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ABSTRACT

Statistical analysis of electrochemical impedance spec-
troscopy data provides a systematic way of detecting changes
in electrochemical energy systems. Applying concepts of
divergence measures directly on electrochemical impedance
spectroscopy data, one can reliably detect and quantify
statistically significant changes. The result is a set of high-
lighted frequency bands where the measured impedance
characteristics differ statistically significantly from a ref-
erence curve. The approach is evaluated on a solid-oxide
electrolyser cell operated under different conditions and
proves to be sensitive to even the smallest changes. The
complete numerical implementation and corresponding
experimental data are available as supplementary mate-
rial at https://portal.ijs.si/nextcloud/s/
xTa2cmtfxXn2jSz.

1. INTRODUCTION

In characterizing and online monitoring of electrochemi-
cal energy systems, electrochemical impedance spectroscopy
(EIS) is the primary source of information (Yang et al., 2020).
However, direct analysis of impedance curves for detect-
ing small changes is often challenging. Consequently, vari-
ous post-processing techniques have been developed, for in-
stance, distribution of relaxation times (DRT) and equivalent
circuit model (ECM). As a result, the changes of the EIS
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curves are quantified through changes in the model param-
eters. Despite the effectiveness of these approaches, a logical
question arises: Can the analysis of impedance data be per-
formed in a more direct approach without introducing addi-
tional models?

There are two main challenges with the current approaches
for analyzing EIS curves. The first is the limited number
of measured data points. EIS is typically performed using
(multi-)sine excitation that results in no more than a dozen
points per decade. With such a low cardinality data set, any
task of model fitting almost always becomes ill-posed, i.e.,
the number of the model parameters is comparable to the
size of the data set. This is usually resolved by introducing
regularisation parameters (Papurello, Menichini, & Lanzini,
2017; Wan, Saccoccio, Chen, & Ciucci, 2015; Effat & Ciucci,
2017).

The second challenge is that electrochemical energy sys-
tems belong to a particular group of linear systems called
fractional-order systems (Sadli et al., 2010). These linear sys-
tems include a concept of non-integer derivation order, hence
the name. The biggest challenge when performing identifica-
tion of such systems is the still-open issue of structural iden-
tification, i.e., determining the most suitable model based on
the available information in the acquired signals. In the con-
text of integer-order linear systems, structural identification
determines the number of poles of the system or, in terms
of ECM, the number of RC elements (Overschee & Moor,
1993). For fractional-order systems, in addition to the num-
ber of poles, one also needs the power of the pole, i.e., the
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fractional order α ∈ R+ (Lasia, 2014; Monje, Chen, Vinagre,
Xue, & Feliu-Batlle, 2010). In a lack of a proper approach,
there is the pressing issue of determining the most suitable
structure of an ECM for the system at hand (Ciucci, 2019).
This is the main reason why DRT analysis has gained a lot of
traction in the field of fuel cells (Liu & Ciucci, 2020; Effat &
Ciucci, 2017; Kobayashi & Suzuki, 2018; Fadaei & Moham-
madi, 2015; Subotić et al., 2020).

What is proposed here is a non-parametric approach to ana-
lyzing EIS data. The key idea is to track the changes in the
statistical properties of impedance at each frequency to a ref-
erence one. The concept of statistical analysis of impedance
data is a recent one (Boškoski, Debenjak, & Boshkoska,
2017; Stepančič, Juričić, & Boškoski, 2019). However, what
is proposed here goes one step further. By using the con-
cept of statistical divergence, it becomes possible not only to
detect the frequency bands where the impedance change is
statistically significant but also to quantify that change.

The proposed approach involves three steps: impedance
calculation through continuous wavelet transform
(CWT) (Boškoski et al., 2017), estimation of the proba-
bility density of impedance at a desired set of frequencies,
and applying divergence measures to a reference measure-
ment to quantify the change of the impedance values. This
is an entirely new way of analyzing impedance data. There-
fore, each step in the data analysis is described in a separate
section for proper presentation. Section 2 presents the basic
concepts of statistical divergence. Section 3 describes the
signal processing step required to obtain impedance data in
such a form so that the divergence concept becomes applica-
ble. Finally, Sections 4 and 5 contain the experimental setup
and complete results obtained by characterizing solid-oxide
electrolyser cell (SOEC) under various operating condi-
tions. The complete numerical implementation is available
as supplementary material and is described in Appendix 6.

