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ABSTRACT

Existing fault diagnosis methods face three fundamental chal-
lenges when deployed under dynamic environments: limited
continuous diagnostic capability, poor generalization, and in-
adequate protection on data privacy. To address these prob-
lems, we develop a novel continual fault diagnosis framework
named Global-Local Continual Transfer Network (GLCTN)
for classifying unlabeled target samples under varying work-
ing conditions without accessing source samples. To this end,
the proposed GLCTN incorporates a consistency loss and a
mutual information loss to facilitate the transfer of learned
diagnostic knowledge from one domain to another domain.
Moreover, a dual-speed optimization strategy is employed to
retain the acquired diagnostic knowledge while empowering
the model to acquire new information. Experiments con-
ducted on an automobile transmission dataset demonstrate
that the proposed GLCTN achieves robust diagnostic perfor-
mance across multiple continuous transfer diagnostic tasks.

1. INTRODUCTION

Data driven-based intelligent fault diagnosis (IFD) methods
have been implemented in various high-end equipment, in-
cluding wind turbines, airplanes, high-speed trains, to name
a few. Precision IFD models are essential for ensuring the
reliable operations of mechanical equipment, reducing ma-
chine breakdowns, and minimizing economic losses (Li et al.,
2024). Consequently, the development of precision IFD mod-
els has become a key research focus in the field of machinery
fault diagnosis.

Jipu Li et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Deep learning (DL), a crucial branch of machine learning,
has garnered widespread attention in recent years and it
has achieved significant success in machinery fault diagno-
sis (Yan et al., 2023). For example, Zhou et al. (2022) pro-
posed a probabilistic Bayesian DL framework to improve the
reliability of diagnostic results for rotating machinery. Zhang
et al. (2023) proposed an end-to-end DL framework for the
IFD of wind turbine gearboxes under non-stationary condi-
tions.

Despite the rapid progress, DL models experience significant
performance degradation when applied to testing conditions
with distributions different from the training data. To over-
come the poor generalization of DL models, transfer learning
(TL) has been leveraged along the development of IFD mod-
els. The key idea of TL is to apply learned knowledge to ad-
dress a similar but distinct task. In machinery fault diagnosis,
researchers have combined DL with TL to leverage DL’s fea-
ture extraction capabilities and TL’s knowledge transfer abil-
ity simultaneously as a means of enhancing the generalization
performance of IFD models. For example, Chen et al. (2023)
proposed a deep parameter-free reconstruction classification
network to solve the fault classification problem of bearing
under different working conditions. Li et al. (2020) pro-
posed a two-stage transfer adversarial network for detecting
the multiple unknown faults in the unlabeled target samples.
Zhao et al. (2022) utilized extreme learning machine and TL
techniques to achieve the IFD of the aero engine. Meanwhile,
continual learning (CL) is introduced to improve the continu-
ous diagnostic ability of IFD models. Inspired by the continu-
ous learning ability of humans, CL enables the model to learn
continuously from new data without the need of retraining the
entire model. This capability is well-suited for the diagnostic
requirements of mechanical equipment in continuous opera-
tion. Li et al. (2023) proposed a deep continual TL method to
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address continuous diagnosis problems for IFD models. The
proposed framework can work well for increasing new faults
of unlabeled target samples. Wang et al. (2019) proposed an
incremental transfer fault diagnosis method to reconstruct the
new process diagnosis model, which can recognize the new
fault classes in multiple phases.

Even though the above-mentioned methods have yielded
promising experimental results, a central issue remains: the
necessity for joint training on fault samples from both the
source and target domains to enable the model in handling
fault types from both domains simultaneously. With growing
awareness of data privacy protection, ensuring the full utiliza-
tion of data from various sources without data sharing is a re-
search direction worthy of investigation. Therefore, this study
investigates a more challenging and practical scenario termed
as a source-free continual transfer. To this end, we propose
a novel Global-Local Continual Transfer Network (GLCTN)
for the continuous diagnosis of mechanical equipment. The
proposed GLCTN not only enables continuous diagnosis un-
der varying operating conditions, but also facilitates intelli-
gent diagnosis of unlabeled target samples without access-
ing the source samples. In particular, a consistency loss and
a mutual information loss are introduced into the proposed
GLCTN to transfer the learned knowledge for equipment di-
agnostics. Meanwhile, a dual-speed optimization strategy is
utilized to preserve the learned diagnostic knowledge and en-
dow the model with the ability to acquire new knowledge.
Experimental results demonstrate that the proposed GLCTN
is a promising tool for continual machine monitoring.

