30,000, with
the fastest degradation showing the most significant departure
from the normal profile.

During each simulation, four properties were measured
namely input power (% full power), river temperature (K),
condenser temperature (K), and condenser pressure (Pa). In
other words, each simulation has an output array of shape
(1000, 4) after filtering. There are thirty simulation outputs in
each degradation category but only two were used per degra-
dation category for the inference-based method. However,
all thirty samples were used for the direct RUL prediction
method. The training strategy and the definition of a sample
in each approach are elucidated in their respective subsections
under section 4.

4. METHODOLOGY

4.1. Inference from Health

The implementation of the HMM considered in this work
takes a single variable as input. Therefore, signals must be
preprocessed to generate a parameter that is strictly corre-
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lated to the degradation. We define a prognostics parame-
ter as a composite measure derived from multiple sensed or
inferred degradation indicators that characterize the system’s
progression toward failure. The signals must be combined
to ensure that the parameter exhibits monotonicity, prognos-
ability, and trendability. These qualities guarantee that the
parameter is consistent as the degradation accumulates, has a
predictable failure threshold, and shows a similar degradation
pattern across different items of the same kind, facilitating ac-
curate prediction of the remaining useful life (RUL) (Coble &
Hines, 2009).

Therefore, the four output signals of the Asherah model are
initially analyzed through an auto-associative kernel regres-
sion. Given a set of signal values collected from a degraded
system, the AAKR can reconstruct a correspondent set of val-
ues as if the system was not degraded and compute the resid-
uals between the two sets. This model does not require train-
ing but directly relies on data collected from the healthy con-
denser to detect faulty operations. A Sequential Probability
Ratio Test (Wald & Wolfowitz, 1948) examines the gener-
ated residuals for fault detection. Once a fault is detected, a
prognostic parameter is computed by subtracting the residual
of the pump inlet temperature (river temperature) from the
condenser temperature residual. The parameter can then be
fed into the prognostic phase handled by a HMM.

The next section delineates the structure of a general Hidden
Markov Model (HMM) and explains the specifics to make it
Gaussian and Left-Right. Then, the algorithm to train it is
briefly described. The method to estimate the health and to
predict the Remaining Useful Life (RUL) of a test sequence
is outlined in section 4.1.2.

4.1.1. The left-right HMM

The HMM (Rabiner, 1989) is an extension of a Markov
model in which the states of the process are not directly mea-
surable and can only be inferred through the analysis of the
observed signal. The relationship between the signal values
and the hidden states are modeled through conditioned prob-
abilistic functions. In other words, the observed signal, which
can be a sensor reading or an inferred degradation indicator,
is a random variable whose probability density function (pdf)
depends on the current hidden state of the underlying Markov
model.

A standard HMM consists of a set of elements that are defined
below:

• Q = {q1, . . . , qi, . . . , qN}: a set of N hidden states,

• A = {a11, . . . , aij , . . . , aNN}: a transition probability
matrix from any state i to any state j,

• O = {o1, . . . , ot, . . . , oT }: a sequence of T observations
(e.g., time series of prognostic parameter values),

• B = {b1(ot), ..., bi(ot), ..., bN (ot) : a set of observation

likelihoods (or emission probability densities) that can be
discrete or continuous,

• π = {π1, π2, . . . , πN}: an initial probability distribution
of the hidden states.

The HMMs inherit the main property of the Markov Models,
known as the Markov assumption: P (qi | q1, . . . , qi−1) =
P (qi | qi−1). Another assumption specific to HMMs is
the output independence: P (oi | q1, . . . , qN , o1, . . . , oT ) =
P (oi | q1).

Since the analyzed industrial prognostic signal takes continu-
ous values, the observation likelihoods are chosen to be con-
tinuous and Gaussian. Even though the likelihood function
can be selected as any statistical distribution, we decided to
select the Gaussian distribution due to its simplicity. Given
the regular mathematical nature of the prognostic parameters,
this choice still ensures reliable and efficient predictions. Fur-
thermore, according to the nature of degradation processes,
components cannot recover from a bad health condition to a
better one over time without intervention. This property is
translated by imposing: aij = 0 for j < i. The index of
states numerically proceeds from left to right; that’s why the
employed model is called Left-Right HMM.

