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ABSTRACT 

In self-driving vehicles linked with mobility electrification, 

system failures that occur suddenly in situations where 

customers are unaware of signs of failure are directly related 

to customer injuries. Securing the durability and safety of 

closure automation system is necessary to increase the 

customer's safety value so PHM technology makes it possible 

to predict failures and remaining life in advance during 

system operation. In addition, since not only various forms of 

new concept design styling but also innovative new handle 

designs are applied, it is obviously seen that e-Latch system 

is widely equipped in the mobility.  Thus, in this paper, the 

study to predict the failure of e-Latch and closure system is 

implemented via data-driven and physics-driven method, and 

the algorithm for PHM to estimate remaining life of e-Latch 

system is also introduced. 

1. INTRODUCTION 

In the era of autonomous driving linked with the 

electrification of mobility, diverse opening and closing 

mechanisms are implemented, and the system's 

electronification becomes common in future mobility. In this 

context, sudden system failures, which occur without the 

customer's awareness of fault signs, are directly related to 

customer injuries. Particularly in cases where the vehicle's 

owner and user are different, such as PBVs (Purpose Built 

Vehicles), even if fault signs appear, users may not share 

these signs with the owners. This leads to a lack of preventive 

maintenance and increases the risk of customer injuries due 

to vehicle malfunctions. Therefore, ensuring the durability 

and safety of closure automation systems is crucial for 

maximizing customer safety value. Prognostics and Health 

Management (PHM) technology, which predicts faults and 

estimates remaining useful life, is considered a key 

technology for future autonomous driving era closure 

systems. In the case of B2B shared autonomous vehicles 

connected with Fleet Management Systems (FMS), the 

application of this technology is expected to be highly 

beneficial not only for ensuring customer safety but also for 

maximizing the durability and minimizing maintenance costs 

of mobility. Thus, understanding the principles of PHM 
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technology and developing PHM technology optimized for 

closure systems are essential. 

Meanwhile, an appealing exterior is one of the most 

important values provided to customers, leading to the 

introduction of various new concept design stylings. The 

common feature of these new designs is the adoption of 

diverse opening and closing mechanisms and new handle 

designs, which are realized by removing mechanical handles, 

thereby necessitating the application of e-Latch. Previously, 

e-Latch was directly applied to vehicles without 

modifications, leading to issues such as dependence on 

suppliers for new technology due to undisclosed core 

technologies, difficulties in internalizing technology and 

improving quality, worsening cost competitiveness, and 

excessive weight/package issues. 

This study aims to examine the e-Latch system, a core and 

urgent technology for preempting the future mobility 

paradigm and explore development methods and 

internalization strategies for this technology. Specifically, the 

study focuses on developing PHM technology to predict 

faults and remaining useful life (RUL) of the closure system, 

targeting the e-Latch system as a key technology in mobility 

electrification. The objectives include developing test 

evaluation methods for PHM technology, extracting key 

fault-related characteristics, diagnosing faults, classifying 

faults, and predicting remaining useful life. Based on these 

objectives, the study also aims to establish methodologies for 

developing PHM technology for electrified parts of closure 

systems in the future. 

 

Figure 1. Examples of Various Opening and Closing 

Mechanisms (Application of eLatch) 

 

2. MAIN SUBJECT 

2.1. e-Latch PHM Model Development  

PHM (Prognostics and Health Management) technology is a 

system health management technology that monitors the state 

of mechanical and electrical devices using sensors and other 

tools, diagnoses the system's condition (normal/fault), and 

predicts the remaining useful life when signs of faults are 

detected. This technology consists of four stages: 

'performance monitoring,' 'anomaly detection,' 'fault 

diagnosis/classification,' and 'remaining useful life 

prediction.' 

In the 'performance monitoring' stage, operational data is 

collected using sensors and preprocessed in various ways to 

extract fault-related features. During the 'anomaly detection' 

stage, the extracted features are used to compare the 

characteristics of the normal state with the monitored state. 

When signs of faults are detected, a system alarm is triggered. 

Even if fault signs are detected at this stage, it does not 

diagnose the condition as a fault. 

In the 'fault diagnosis' stage, the detected fault signs are 

compared with the characteristics of fault types to determine 

if the monitored state is indeed a fault and to classify the type 

of fault. Finally, in the 'remaining useful life prediction' stage, 

the remaining useful life is predicted based on the diagnosed 

and classified fault types. If necessary, a replacement plan is 

established and communicated to the user or vehicle owner 

to prevent sudden failures and maintain the system in a 

healthy state. As shown in Fig. 2, these stages involve 

continuous monitoring and fault diagnosis throughout the 

component's (or vehicle's) lifecycle. 