2. METHODOLOGY

2.1. Problem Formulation

In this study, a source-free continual transfer problem is in-
vestigated, and it includes a source domain Ds = {xi

s, y
i
s}

ns
i=1

and multiple target domains {D1
t , D

2
t , · · · , Dk

t }. In each
stage, a target domain dataset Dk

t = {xk,i
t }

nt
i=1 is sequentially

fed into the diagnostic model, where ns and nt represent the
number of fault samples from the source and target domains,
respectively. The source and the target samples are collected
from different data distributions, P (xi

s, y
i
s) ̸= Q(xk,i

t ). Due
to the consideration of data privacy protection, source sam-
ples are only used to initialize the network parameters during
the model pre-training process. The goal of this study is to
develop a continual intelligent diagnostic model that can con-
tinually classify unlabeled target samples without accessing
any source samples.

2.2. Overview of the Proposed GLCTN

The architecture of the proposed GLCTN is presented in
Fig. 1, and it includes a pre-training process and a contin-
ual diagnosis process. In the pre-training process, the la-
beled source samples are utilized to train the source model.

At a high level, the source model consists of a feature ex-
tractor Ms and a fault classifier Cs. It is worth noting that
the pre-training process is a classical fault classification prob-
lem, where a standard cross-entropy loss function is used for
model training.

After the pre-training process, multiple diagnostic subdo-
mains are sequentially fed into the continual diagnostic model
for continuous diagnosis in the target domain. The unlabeled
target samples are fed into the continual diagnostic model.
Unlike the source model, the continual diagnostic model has
two sub-models, a global model Mg and a local model Ml.
The global model Mg is used to preserve the learned diag-
nostic knowledge, while the local model Ml is utilized to
learn new knowledge from the current phase. In particular, a
consistency loss function and a mutual information loss func-
tion are used to train the model. Meanwhile, a dual-speed
optimization strategy (Feng et al., 2023) is introduced into
the proposed GLCTN to retain the learned diagnostic knowl-
edge and empower the model to handle faults in other oper-
ating conditions. Specifically, the local model Ml is updated
rapidly using Stochastic Gradient Descent (SGD) after each
batch. In contrast, the global model Mg is slowly updated
by performing the Exponential Moving Average (EMA) be-
tween the global model in the previous phase and the local
model in the current phase at the end of each epoch. There-
fore, the updates for the global model and the local model are
performed as follows.

For global model:

Mg ← m ∗Mg + (1−m) ∗Ml (1)

For local model:

Ml ←Ml − η ∗ ∇Ml
[Lcons − λLMI] (2)

2.3. Network Architecture

In this study, a one-dimensional convolutional neural network
(1D-CNN) serves as the backbone feature extractor to elicit
representative features from the source and target domains.
In particular, four convolutional blocks are initially stacked
with each block incorporating a convolutional layer and a
batch normalization (BN) layer for enhanced training effi-
ciency. Following the two convolutional blocks, a MaxPool
layer is introduced to reduce the data dimension while pre-
serving the crucial spatial information. Next, the extracted
representative features are flattened and fed into a fully con-
nected (FC) layer. The fault classifier contains two FC layers
with a SoftMax activation applied for fault classification. It
is noteworthy that the model structure of the global and local
models is exactly the same as that of the source model to fa-
cilitate the transfer of diagnostic knowledge learned from the
source domain to the target domain.
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Figure 1. Overview of the proposed GLCTN.

2.4. Loss Function

2.4.1. Source Supervision

In the pre-training process, the optimization objective is to
minimize the classification error under source domain. The
standard cross-entropy loss function Ls is used to drive the
learning:

Ls = −
1

ns

ns∑
i=1

Nc∑
j=1

1{yis = j}log ex
c,i,j
s∑Nc

k=1 e
x c,i,k
s

(3)

where xc,i,j
s denotes the j-th element of the output vector in

the fault classifier, taking the i-th source sample as input, and
Nc represents the number of fault categories in the source
domain.

2.4.2. Consistency Loss

After the pre-training process, the model parameters of global
model Mg are copied from the source model Ms to retain the
diagnostic knowledge obtained from the source domain. For
an unlabeled fault sample xk,i

t from the current diagnostic do-
main, the corresponding pseudo label ỹk,it is generated using
the global model Mg . In this study, the fault sample’s classifi-
cation score is considered as the corresponding pseudo label.
The pseudo label can be generated as follows:

ỹk,it = softmax((hg(x
k ,i
t ))/τ) (4)

where τ is a temperature parameter and hg denotes the classi-
fication score from the classifier Cg , and softmax represents
the softmax loss function.

To ensure the accuracy of the pseudo label, a data augmen-
tation technique is adopted in the proposed GLCTN. Specif-

ically, we add random noise to the raw vibration signal, and
the augmented fault sample is defined as X̃k,i

t = {xk,i
t , x̃k,i

t }
with pseudo label Ỹ k,i

t = {yk,it , ỹk,it }. According to the defi-
nition of knowledge distillation, the consistency loss function
Lcons can be defined as follows:

Lcons(X̃
k,i
t , Ỹ k,i

t ,Ml) = DKL(Ỹ
k ,i
t ∥ hl(X̃ k ,i

t )) (5)

where DKL(a ∥ b) presents the KL divergence that is used to
measure the similarity between a and b.