2. STATISTICAL ANALYSIS

The main goal of analyzing EIS data is to determine the fre-
quencies where the impedance characteristic exhibits signif-
icant changes and to quantify those changes. In the context
of fuel cells, external influences, such as gas flows, fuel com-
positions, and environmental parameters, affect the system’s
dynamics. Furthermore, the inherent diffusion phenomena
are stochastic on the microscale despite having close to deter-
ministic properties on the macroscale. As a result, it becomes
possible to exploit the stochastic nature of electrochemical
energy systems to quantify any significant changes in their
behavior.

Tools for detecting significant changes in the statistics of
stochastic signals are readily available. Most prominent
concepts include hypothesis testing such as Kolmogorov-
Smirnov test, Adam test, and many more (Wasserman, 2006).

The concept of divergence goes one step further and provides
a way of quantifying those changes. The most commonly
used divergences are Kullback-Leibler (KL) divergence and
Rényi divergence (Pardo, 2005). The divergence-based ap-
proaches solve the problem of detecting and quantifying sta-
tistically significant changes in EIS curves.

2.1. Definition of divergence

There are two ways of calculating divergence. The first
method is based on constructing probability density estima-
tions from statistical samples. The second method is based
on constructing histograms.
Definition 2.1. Let S be the space of all probability distribu-
tions with common support (i.e., all distributions in S have
non-zero values on the common support). Divergence is the
function D(·∥·) : S × S → R, such that:

1. D(p∥q) ≥ 0 for all p, q ∈ S,

2. D(p∥q) = 0 ⇔ p = q.

Dual divergence D∗ is defined as D∗(p∥q) = D(q∥p).

Divergence is not necessarily symmetric and unaffected by
triangle inequality, so it cannot be equated with a metric. Sev-
eral different divergences have been defined. Most of them
have beneficial properties for our data analysis (e.g., one di-
vergence is more sensitive to the mean value of the distribu-
tions, and the other divergence is more sensitive to the vari-
ance of the distributions).

There are several variations of divergence definitions:

1. Rény divergence divergence:

Dα(P∥Q) =
1

α− 1
· log

∫
Ω

(
p(x)

)α(
q(x)

)1−α

dx.

(1)
where p and q are probability density functions with sup-
port Ω and α > 0.

2. f-divergence: This is a family of divergences generated
by the function f , such that:

• f is convex on R+,
• f(1) = 0.

The elements of this family are:

Df (p∥q) =
∫
Ω

p(x) · f
(p(x)
q(x)

)
dx, (2)

where p and q are probability density functions with sup-
port Ω.

3. Hellinger distance:

H2(p, q) = 2

∫
Ω

(√
p(x)−

√
q(x)

)2

dx, (3)

where p and q are probability density functions with sup-
port Ω.
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The above formulas are valid for continuous variables. The
formula for discrete variables is analogous.

Rényi divergence is a more general form of the KL diver-
gence. The complete derivation is defined for continuous
variables since the definition of discrete is analogous. Rényi
divergence is not defined in α = 1, but we know its limit in
this point:

Theorem 2.1. Let Dα(P∥Q) be Rényi divergence of distri-
butions P and Q. Then the following applies:

lim
α→1

Dα(P∥Q) =

∫
Ω

p(x) · log
(p(x)
q(x)

)
dx, (4)

where the expression on the right is exactly Kullback-Leibler
divergence of distributions P and Q, i.e.

lim
α→1

Dα(P∥Q) = DKL(P∥Q). (5)

3. EIS WITH STOCHASTIC EXCITATION

To apply divergence measures described in Section 2, one
has to be able to estimate the probability distribution of the
impedance at selected frequencies. Standard EIS approaches
that typically rely on the Fourier transform provide only time
average estimates of the impedance values within the obser-
vation window. Furthermore, such EIS is evaluated on a
discrete frequency set, typically having a dozen points per
decade.