This PHM technology is applicable to safety-critical 

components that can cause serious injury to customers in case 

of failure, components that require high durability due to 

frequent usage, and electrified components (or sensor-

enabled components) that allow continuous performance 

monitoring. In the closure system, the e-Latch (Electric Latch) 

falls into this category. 

 

Figure 2. Overview of the PHM Model 

 

The PHM model can be developed through two methods. The 

first method is the "Physics-of-Failure (POF) PHM Model 

based on Performance Degradation" (Fig.3). This method 

assumes that the performance remaining life at a specific 

point follows an existing physical model of performance 

degradation and constructs a fault diagnosis and remaining 

life prediction model. It is applicable when there is a known 

performance degradation physical model for a system, 

making it suitable for simple systems or systems where a 

performance degradation model has been established after 

development. However, as the e-Latch consists of over 40 

components and lacks a developed performance degradation 
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model, the development of a physical model-based PHM 

model is not feasible. 

Therefore, we applied the second PHM model development 

methodology, the "Data-Driven PHM Model" (Fig.3). This 

method collects and analyzes test data on performance 

degradation and faults under various conditions and utilizes 

machine learning to construct fault diagnosis and remaining 

life prediction models. Since there is no established 

performance degradation physical model for the system and 

it is a complex system, the data-driven approach is suitable, 

especially for initial development systems. Thus, it is 

appropriate for developing the e-Latch PHM model. 

 

 

Figure 3. POF PHM / Data Driven PHM 

As previously described, the e-Latch system is configured for 

performance degradation evaluation data collection, as 

depicted in Fig. 4. The system comprises a handle, controller, 

and latch. The system operation proceeds in the following 

sequence: 'Handle: Signal Transmission for Opening' -> 

'Controller: Signal Reception & Data Monitoring' -> 'Latch: 

Execution of Opening and Transmission of Characteristics'. 

The controller takes an input signal from the exterior handle 

and, after a 1000ms delay, sends out signals to the e-Latch 

motor, specifying the voltage, current, and angular position 

of each switch.  

e-Latch faults are defined through potential field claim Fault 

Tree Analysis, and independent samples are created for each 

fault. Subsequently, performance degradation evaluations are 

conducted at the component and vehicle levels, and data are 

collected. In this context, Fault Tree Analysis (FTA) is a 

systematic methodology employed to identify and analyze all 

potential failure modes within a complex system. Specifically 

for an e-Latch, FTA can be utilized to assess the failure 

modes of its two primary components: the worm and wheel 

gear, which may result from degradation or complete failure. 

 

Figure 4. e-Latch System Configuration and Data 

Visualization 

The overview of the PHM model development performed 

based on the collected data is depicted in Fig. 5. The collected 

data undergo preprocessing tasks such as signal segmentation 

to extract features. These extracted features are then used for 

machine learning to diagnose faults and classify fault types. 

The classified faults estimate the performance degradation 

status for each type, and based on this, predict the remaining 

useful life to complete the PHM model development. 

2.2. Implementation and tests  

Data collection for fault diagnosis and classification was 

conducted by evaluating both components and real vehicle 

conditions for each fault type. For remaining useful life 

prediction data collection, evaluations were performed at four 

severity levels (normal, 50% degradation, 75% degradation, 

99% degradation) in component RIG-mounted conditions, 

with the remaining levels calculated using linear 

interpolation. At least 100 data samples were collected by 

combining each condition and severity level for analysis. 

During evaluations, the e-Latch controller recorded motor 

current/voltage and switch signals when the e-Latch was 

released. The controller activates the motor based on the 

received I/S or O/S switch signal and operates the pole 

attached to the motor to release the latch. During this process, 

the lever connected to the pole switch and the AZA switch 

rotates sequentially, and the controller supplies power to the 

motor for approximately 600ms from the initial switch point 

if the switch signals are confirmed to operate correctly in 

order. 

 

Figure 5. Overview of PHM Model Development 
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Signal segmentation was performed based on motor 

current/voltage signals. The operation state of the latch is 

divided into four sections: Idle1, Operation, Constrained, and 

Idle2. The peak value of the motor current is used as a 

landmark to determine the latch state. The division between 

the Idle1 and Operation sections is defined by the first current 

peak point (1). The division between the Constrained and 

Idle2 sections is defined as the point where the current returns 

to the Idle1 level after the first peak point (1). 