2.4.3. Mutual Information Loss

Mutual information (MI) loss is a typical loss function in ma-
chine learning used to quantify the degree of dependence be-
tween two random variables (Kraskov, Stögbauer, & Grass-
berger, 2004). In essence, MI estimates the shared informa-
tion between two random variables by measuring how much
information knowing the value of one variable tells us about
the other variable. Maximizing MI helps model to learn more
meaningful feature representations. For a batch augmented
sample {X̃k,i

t }bi=1, the MI loss function LMI is calculated in
this study:

LMI({X̃k,i
t }bi=1,Ml) = −

1

b

b∑
i=1

DKL(hl(X̃
k ,i
t ) ∥ h̃l) (6)

where h̃l =
1
b

∑b
i=1 hl(X̃

k,i
t ) is a predicted result.

In summary, the overall loss function of the continuous diag-
nosis process is defined as follows:

Lall = Lcons + γLMI (7)
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3. EXPERIMENTAL VALIDATION

3.1. Dataset Descriptions

Experiments were conducted on an automobile transmission
(AT) test platform to validate the performance of the proposed
method. The SG135-2 AT used in the experiment is a three-
axis, five-speed transmission. The test bench is capable of
simulating various operating conditions. Specifically, the test
bench simulated four speeds: 500 rpm, 750 rpm, 1000 rpm,
and 1250 rpm while the load torque was set to 0 Nm and
50 Nm. The type of fault bearing is NUP311EN. Two inner
ring faults (IRF), with depths of 1 mm and widths of 0.2 mm
and 2 mm, were injected in two distinct NUP311EN bearings
through wire-cut processing. Three kinds of gear faults were
simulated. The simulated fault categories of AT are shown in
Table 1 encompassing a total of nine different fault categories.
The vibration acceleration sensor was fixed on the housing of
the AT output shaft, and the sampling frequency was set at 24
kHz.

Table 1. Detailed information of fault categories on the AT
dataset.

Labels Bearing fault Gear fault Marks
0 Normal Normal NO-NOR
1 Normal Single tooth fault NO-SIT
2 Normal Mild tooth fault NO-MIT
3 Normal Moderate tooth fault NO-MOT
4 0.2mm IRF Normal 0.2 IRF-NOR
5 0.2mm IRF Single tooth fault 0.2 IRF-SIT
6 0.2mm IRF Mild tooth fault 0.2 IRF-MIT
7 0.2mm IRF Moderate tooth fault 0.2 IRF-MOT
8 2mm IRF Single tooth fault 0.2 IRF-SIT
9 2mm IRF Moderate tooth fault 0.2 IRF-SIT

3.2. Study Design

To validate the effectiveness of the proposed GLCTN, seven
different continual transfer diagnostic tasks are devised en-
compassing variations in speeds, loads, and combinations of
speeds and loads. The detailed information of seven contin-
ual transfer diagnostic tasks is summarized in Table 2. Tak-
ing T1 as an example, the working condition of the source
domain is 500rpm with 50Nm, while the target domain in-
cludes multiple diagnostic domains. As indicated in Table 3,
with the increasing number of phases, the number of diag-
nostic domains in the target domain is also increasing. This
setup closely aligns with the actual operation of mechanical
equipment.

In this study, 200 labeled source samples are available for
training under each fault category, and 200 unlabeled target
samples are utilized in each diagnostic domain to character-
ize the target domain. The experimental results are averaged
by ten trials to mitigate the impact of randomness. The train-
ing epoch is 30, and the learning rate is set to 0.001. The
experiment is conducted on a workstation with an NVIDIA

GeForce GTX 1660 Ti GPU, and the PyTorch deep learning
platform is employed for programming.

Table 2. Details of the continual transfer tasks.

Tasks Source domain Target domain

T1 500-50 750-00/750-50/1000-00
/1000-50/1250-00/1250-50

T2 750-00 750-50/1000-00/1000-50
/1250-00/1250-50/500-50

T3 750-50 1000-00/1000-50/1250-00
/1250-50/500-50/750-00

T4 1000-00 1000-50/1250-00/1250-50
/500-50/750-00/750-50

T5 1000-50 1250-00/1250-50/500-50
/750-00/750-50/1000-00

T6 1250-00 1250-50/500-50/750-00
/750-50/1000-00/1000-50

T7 1250-50 500-50/750-00/750-50
/1000-00/1000-50/1250-00

Table 3. Details of task T1 in each phase.