Using fast EIS with stochastic excitation provides an almost
continuous frequency interval (Boškoski et al., 2017). Fur-
thermore, having time-frequency evolution of the impedance
characteristics, it is possible to estimate the probability distri-
butions of the measured impedance at the observed frequen-
cies (Nusev, Juričić, Gaberšček, Moškon, & Boškoski, 2021;
Boškoski & Debenjak, 2014). It is shown that the distribution
of the complex impedance at a particular frequency is:

fZ(z) =
1− |ρ|2

πσ2
uσ

2
i

(
|z|2

σ2
u

+
1

σ2
i

− 2
ρrzr − ρizi

σuσi

)−2

, (6)

where zr and zi are real and imaginary components of the
random variable Z. The location of the fZ(z) mode depends
on the correlation coefficient ρ. From (6), one can also derive
the distributions of the real and imaginary parts.

Any electrochemical system can be safely considered deter-
ministic on a macroscopic scale despite having stochastic
governing mechanisms on a microscopic scale. Therefore, in
the fast EIS approach, the primary source of stochastic prop-
erties stems from the stochastic excitation and the observation
noise. If the excitation signal is the current, this means that
the parameter σi is known a-priori. However, any changes in
the observed system directly affect the observed output volt-
age, i.e., σu, and the complex correlation at a particular fre-
quency ρ. Under such changes, the actual shape of the distri-

bution (6) will change. Therefore, one can detect any changes
in the observed system by simply tracking σu and ρ.

This can be achieved quite efficiently through divergence
measures. Assuming that the system can be safely consid-
ered nominal at a starting point in time, one can quantify
changes in the statistical properties of impedance at a par-
ticular frequency relative to this reference measurement. Al-
though the values of the parameters σu, σi and ρ can be easily
estimated, calculating the KL divergence (5) for two distribu-
tions (6) might be challenging. Consequently, the KL diver-
gence (5) can be empirically estimated from the histograms
of the impedance components.

4. EXPERIMENTAL SETUP

Several SOEC in an industrial size (100 cm2) were employed
for experimental investigations of the proposed divergence
measures. The cells were tested in a ceramic cell housing
to avoid any external influences on the operating cell. Thus,
all the results observed can be correlated directly to the cell
under investigation and its environment.

Ni-mesh was employed to contact the fuel electrode, and plat-
inum was used as a current collector on the air electrode. The
fuel electrode was fed with two different fuel mixtures, con-
taining H2 and H2O, in ratios of 20/80 and 10/90, respec-
tively. The set of operating conditions is shown in Table 1.
The impact of the varying hydrogen and steam quantities on
the electrolysis processes and hydrogen generation was thus
examined. Moreover, the impact of their ratio on performance
degradation was investigated. Next, the operating current was
varied from OCV up to the critical voltage value, defined as
1.35 V. Operating the cell beyond its limit enables a deeper
insight into the electrochemical processes and degradation
mechanisms. Furthermore, the operating temperature was
controlled to be the constant 835◦C in the furnace. During
the experiment, the temperature inside the cell was measured
on altogether 12 points inside the cell (as shown in Figure 1
for one electrode side). In addition, temperature was mea-
sured in the inlet and outlet gas pipes and the furnace. The
analysis of the gas mixture at both electrodes’ inlet and outlet
was continuously performed using gas analyzers.

The polarization curve and electrochemical impedance spec-
troscopy were measured in a galvanostatic mode. The EIS
measurements were carried out by superimposing the discrete
random binary sequence (DRBS) perturbated AC-current to
the DC-current. The amplitude of the AC-current was 4% of
the DC.

4.1. Measurement loop

For EIS, a custom-made voltage-controlled current source
power supply module was used (Petrovčič, Černe, & Dolanc,
2020). The power supply can provide currents up to 100 A
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Figure 1. Position of thermocouples for temperature measurement on the anode (A) and cathode (C).