The training step is performed employing the Baum-Welch
algorithm (B-W) (Rabiner, 1989) to train a single model λ.
Given an observation sequence O and the initialization of the
HMM parameters, it provides an estimate of the A and B that
maximize the likelihood L(O | λ) (Rabiner, 1989). A lim-
itation of the B-W procedure is that it finds a parameter set
for λ that is, in general, a local maximum for a given obser-
vation sequence O. It has been observed that the algorithm is
sensitive to all the parameters’ initialization (Sá et al., 2021);
thus, the global maximum is reached only if the initialization
is adequately performed.

4.1.2. Predicting RUL with HMMs

The prediction step employs the state-based RUL estimate
method explained in (Chen et al., 2019). Briefly, given a new
observation sequence Otest = {o1, . . . , ot, . . . , oTtest} and a
trained HMM model λ, the probability for the system being
in each discrete state at the current time is calculated. Then,
a discrete probability distribution for RUL(T ) is calculated
estimating the remaining number of time steps to reach the
failure state qN from the current time T . The point estimate
for the RUL is then calculated by averaging the distribution.
Since the model needs some data to compute reliable esti-
mates of the current state probabilities and future states, in
our implementation, the first prediction will be made when
the test sequence has more than 10% (70) of observations
after fault injection (700). Subsequently, the test sequence
is updated with the true health parameter’s values before the
next prediction.
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4.1.3. Initialization of model parameters

The parameters of Hidden Markov Models (HMMs) must be
set or initialized before training. These operations must be
done separately for each HMM (Zanotelli, Hines, & Coble,
2024). For a Left-to-Right Gaussian HMM (LR-GHMM),
it’s generally recommended to set the initial probabilities with
π1 = 1 and πi = 0 for i > 1, as the state sequence typically
begins in state 1 and ends in state N. Although initializing π
to match a test sequence’s starting values was attempted, it
showed no significant improvement in predictions, as HMMs
can quickly adjust to the correct hidden state after a few ob-
servations.

Initializing observation likelihoods is crucial for achieving a
global likelihood maximum during training. While complex
methods exist, for univariate and monotonic prognostics pa-
rameters, simpler initializations are effective. Here, means
are evenly spaced between the upper and lower bounds of the
training sequence, and standard deviations are set to half the
distance between adjacent state means.

Transition probabilities were initialized as:

ai,i+1 =
N

T
, for i = 1, . . . , N − 1, (1)

where T is the number of training sequence observations.
This approach assumes the number of transitions equals the
number of hidden states.

Choosing the number of states in an HMM is challenging.
The Bayes Information Criterion (BIC) was employed here
and adapted to the current notations as:

BIC = k · ln(Ttrain)− 2 · ln(P (Otrain | λ)) (2)

where k is the number of parameters estimated by the model.
In the case of a LR-GHMM, k is the sum of the number of
means (N), variances (N), and transition probabilities (N-1).
The goal is to increasing the number of states until the BIC
measure reaches a minimal plateau.

The final parameter is the length scale s of the Gaussian mem-
bership function, crucial in the aggregation procedure. For
unsmoothed data, setting s2 = 2σ2

noise is reasonable. When
smoothing, dividing s by a factor between 5 and 10 can im-
prove results.

4.2. Direct Prediction

The other approach this research takes to estimate RUL in-
volves directly mapping it to two input variables: pressure
and residual pressure. To put it differently, each sample se-
quence has shape (1000, 2). The residual pressure was not
directly measured from the simulation but was calculated as
the pressure difference between the expected normal opera-
tion and the actual faulty operation of the component through-

out the investigated period. This residual pressure served as
the health index in this approach and was used to calculate
the target variable (true RUL). Different parameter thresholds
were employed to define failure in each degradation category.
For the least degraded components, the threshold was set at
4,000 Pa, while for the moderate category, it was 6,500 Pa.
Lastly, the most degraded condenser tubes had a threshold of
14,000 Pa. These thresholds marked failure points or end-
of-life (EOL) to calculate the true RUL of the components
in each category. The process involved assigning decreasing
window values to the data points within a sample’s sequence,
starting with the highest value (1000) at the initial time step.
Subsequently, the assigned window values were subtracted
from EOL to derive the true RUL array. Any resulting nega-
tive values, occurring beyond the point of failure, were set to
‘0’. The true RUL before fault injection at 3000s is undefined.