Before performing machine learning, the collected data 

undergoes an evaluation data integrity check. This involves 

analyzing the e-Latch mechanism layout to confirm the 

theoretical operating resistance (represented here by 

simplified formulas and diagrams). To account for variations 

due to tolerances in the theoretically calculated normal values, 

Python code was developed to verify the latch operating 

resistance at different motor rotation angles under normal and 

tolerance conditions (Fig. 6). The verification of operating 

resistance is based on the results of internalizing the 

proprietary e-Latch design technology. 

 

 

Figure 6. e-Latch Operating Resistance 

 

Next, the performance of the motor is implemented through 

mathematical modeling, as shown below (Fig. 7). 

(1) 𝑣(𝑡) = 𝑅 ∗ 𝑖(𝑡) + 𝐿 ∗
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑣𝑒(𝑡) 

(2) 𝜏𝑚(𝑡) = 𝐾𝑇 ∗ 𝑖(𝑡)  

(3) 𝐽 ∗
𝑑𝜔(𝑡)

𝑑𝑡
+ 𝑏 ∗ 𝜔(𝑡) = 𝜏𝑚(𝑡) − 𝜏𝑙(𝑡) 

(4) 𝑣𝑒(𝑡) = 𝐾𝑒 ∗ 𝜔(𝑡) 

This can be transformed using the Laplace transform as 

follows. 

(5)  V(s) - 𝑉𝑒(𝑠) = 𝑅 ∗ 𝐼(𝑠) + 𝐿 ∗ 𝑠 ∗ 𝐼(𝑠) 

       ➔ I(s) = 
𝑉(𝑠)−𝑉𝑒(𝑠)

𝐿∗𝑆+𝑅
 …(5.1) 

(6) 𝑇𝑚(s) = 𝐾𝑇 ∗ 𝐼(𝑠) 

(7) J*s* 𝜔(𝑠) + b*𝜔(𝑠) =  𝑇𝑚(𝑠) − 𝑇𝑙(𝑠) 

       ➔ 𝜔(s) = 
𝑇𝑚(𝑠) −𝑇𝑙(𝑠)

𝐽∗𝑆+𝐵
 

(8) 𝑉𝑒(𝑠) = 𝐾𝑒 ∗ 𝜔(𝑠) 

 

 

Figure 7. e-Latch Operating Resistance 

 

Finally, the motor performance curve applied to the e-Latch, 

with the calculated parameters, is shown below. 

(1) Max. Torque at Max. Efficiency 

        TN = Ts
√𝑖o𝑖s−𝑖o

𝑖s−𝑖o
 (𝑢𝑛𝑖𝑡 :  N.m)   = 3.9955 (mN.m) 

(2) Nominal Voltage 

        VN = 𝑖𝑛𝑝𝑢𝑡 𝑉(𝑢𝑛𝑖𝑡 :  N.m) = 12.5 (V) 

(3) Angular Velocity  

  𝑣(𝑡) = 𝑅 ∗ 𝑖(𝑡) + 𝐿 ∗
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑣𝑒(𝑡) 

𝑉 = 𝑅 ∗ 𝑖 + 𝑉𝑒  (∵ Generally, L ≒ 0) 

  𝑉 = 𝑅 ∗ 𝑖 + 𝐾𝜔 (∵ 𝑉𝑒  = 𝐾𝑒𝜔  ,   𝐾𝑒 = 𝐾𝑡 = 𝐾) 

  𝑉 =
𝑇

𝐾
𝑅 + 𝐾𝜔 (∵ 𝜏𝑚(𝑡) = 𝐾𝑇𝑖,   𝐾𝑒 = 𝐾𝑡 = 𝐾) 

  ∴ 𝜔 = −
𝑅

𝐾2 𝑇 +
𝑉

𝐾
  = aT + b (a = Slope, b = 𝑦0) 

(4) Find the K & R  

 𝜔 = −
𝑅

𝐾2 𝑇 +
𝑉

𝐾
 (@ 𝜔0,   V𝑁 ,   𝑇0 = 0, & @ 𝑇s ,    𝜔𝑠 = 0)  

➔ K = 0.00765 (V/(rad/s)) 

➔ R = 2.1862 (Ω) 

(5) Nominal Angular Velocity (𝜔𝑁 @𝑇𝑁 , 𝐾,  𝑅,  V𝑁) 

     𝜔𝑁 = −
𝑅

𝐾2 TN +
VN

𝐾
   = 1484.4367 (rad/s) 
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(6) Nominal Current (𝑖𝑁) 

    𝑖𝑁 = 
𝑉𝑁− 𝐾∗𝜔𝑁

𝑅
 = 0.522 (A) 

 

Based on the latch resistance simulation and the motor's 

mathematical modeling, a physical model is created to 

simulate the actual operating components of the e-Latch. This 

physical model, known as a 1D simulation model, 

demonstrates the latch's operation in response to a single 

input value. The simulation results are compared with the 

actual evaluation data to verify that the evaluation data is 

normal and usable. 