Table 1. Operating parameters

Label Current Density Fuel Flow H2 H2O Air Flow Temperature
mA/cm2 SLPM % % SLPM ◦C

Condition 1 700 2.125 20 80 2.267 835
Condition 2 700 1.889 10 90 2.267 835
Condition 3 900 2.125 20 80 2.267 810

for voltages up to 5V in the frequency range between 0 and
20kHz (the upper frequency depends on the load impedance
under test). In order to cover the frequency spectrum of inter-
est between 0.1 Hz and 10 kHz 6 different DRBS excitation
signals were used with fB ∈{0.1 Hz, 1 Hz, 10 Hz, 100 Hz,
1 kHz, 10 kHz}. The length of each of the DRBS signals
is 200, 120, 45, 6, 2.3, and 1.3 seconds, respectively. Cur-
rent is measured using CAENels CT-100-V flux-gate current
transducer. The voltage response of the cell under test and
the measured current were sampled differentially using an NI
USB-6216 card, which has a 16-bit ADC. DRBS signals with
fB up to 10 Hz, were sampled with fs=30 kHz. The pertur-
bation with higher fB was sampled with fs=150 kHz.

5. RESULTS

The evaluation of the non-parametric change detection of EIS
curves was evaluated on data acquired on SOEC under vari-
ous operating conditions, as listed Table 1. The operating
parameter changes were chosen to obtain a more detailed in-
sight into the performance SOEC. Each operating condition
listed in Table 1 is analyzed separately. During each section,
all gas flows were kept constant.

For each operating condition, three groups of results are pre-
sented. The first group consists of the time evolution of the
cell’s voltage and 6+6 temperatures measured in two points,
A and B, as shown in Figure 1. The plots show the relative
temperature change over time to the temperature measured
at t = 0 for each operating condition separately. The sec-
ond group includes the time evolution of EIS curves. Since
EIS measurements were performed every 4 hours, there are
at least 15 curves for each operating condition. The initial
and the last EIS curves are marked with red and blue lines,
respectively. The final third group is the results from the pro-

posed KL divergence-based approach, providing information
on the severity of the changes in the EIS curve.

5.1. Operating condition 1

In this condition, the SOEC was operating for 60 hours. The
evolution of the cell voltage and temperatures at anode side
(A) and cathode side (C) (see Figure 1) are shown in Fig-
ure 2a. The periodic EIS measurements are seen as abrupt
scalar value changes. The cell’s voltage and the temperatures
measured at the cathode show a clear decrease trend. The
temperatures on the anode are almost constant.

The impedance evolution is shown in Figure 2b. There are no-
ticeable changes in the low-frequency bands. Also, there are
changes in the serial resistance, although it is smaller. On the
other one could assume that there are no significant changes
in the EIS curves at frequencies above 10 Hz.

The KL divergence results are shown in Figure 2c. It shows a
continuous increase of the divergence in the frequency band
between 0.3 – 2 Hz after approximately 20 hours of operation,
which is in line with the changes in the Nyquist plot. This can
be interpreted as diffusion losses according to (Fang, Blum,
& Menzler, 2015). A similar high degree of divergence is
observable at frequencies between 10 – 40 Hz after approx-
imately 40 hours of operation, whereby the processes at fre-
quencies between 10 – 100 Hz are linked to changes in the air
electrode processes like chemical surface exchange of O2 and
O2

2−-bulk diffusion in air electrode according to (Leonide,
Sonn, Weber, & Ivers-Tiffée, 2008) and (Sonn, Leonide, &
Ivers-Tiffée, 2008). Generally, the changes presented in these
figures could be interpreted as the stabilization of processes
linked to an increasing amount of hydrogen during the initial
operational period.
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Figure 2. Results of operation under condition 1. Group (A) shows the time evolutions of the voltage and relative change
of the temperatures at the anode-A and cathode-C sides. The relative change of the temperatures is calculated based on the
initial measurement at t = 0. The local abrupt changes in the voltage and temperature values occur during the periodic EIS
measurements. Plot (B) shows the evolution of the EIS curves from red to blue. Plot (C) shows the results of KL divergence
evolution over the 60 hours during condition 1. The divergences are calculated to the reference (red) EIS curve. The most
pronounced changes in the EIS are the frequency bands below 1Hz and between 10 and 100Hz.

5.2. Operation with low hydrogen content: Condition 2

For the case with low hydrogen content, the SOEC operated
with 10% hydrogen in the inlet gas mixture. This phase lasted
for 85 hours. As shown in Figure 3, there are no significant
changes in the temperatures at both measurement points. An
apparent initial decrease in the cell’s voltage, particularly dur-
ing the first 40 hours.