This method leverages the relationship between the input
variables and the condenser’s remaining useful life. For this
approach, a machine learning (ML) algorithm was selected
because ML algorithms can effectively capture complex pat-
terns and relationships in the data that traditional statistical
methods might miss. The selected ML model, as alluded to
in section 2, is a Gradient Boosting Regression Decision Tree
(GBRDT). The applied Scikit learn GBRDT has 30 decision
trees and an optimally selected learning rate of ‘0.2’. All
other hyperparameters were set as the default (Prettenhofer
& Louppe, 2014). Twenty-nine (‘29’) sequences reshaped to
(29000, 2) for proper GBRDT processing were used to train
the model in each category, and one (‘1’) sample of shape
(1000, 2) was used to test. In the ‘NR 25’ category, one (‘1’)
bad simulation that failed earlier than others was included to
test the robustness of GBRDT. To add to that, we conducted
thirty (‘30’) rounds of model initialization, training, and pre-
diction, with a new random seed generated for the model each
time. This approach introduces variability in the final param-
eters of the GBRDT after training, allowing us to further as-
sess the robustness of the predictions.

4.3. Metrics

This paper employs two broad classes of metrics to analyze
the performance of the different models and the effectiveness
of the various approaches namely visual and numerical met-
rics. Since separate pipelines are compared, it is crucial to
select metrics that are method-independent.

Two accuracy-based numerical metrics were resorted to in
this paper. One focuses on the general error of predictions
throughout the condenser’s lifetime whereas the other ac-
counts for how early or late the prediction is. Both errors
are normalized by the variance of the true RUL values, so
they can be used to compare methods that use different RUL
scales. These two numerical metrics are the normalized sum
of weighted errors (NSWE) adapted from (Saxena, Goebel,
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et al., 2008), and normalized mean squared error (NMSE)
adapted from (Saxena, Celaya, et al., 2008).

For NSWE, we first compute the difference d between the
predicted RUL and the true RUL as shown in Eq. 3a. Next,
we apply a piecewise function to compute the weight based
on the sign of d, as described in Eq. 3b. If d is negative
(early prediction), the weight is calculated using the formula
exp

(
− d

a1

)
, where a1 is set to 100. If d is non-negative (late

prediction), the weight is calculated using exp
(
c·d
a1

)
, where c,

the penalty severity parameter, is set to 2. Subsequently, we
calculate the sum of weighted errors (swe) by summing the
product of the absolute error and the corresponding weight
for all data points, as shown in Eq. 3c. Finally, to account for
variability in the true RUL values, we normalize the sum of
weighted errors by dividing it by the variance of the true RUL
values in Eq. 3d.

di = predicted ruli − true ruli (3a)

weighti =

{
exp

(
− d

a1

)
if di < 0

exp
(
c·d
a1

)
if di ≥ 0

(3b)

swe =
∑

(|di| × weighti) (3c)

NSWE =
swe

var(true rul)
(3d)

NMSE =
MSE

var(true rul)
(4)

Finally, MSE in Eq. (4) refers to the mean squared error,
calculated as the average of the squared differences between
the predicted and actual RUL values. Because of the normal-
ization by variance, NMSE has no units but NSWE has
the unit ‘per window′ or (/w).

In addition to the accuracy-based metrics, two computational
metrics were utilized for comparison: model training time
and model prediction time, both measured in seconds. The
total CPU processing time was chosen as the primary met-
ric because it accurately reflects the actual computational ef-
fort required for model training and prediction, independent
of other tasks the computer might be handling or the sys-
tem’s configuration (Saxena, Celaya, et al., 2008). This fo-
cus ensures a fair comparison of computational efficiency
across different environments. Measuring training time pro-
vides valuable insights into the computational demands of
model development, revealing how efficiently a model can
be trained. This is particularly important in real-world ap-
plications where models may need frequent retraining due to
new incoming data. Shorter training times can lead to more
agile and responsive systems. Prediction time, on the other
hand, indicates the efficiency of the model in making predic-
tions once trained. In scenarios requiring real-time or near-

real-time predictions, such as predictive maintenance or fault
detection in industrial settings, minimizing prediction time
is crucial for timely decision-making and intervention. By
evaluating both training and prediction times, we gain a com-
prehensive understanding of the model’s operational perfor-
mance, balancing the trade-offs between computational cost
and predictive accuracy. This dual analysis helps in selecting
models that not only provide accurate predictions but also op-
erate within acceptable computational limits, ensuring practi-
cality and efficiency in deployment.