Phases Source domain Target domain
1 500-50 750-00
2 750-00/750-50
3 750-00/750-50/1000-00

4 750-00/750-50/1000-00
/1000-50

5 750-00/750-50/1000-00
/1000-50/1250-00

6 750-00/750-50/1000-00
/1000-50/1250-00/1250-50

3.3. Baselines

To validate the superiority of the proposed GLCTN, four dif-
ferent methods are considered in this study for comparison.
The details of compared approaches are introduced as fol-
lows:

• Baseline. The pre-trained source model is directly ap-
plied to multiple target domains.

• SHOT. As a typical source-free domain adaptation
method, source hypothesis transfer (SHOT) (Liang, Hu,
& Feng, 2020) has achieved high performance for im-
age recognition. This comparison can demonstrate the
superiority of the CL in the proposed GLCTN.

• USF. To handle the cross-domain fault diagnosis
problem with data protection limitation, Zhang et
al. (Y. Zhang, Wang, & He, 2023) proposed an unsuper-
vised source-free (USF) method. It has been proven that
USF performed well on two rotating datasets, and it can
also detect unknown faults in the target domain.

• G-SFDA. The Generalized source-free domain adapta-
tion (G-SFDA) method (Yang, Wang, Van De Weijer,
Herranz, & Jui, 2021) is an effective method that works
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well for continually detecting images from different do-
mains in computer vision. This approach is employed to
illustrate the superiority of the dual-speed optimization
strategy.

3.4. Experimental Results

The experimental results of different methods are summa-
rized in Table 4. Overall, the proposed GLCTN achieved sat-
isfactory results in all the continual transfer diagnostic tasks
with an average diagnostic accuracy of 94.06%. In contrast,
the baseline method, relying solely on diagnostic knowledge
extracted from the source domain, struggles to adapt to the di-
agnostic scenarios in the target domain and yields an average
accuracy of only 64.09%. This highlights the limited gen-
eralization capability of DL-based intelligent fault diagnosis
methods. Although both the SHOT and USF methods do not
require the merging of source and target domain samples to
train the model, but they lack continuous diagnosis capabil-
ity. As a result, these two methods only achieve a diagnostic
accuracy of 73.05% and 77.39%, respectively. The G-SFDA
method achieved relatively competitive experimental results
with an average diagnostic accuracy of 84.47%, but its diag-
nostic accuracy still falls behind GLCTN by a large margin.
This also demonstrates the advantage of the global and local
models in the proposed GLCTN.

Table 4. Testing accuracies (%) of different methods in dif-
ferent diagnostic tasks.

Tasks Baseline SHOT USF G-SFDA GLCTN
T1 63.81 74.79 78.78 84.25 92.12
T2 62.77 69.74 79.08 85.52 95.73
T3 56.05 67.66 77.88 83.51 92.07
T4 67.47 76.16 78.04 86.34 94.67
T5 69.70 77.48 81.72 83.62 94.83
T6 60.09 68.98 69.10 82.42 93.93
T7 68.74 76.53 77.14 85.60 95.09

Average 64.09 73.05 77.39 84.47 94.06

To demonstrate the effectiveness and superiority of the dual-
speed optimization strategy in each phase, we present the di-
agnostic accuracy achieved by each method in each phase.
Due to space constraints, we illustrate the experimental re-
sults in T1. The diagnostic results of the SHOT, USF, G-
SFDA and GLCTN in each phase are shown in Figure 2.
From the experimental results, it can be observed that as the
number of phases increases, the USF method’s degree of for-
getting diagnostic knowledge also increases. Precisely, in the
last stage, SHOT has almost forgotten half of the initially
learned knowledge. While the G-SFDA method exhibits good
diagnostic accuracy in phases 1 to 3, its accuracy significantly
decreases in phase 5. This indicates that the G-SFDA method
cannot retain learned diagnostic knowledge over an extended
period. In contrast, the proposed GLCTN maintains an accu-

racy of around 90% in each phase, indicating its strong ability
to retain previously learned knowledge.

Figure 2. Experimental results of different methods in each
phase.

4. CONCLUSION

This paper proposes a novel GLCTN for machinery IFD. Dif-
ferent from most existing IFD approaches where the source
samples are available for model training, the unlabeled target
samples are accurately diagnosed without any source sam-
ple. Moreover, the proposed GLCTN addresses the continu-
ous diagnosis of mechanical equipment under variable work-
ing conditions using the consistency loss function, the mu-
tual information loss function and the dual-speed optimiza-
tion strategy. Experimental results on an automobile trans-
mission dataset are used to validate the performance of the
proposed GLCTN. Computational comparisons suggest that
the proposed approach achieves satisfactory fault diagnosis
results in multiple continual transfer diagnosis tasks.
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