The Nyquist plots, shown in the Figure 3b, exhibit a clear
trend from the initial measurement (red color) towards the
end measurement (blue color). At first glance, the EIS curves
exhibit changes throughout the observed frequency band.
However, the most clear change in the serial resistance is vis-
ible as a slight decay of the cell’s voltage.

Figure 3b shows an apparent change of the impedance in
the frequency range between 10 Hz - 4 kHz. Initially, after
40 hours of operation, the most intensive changes are in the
frequency band between 200 – 800 Hz. After 70 hours of
operation, a similar divergence change occurs at frequencies
between 800 Hz – 4 kHz. Only slightly higher divergence val-
ues are observable in the frequency range between 10 – 200
Hz. These changes can be linked to the shift of the impedance
curve towards lower ohmic resistances from 49.5 to 48.5 mΩ
and the behavior of the cell voltage, which mainly remained
constant during the initial 20 hours but started to decrease

from 1.32 to 1.31 V during ongoing operation. Generally, this
can be interpreted as a new equilibrium slowly being achieved
after the change in the inlet gas composition.

Additionally, Figure 3c shows increased impedance values
scattered at frequencies < 1 Hz. These changes are also visi-
ble in the Nyquist diagram, whereby the low-frequency arc
presents an unstable behavior. According to (Fang et al.,
2015; Leonide et al., 2008; Sonn et al., 2008), this could be
linked to changes in the diffusion losses, resulting from sur-
plus H2O which could still be present within the system from
the previous experiment.

5.3. Operation under high current densities: Condition 3

The last operating condition includes a test under high current
densities of 900 mA/cm2. Under such a condition, the SOEC
exhibits unstable fluctuations. As shown in Figure 4a, the cell
voltage fluctuates between 1.45 and 1.46 V. Similar variations
can be observed in the cell temperatures at both measurement
points.

Unlike the previous two cases when EIS curves exhibit clear
time evolution, the EIS curves from these operating condi-
tions fluctuate over time. This is shown in Figure 4b. In
high-frequency regions, it seems that there is no change be-
tween the initial and the last EIS curves. Furthermore, there
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Figure 3. Results of operation under condition 2. Group (A) shows the time evolutions of the voltage and relative change
of the temperatures at the anode-A and cathode-C sides. The relative change of the temperatures is calculated based on the
initial measurement at t = 0. The local abrupt changes in the voltage and temperature values occur during the periodic EIS
measurements. Plot (B) shows the evolution of the EIS curves from red to blue. Plot (C) shows the results of KL divergence
evolution over the 85 hours during condition 2. The divergences are calculated to the reference (red) EIS curve. The most
pronounced EIS changes are in the frequency band between 100 and 2000Hz.

is an apparent variation in the low-frequency region. Under
this operating condition, the spectra are noisier than in the
previous results. This could also be interpreted as operation
instabilities occurring when applying high current densities
resulting from the increasing effect of ionic and electronic
conduction, activation, and diffusion resistances on the per-
formance (Riedel, Heddrich, & Friedrich, 2019).

When observing the KL results shown in Figure 4c, the fluc-
tuations in the impedance values become more evident. The
divergence plot shows pulsating intensity changes at frequen-
cies between 10 and 40 Hz. These changes were identified to
be the result of inconsistent steam supply due to pump mal-
functioning. This example presents an additional application
of this representation since an error source can be detected
easily at an early stage, and appropriate countermeasures can
be taken to restore the system’s normal operation.

5.4. Comparison with distribution of relaxation times
and equivalent circuit model

For validation purposes, the results are compared with estab-
lished tools for analysis of EIS data: DRT and estimation of
ECM. Each of the EIS curves from the above cases was ana-
lyzed using the DRT tools by (Wan et al., 2015).

When using the Gaussian kernel, the DRT algorithm requires

two parameters: the regularisation λ and the shape factor C.
For these choices, the optimal values were found as λ = 10−5

and C = 3 (Maradesa, Py, Wan, Effat, & Ciucci, 2023). With
these values, the lowest frequency band decade is not visible
in the DRT plots. Consequently, the results below 1 Hz can
not be directly compared.