To evaluate the models’ ability to capture the overall trend
and progression of the RUL, we examined the mean RUL
prediction at each time step throughout the component’s life
(see Fig. 2). This comparison helps identify any system-
atic biases or discrepancies among the models. We also ana-
lyzed the spread of predictions at each time step to assess the
models’ consistency and variability (see Fig. 3). This analy-
sis provides insights into the robustness and reliability of the
models’ predictions. To determine the reasonableness of the
predictions, we plotted an alpha bound around the true RUL
values, representing a +/- 10% range of the true value. This
range, though arbitrary, serves as a threshold to evaluate if the
predictions fall within an acceptable range. This qualitative
assessment, which considers both the mean RUL estimation
and the spread of predictions, offers a comprehensive under-
standing of the models’ performance, complementing the nu-
merical metrics.

5. RESULTS

This section presents the findings of our study using the meth-
ods and metrics described in section 4. For visual assess-
ment, we focus on the final 7,000 seconds (700 data points)
of operation following fault injection, as this period encom-
passes the defined degradation phase. The preprocessing for
the inference-based prognostics necessitated excluding peri-
ods prior to fault detection to enhance performance. To main-
tain uniformity and facilitate ease of comparison, the direct
prediction method results were also limited to this region. By
concentrating on this critical phase, we ensure a clear and
consistent comparison of the prediction profiles, highlighting
the performance and reliability of both prognostic approaches
under similar conditions.

5.1. Visual Assessment

In the NR 25 category, one bad training sequence was in-
cluded in the training data for the GBRDT while the HMM
was trained as described in section 4.1. As earlier men-
tioned, 30 predictions were made per prediction point after
re-initializing and retraining the GBRDT. The means of these
predictions are shown in Fig. 2a. The HMM inherently pro-
duces a distribution for each prediction point and the means
of these distributions are reported in Fig. 2b. From Fig. 2, it is
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a)

b)

Figure 2. Mean predictions for final fouling 2.5mm. (a)
GBRDT. (b) HMM.

seen that GBRDT’s predictions more closely follow the true
RUL line indicating a better overall prediction in the NR 25
category. The shorter prediction period for the HMM (Fig.
2b) is because prediction starts around 3,700 seconds (obser-
vation 370) for reasons explained in section 4.1.2.

Analyzing the distribution of these NR 25 predictions at
evenly spaced intervals (see Fig. 3), we observe that the
whiskers of the box plots are not visible indicating that most
GBRDT predictions are around the median values. This
suggests a very stable and repeatable performance by the
GBRDT. As seen, these median values mostly fall in the de-
fined alpha range of the true RUL (see Fig. 3a) connoting low
errors. The HMM model, on the other hand, displays a rea-
sonably high prediction variability early on in the operational
life of the condenser but the stability of predictions improves
closer to the component’s EOL (see Fig. 3b). The reduced
variability close to the EOL is highly favorable since errors
around this region have higher consequences. The median
values of HMM’s predictions also closely follow the true line
and mostly fall within the alpha range.

For NR 30, similar results are seen in Fig. 4 as observed
in the NR 25 category where GBRDT predicted RUL better
than HMM. In addition, the GBRDT predictions appear less

a)

b)

Figure 3. Distributed predictions for final fouling 2.5mm. (a)
GBRDT. (b) HMM.

erratic, especially around the fault injection point (3000s).
This could be because higher degradations make performance
decay more profound and easier to identify. The distributions
in Fig. 5 show the same trend of low spread closer to the EOL
for HMM and high stability across time steps for GBRDT.
The median values of the distributions also closely align with
the true RUL line and fall comfortably within the alpha range.