 

 

Figure 8. Simulation and Data Integrity Check 

 

When comparing the simulation results graph and the 

measured evaluation data, several patterns were observed in 

both: the occurrence of peak currents during operation (w-

shaped pattern) (①), the initial peak patterns during the 

beginning of operation and the onset of constraint (②), and 

the overall pattern of the current waveform. Additionally, the 

voltage drop patterns during operation and constraint were 

observed in both the simulation and evaluation results (③). 

Although there were slight differences in the detailed values 

of current and voltage, these are estimated to be due to 

environmental factors (e.g., wire resistance) during the actual 

evaluation. Therefore, the integrity of the evaluation data is 

confirmed, making it possible to develop the PHM model 

through data analysis and feature extraction. 

For the development of the PHM model, the current (voltage) 

fluctuation patterns were first used to classify the signal 

intervals into three stages based on the statistical 

characteristics of the DC motor: (1) Idle interval: from 

receiving the handle operation signal to just before the 

motor's actual operation, (2) Operation interval: from motor 

operation to latch release, and (3) Constraint interval: 

maintaining state after latch release, and continuing motor 

overload state. This classification is shown in Fig. 9. 

 

Figure 9. Signal Segmentation 

 

Next, after verifying data integrity, 20 features were extracted 

from each signal data. This is shown in Fig. 10. It is assumed 

that the characteristics of the motor signals will change with 

the degradation of the latch. The features extracted from the 

motor signals reflect the characteristics of the signals, and the 

machine learning model can find patterns in these features to 

distinguish between faulty and normal latches. The physical 

meaning of each feature and its correlation with the e-Latch 

system were examined to select the final fault-related features. 

 

Figure 10. Fault-Related Features 

The machine learning for developing the fault diagnosis 

model was performed using the extracted fault-related 

features. This process proceeded in the following steps: data 

partitioning, extraction of fault-related features, machine 

learning model training, and machine learning model 

validation. For the evaluation of single-unit degradation, only 

normal data and data from evaluations at 99% degradation 

were utilized for fault classification. This procedure was also 

followed for future residual life prediction. The machine 

learning training results showed that fault diagnosis and 

classification were generally achievable with high accuracy, 

averaging above 90% for most applied algorithms. The 

algorithms used included Random Forest, Decision Tree, 

Support Vector Machine, Multi-Layer Perceptron, and Deep 

Neural Network. The prediction accuracy of the machine 

learning algorithms was observed to be in the following order: 

Random Forest > DNN > Decision Tree > SVM > MLP. 

While there were no issues with the analysis speed for 

diagnosing faults in a single data point across all algorithms, 

Random Forest demonstrated superior performance in terms 

of overall accuracy and speed. (Fig. 11) 
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Figure 11. Accuracy by Algorithm 

 

Next, residual life prediction was performed. Outliers due to 

human error, experimental setup error, measurement error, 

etc., were identified in the major features. As these outliers 

could affect the training and testing of the machine learning 

model, they were identified and removed. Outliers related to 

human error and experimental setup error were defined as 

errors using rules based on the programmed logic of the e-

Latch controller. Feature sets extracted from data that did not 

adhere to the rules were removed. The removal rules included 

"motor operation time less than 600ms", "motor operation 

time greater than or equal to 650ms", "AJAR switch on time 

less than PAWL switch on time", and "no detected peak 

current during rotation state". 

 

Figure 12. Feature preprocessing procedure 

The extracted features were verified for redundancy, 

monotonicity, effectiveness, and efficiency, with each having 

a crucial role in determining the fault modes of the e-Latch 

system. As different fault modes may exhibit different 

behaviors, the features characterizing their operation may 

vary as well. The process involves characterizing each feature 

and filtering out some features based on threshold values. 

This is necessary as not all features used in fault diagnosis 

have equal importance for each fault category. The process 

includes: 

ⓐ Redundancy Removal: Identification and removal of 

features representing the same signal characteristics. 

ⓑ Monotonicity Verification: Confirmation of features 

exhibiting monotonic behavior (increase or decrease) with 

fault degradation. 

ⓒ Efficiency Validation: Identification of features with high 

impact on classifying degradation levels among those 

exhibiting monotonic behavior. 

ⓓ Feature Elimination: Determination of the 

minimum/optimal number of features suitable for classifying 

degradation levels. 