The ECM had four RQ elements, i.e., a parallel connection of
a resistor and a constant phase element. The transfer function
reads as follows:

Z(jω) = Rs +

4∑
i=1

Ri

1 + (jω)αRiQi
. (7)

Four poles were selected based on the number of visible peaks
in the DRT. After the parameter fitting, it was visible that the
most prominent changes were in the values of parameters Qi.
Consequently, only the time evolution of these parameters is
shown in the graphs below.

Condition 1 According to results shown in Figure 2, the
most prominent changes occur after the 20th hour of opera-
tion. These changes are visible in the lowest DRT peak evo-
lution shown in Figure 5a as well as the evolution of the pa-
rameter Q4 shown with green color in Figure 5b.
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Figure 4. Results of operation under condition 3. Group (A) shows the time evolutions of the voltage and relative change
of the temperatures at the anode-A and cathode-C sides. The relative change of the temperatures is calculated based on the
initial measurement at t = 0. The local abrupt changes in the voltage and temperature values occur during the periodic EIS
measurements. Plot (B) shows the evolution of the EIS curves from red to blue. Plot (C) shows the results of KL divergence
evolution over the 120 hours during condition 3. The divergences are calculated to the reference (red) EIS curve. Periodic
changes in the divergence values around 20Hz are due to malfunctioning steam generation.
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Figure 5. Condition 1

Condition 2 Under low hydrogen content, according to
Figure 3, the most prominent changes are visible after the
20th hour of operation in the frequency band above 100 Hz.
Similar changes are visible in the second peak of the DRT in
Figure 6a as well as three Qi parameters in Figure 6b.

Condition 3 The case of high current densities is the most
complicated. The EIS analysis in Figure 4 shows repetitive
changes in the EIS curves occurring in the frequency band
above 20 Hz. These intervals are visible in the changes of the
first two DRT peaks in Figure 7a. Similar repetitive behavior
is visible in two Qi parameters shown in Figure 7b.

Discussion on the comparison The analysis performed us-
ing DRT and ECM leads to the same conclusions as the pro-
posed approach. Two main differences have to be pointed out.
Both DRT and ECM undergo an optimization process and se-
lection of hyperparameters. The results of (Maradesa et al.,
2023) and (Boškoski, Žnidarič, Gradišar, & Subotić, 2024)
provide directions for the optimal selection of required hyper-
parameters, but their influence is still profound. Furthermore,
there is the issue of quantifying the changes in DRT plots
and ECM parameters. Conversely, the proposed divergence
approach directly provides areas with statistically significant
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Figure 7. Condition 3

changes, and the calculation does not rely on hyperparame-
ter selection or optimization. As a result, the computational
complexity is significantly lower.

6. CONCLUSION

The proposed approach resolves two main issues regarding
EIS measurement: detection of frequency intervals where
the change occurred and, more importantly, quantifying this
change. This is achieved without assuming any impedance
models (such as equivalent circuit models), which can be
quite challenging for electrochemical systems in general. As
a result, the analysis can be performed without any visual in-
spection of the EIS curves, i.e., it can be fully automated.

This has several practical implications. The numerical imple-
mentation of the KL divergence can be done efficiently, thus
lowering the computational load. Calculating the fast EIS ap-
proach has the same complexity as performing multiple FFTs.
Finally, the detection threshold can be easily determined em-
pirically since it depends only on the sample size (duration
of the excitation signal). All these properties show the poten-
tial of the proposed approach both for laboratory and, more
importantly, for online real-world applications.
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SUPPLEMENTARY MATERIAL: NUMERICAL IMPLEMEN-
TATION

The numerical implementation of the presented method is
available at https://portal.ijs.si/nextcloud/
s / xTa2cmtfxXn2jSz. The main implementa-
tion is presented with Python Jupyter notebook
KL_GPU.ipynb. The above repository contains the re-
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quired supplementary Python scripts. The data sets
are stored as NumPy files. The complete data set is

approximately 2 GB. Pre-processed data are stored as
all_KL_hist.npz.
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