For the third and most degraded component tested, a similar
trend is seen as in the previous categories. Again, the GBRDT
shows smaller deviations of predictions from the true values
(Fig. 6) and promises higher repeatability because of smaller
prediction variability than HMM (see Fig. 7) over the con-
denser’s lifetime. like in the NR 30 category, the stable and
relatively accurate prediction of GBRDT close to fault onset
may be attributed to higher degradation. The reduced predic-
tion spread of the HMM toward the EOL in all the degrada-
tion categories is expected because the model continuously
takes more input to make predictions as it moves from fault
point to EOL. The increased input likely aids in better pattern
identification and reduces uncertainty.

Upon further investigation of the GBRDT, it was revealed
that the decision trees predominantly relied on the pressure
residual to predict RUL. Figure 8 shows that the monitored

8



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

a)

b)

Figure 4. Mean predictions for final fouling 3.0mm. (a)
GBRDT. (b) HMM.

condenser pressure contributed only about 5% to the predic-
tive capacity of the GBRDT, whereas the pressure residual
accounted for approximately 95%. To explore the impact of
this reliance, a reduced GBRDT was trained using only the
most important feature, resulting in the mean prediction pro-
file shown in Figure 9. As observed, the predictions deterio-
rated significantly, particularly toward the highly consequen-
tial EOL phase. This deterioration underscores the critical
role of the raw pressure signal in providing essential context
for accurate RUL estimation. Although it contributes only
5%, this signal is vital for capturing the nuances of the degra-
dation process, highlighting the importance of incorporating
multiple features for robust RUL prediction of the investi-
gated condenser.

5.2. Numerical Assessment

From section 5.1, it is evident that predictive performances
differ between the two approaches, with direct RUL predic-
tion appearing superior. However, quantifying the perfor-
mance gap can be challenging. In this section, we present
our findings on measuring the performance gap between the
two methods using the quantitative metrics discussed in sec-
tion 4.3. For all selected performance measures (see Table 1),
lower values indicate better performance.

a)

b)

Figure 5. Distributed predictions for final fouling 3.0mm. (a)
GBRDT. (b) HMM.

Table 1. Performance Summary

Final Fouling 2.5 mm
GBRDT HMM

NSWE (/w) 1.776 7.78
NMSE 0.00502 2.01

Training Time (s) 1.55 0.4
Prediction Time (s) 0.0015 197.4

Final Fouling 3.0 mm
GBRDT HMM

NSWE (/w) 0.591 7.72
NMSE 0.00972 2.02

Training Time (s) 1.53 0.4
Prediction Time (s) 0.0016 197.1

Final Fouling 4.0 mm
GBRDT HMM

NSWE (/w) 0.564 7.70
NMSE 0.0102 2.04

Training Time (s) 1.56 0.4
Prediction Time (s) 0.0014 198.1
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a)

b)

Figure 6. Mean predictions for final fouling 4.0mm. (a)
GBRDT. (b) HMM.

Figure 8. Importance of features (GBRDT)

Focusing on the computational metrics (Training Time and
Prediction Time), each model’s performance remained con-
sistent across different degradation categories. This consis-
tency is expected since computation largely depends on data
size and model complexity, which were uniform across all
categories. The training time of the HMM was much shorter
than that of the GBRDT because the HMM was trained with
a single input sequence of the health parameter, whereas the
GBRDT processed twenty-nine (29) sequences with two (2)

a)

b)

Figure 7. Distributed predictions for final fouling 4.0mm. (a)
GBRDT. (b) HMM.

features during training. The GBRDT excelled in prediction

Figure 9. Reduced GBRDT mean predictions. Final fouling
2.5 mm.

speed, as it simultaneously predicted all time steps. In con-
trast, the HMM predicted one time step at a time, processing
an updated set of inputs for each prediction, as described in
section 4.1.2. About 700 time steps were predicted in both ap-
proaches meaning that the HMM took approximately 0.283
seconds per time step in the NR 40 category, for example,
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which is still significantly slower than the GBRDT’s 0.0014
seconds per time step.

Given these results, the HMM might be preferred in sce-
narios where rapid training is crucial, such as in applica-
tions requiring regular model retraining with new data. Con-
versely, the GBRDT’s faster prediction speed makes it more
suitable for real-time or near-real-time applications, where
quick decision-making is essential. This dual analysis high-
lights the importance of choosing a model based on the spe-
cific computational requirements and operational constraints
of the intended application.