Following the selection of final features, machine learning is 

employed to predict the remaining useful life. This process 

follows a similar outline as the one used for fault diagnosis 

and classification. The algorithms used in this phase are 

identified, and their respective accuracies are verified. 

(Fig.13 & Fig.14) 

 

Figure 13. Feature Selection 

 

 

Figure 14. Accuracy by Algorithm 

 

To reduce the error in residual life prediction, a Median Filter 

was applied. This filter helps mitigate the influence of outlier 

data by reducing the impact of abnormal data (outlier data) 

when mixed with normal data. Ultimately, the predicted 

residual life achieved approximately 95.3% accuracy on the 

training data and around 89.4% accuracy on the test data. 

 

Figure 15. Residual Life Prediction Results 
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Additionally, when developing the initial fault diagnosis 

model, fault classification was conducted using normal data 

and data evaluated at a 99% performance degradation state. 

Subsequently, the model was updated to include intermediate 

performance degradation states (50%, 75%) by adding 

corresponding evaluation data. As the differences in 

characteristics between intermediate performance 

degradation states and normal states may not be as distinct as 

those between a 99% performance degradation state and a 

normal state, a logistic model was trained after grouping the 

features and labeling the normal and fault models. In some 

cases, intermittent classification as normal was observed in 

the evaluation of certain performance degradation states after 

fault diagnosis. To address this, the "k out of N rule" was 

applied. The complexity of the system, which requires a 

comprehensive judgment based on various features rather 

than relying on representative and intuitive features for fault 

diagnosis, contributed to this decision. 

 

Figure 16. The labeling of fault data and the logistic model. 

 

The "k out of N rule" involves: 

1. Determining the size of N consecutive data points for 

fault diagnosis (Size: N) 

2. Checking the number of fault data points classified as 

faults within the consecutive N data points 

3. Considering the occurrence time as the fault occurrence 

time if the number of fault data points measured as faults 

is equal to or greater than k 

4. Considering the fault data points as outliers if the number 

of fault data points measured as faults is less than k 

5. Moving the fault diagnosis data size sequentially by one 

each time the next data point comes in, and performing 

steps ② to ④ 

By applying this method, the accuracy of fault diagnosis can 

be improved. 

 

 

Figure 17. Improving Fault Diagnosis Model Accuracy. 

3. CONCLUSION 

In this study, we examined the e-Latch system, which is 

considered a key technology for seizing the future mobility 

paradigm and one of the most urgent technologies. We 

explored methodologies for developing this system and 

internalizing the technological capabilities necessary for its 

development, as well as for developing PHM (Prognostics 

and Health Management) technology to predict the failure 

and remaining useful lifecycle (RUL) of closure systems such 

as e-Latch, which are essential for mobility electrification. 

Through this research, we obtained the following results: ① 

Securing competitiveness in terms of technology and 

cost/weight aspects through the development of our unique e-

Latch mechanism; ②  Technological leadership through 

patent acquisition; ③ Establishment of methodologies for 

developing PHM models based on evaluation data for parts 

(e.g., e-Latch) using vehicles, and methods for predicting 

remaining useful life; ④ Confirmation of initial performance 

prediction through the development of structure/tolerance-

reflected e-Latch 1D simulations; ⑤ Development of fault 

diagnosis models reflecting performance degradation 

conditions and acquisition of expertise; ⑥ Establishment of 

robust fault diagnosis models through the application of the 

'k out of N rule' to be resilient to outliers; ⑦ Development of 

big data preprocessing and major feature selection 

methodologies. The content presented in this paper has 

significant advantages from the perspective of customers, 

enabling the acquisition of future-oriented technological 

capabilities in terms of technology and design aspects 

necessary for closure components in the era of autonomous 

driving. By proactively securing technology that is not yet 

scheduled for application by other companies, we can 

enhance brand image and seize the future technology market. 

In particular, having proprietary e-Latch technology enables 

the development of standardized e-Latch components 

centered on our existing patents, leading to increased product 

competitiveness and cost savings. Furthermore, since PHM 

technology was developed without the need for additional 

fault measurement sensors, but only using the voltage/current 

of the motor and the timing of switch signals, there is no 

additional cost associated with applying new technology, 

thus expecting considerable enhancement in product 

competitiveness. Additionally, it is easy to apply the PHM 

model to other closure components using motors, allowing 

for horizontal expansion in various directions in the future. 
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For these reasons, it is necessary to expand the application of 

such design methodologies to entire vehicle systems in order 

to respond to the rapidly changing automotive competition 

environment. 
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