In terms of accuracy, NSWE and NMSE underscore the
superiority of GBRDT over HMM in all the tested cate-
gories. For the direct RUL prediction, the higher degrada-
tions (NR 30 and NR 40) show similar errors and improved
accuracy compared to the low degradation especially when
late predictions are punished (NSWE). For the inference-
based method, similar errors are seen in all categories for both
accuracy-based metrics. This is not surprising because the ap-
proach of feeding inputs in batches during prediction limits
HMM’s predictive performance, particularly in the early op-
erational life of the condenser regardless of the degradation
level.

5.3. Applicability and Limitations

As demonstrated by the results of our experiments in sections
5.1 and 5.2, the proposed data-driven approaches can be pre-
ferred under different real-world situations. In this section,
we discuss the applicability and limitations of the compared
specific methods.

5.3.1. Inference from Health Using HMMs

The HMM-based approach is particularly well-suited for sys-
tems where degradation is progressive and can be monitored
through observable signals. Industries such as aerospace, au-
tomotive, and manufacturing, where equipment maintenance
is critical, can benefit significantly from this method. The
Left-Right HMM model is especially advantageous in scenar-
ios where the progression of degradation is unidirectional and
irreversible, such as wear and tear in mechanical systems or
the gradual depletion of material in chemical processes both
applicable in NPPs and other energy and industrial systems.
The requirement for monotonicity, prognosability, and trend-
ability in the prognostic parameters ensures that the model
can consistently track and predict degradation across different
units of the same equipment type, leading to reliable mainte-
nance decisions.

However, the HMM approach also has some limitations. The
assumption of output independence, while simplifying the
model, may not always hold in real-world scenarios where
multiple factors influence the system’s state simultaneously.

Additionally, the model’s reliance on Gaussian distributions
for the observation likelihoods may limit its effectiveness
in environments where the degradation indicators cannot be
modeled as a set of discrete states with Gaussian observation
likelihoods. Another significant limitation is the sensitivity
of the Baum-Welch algorithm to the initial parameter values.
If the initialization is not carefully performed, the algorithm
may converge to a local maximum, resulting in suboptimal
predictions.

5.3.2. Direct Prediction Using GBRDT

The direct prediction method using GBRDT is highly appli-
cable in situations where the relationship between input vari-
ables (such as pressure and residual pressure) and the RUL
is complex and non-linear. The use of machine learning al-
lows the model to capture intricate patterns in the data that
traditional statistical methods might overlook. This approach
is particularly useful in industries where real-time monitoring
and rapid predictions are critical, such as in power generation
or transportation. The flexibility of GBRDT in handling var-
ious types of input data, combined with its robustness in the
presence of noisy data, makes it a powerful tool for predic-
tive maintenance. The ability to incorporate multiple rounds
of training and testing with different random seeds further
enhances the model’s reliability, ensuring that predictions are
not overly sensitive to specific data configurations.

Despite its advantages, the GBRDT approach also faces some
challenges in real-world applications. The method’s reliance
on accurately calculated residual pressure as a health index
means that any errors in this calculation can significantly af-
fect the model’s performance. The model’s complexity and
the need for extensive computational resources for training
can also be a drawback in some industrial environments, par-
ticularly where real-time predictions are required. Addition-
ally, while GBRDT is effective in capturing complex relation-
ships, it may not always provide interpretable results, making
it difficult for operators to understand the underlying reasons
for a particular prediction.

6. CONCLUSION

This study compared two data-driven prognostic models to
estimate the RUL of NPP condensers with tube fouling. The
second approach, GBRDT, demonstrated superior accuracy
and lower prediction variability, particularly excelling in sce-
narios with higher degradation rates. Its ability to quickly and
accurately map input variables to RUL makes it suitable for
real-time applications.

While the HMM approach showed lower prediction accuracy,
higher prediction variability, and longer prediction times, it
provided valuable insights into the degradation mechanisms
and offered more interpretability as well as quicker training
for applications that require periodic updating of the model
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with new data.

Our research highlights the importance of selecting the appro-
priate model based on the application’s specific requirements
and constraints. Future work should explore integrating these
methods to leverage the strengths of both approaches and ap-
ply them to other critical components within NPPs and dif-
ferent industrial contexts.
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