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ABSTRACT

In modern industrial and engineering systems, stochastic
degradation models are widely used for reliability analysis
and maintenance decision-making. However, due to imper-
fect sensors and environmental influences, it is difficult to
directly observe the latent degradation states. Traditional
degradation models typically assume that measurement er-
rors have simple statistical properties, but this assumption
often does not hold in practical applications. To address
this issue, this paper constructs a degradation model based
on the Gamma process (GP) and assumes that measure-
ment noise can be characterized by the fractional Gaussian
noise (FGN). Furthermore, this paper proposes a method
combining Gibbs sampling with the stochastic expectation-
maximization (SEM) algorithm to achieve efficient estima-
tion of the model parameters and accurate inference of the
latent degradation states. Simulation results demonstrate that
the proposed model, validated solely through numerical sim-
ulations, exhibits improved generalizability compared to the
GP model with Gaussian noise.

1. INTRODUCTION

Prognostics and health management (PHM) aims to utilize
data analysis and monitoring techniques to predict the degra-
dation of system components or equipment, and to implement
appropriate maintenance measures to ensure their reliability
and safety (Gebraeel et al., 2023; Xi et al., 2018). In recent
years, this technology has gained widespread attention be-
cause it not only reduces maintenance costs but also improves
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system reliability (Liu et al., 2023). The collected data for
predicting the future degradation behavior is typically clas-
sified into two categories: (1) event data and (2) condition
monitoring (CM) data. However, collecting sufficient event
data can be costly, and in addition, some systems rarely expe-
rience failure events (Hong et al., 2022). With the continuous
improvement of data preprocessing techniques, CM data can
help analyze the health status and performance degradation
of systems (Xi et al., 2020). Simultaneously, the degradation
state is typically represented by CM data.

In practical applications, systems often involve various uncer-
tain factors both in their internal characteristics and external
environment. In the presence of such uncertainty, stochas-
tic processes demonstrate significant advantages. In the se-
lection of degradation models, the GP is commonly used to
model systems with monotonic increments of degradation.
For example, the GP has been applied to model the degra-
dation of rolling element bearings, assessing the approxi-
mate failure time distribution when crack size exceeds a cer-
tain threshold (Wang et al., 2021). Additionally, accelerated
degradation tests have been proposed to efficiently obtain re-
liable degradation information for light-emitting diodes (Ling
et al., 2014). To address different failure mechanisms, a GP-
based method has been developed for extrapolating failure
times in high-reliability products (Li et al., 2022). The afore-
mentioned studies obtained the failure time distribution at a
given threshold through approximate methods, and interested
readers can refer to review articles for more details (Li et al.,
2024).

It is noteworthy that degradation measurements are often in-
fluenced by sensor accuracy and external environmental inter-
ference, resulting in the true degradation state being obscured
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by the measurement noise. Complicated measurement noises
can hide the monotonic nature of the GP-based degradation
processes, posing challenges for data analysis and model pre-
diction. Therefore, modeling the observation results is nec-
essary. For instance, a GP model with measurement noise
interference has been used to estimate the hidden degradation
state, employing Gibbs sampling for the estimation process
(Le Son et al., 2016). Additionally, methods like particle fil-
tering have been utilized to estimate latent degradation states
in stochastic systems with uncertain degradation paths (Si et
al., 2019). Furthermore, the significance of sensor degrada-
tion has been emphasized in the context of predicting system
health status and making informed decisions (Mukhopadhyay
et al., 2023). However, these studies assumed that the mea-
surement noise follows a simple Gaussian distribution, which
may limit the model applicability in practice. ?? depicts the
temperature changes caused by the reduction in furnace wall
thickness, based on temperature increment data from the 6th
layer of a certain blast furnace. Based on the general increas-
ing trend presented by the blast furnace wall temperature in
??, GP can be considered as a suitable degradation process.
However, due to the existence of non-monotonic fluctuation
phenomena, further processing is required to comply with the
GP model. In such cases, it is expected that a more gener-
alised noise model would be more appropriate to describe the
complex measurement noise.

In this paper, we introduce a novel degradation modeling
method. Unlike traditional models that assume Gaussian
noise, we incorporate FGN to represent measurement noise.
Although this model introduces more parameters, it offers
better estimation performance and robustness. Addition-
ally, we combine the SEM approach with the Gibbs sampler
and the Metropolis-Hastings (MH) algorithm in the Markov
Chain Monte Carlo (MCMC) method to achieve higher effi-
ciency in parameter estimation and model fitting for complex
models.

The remainder of this paper is organized as follows. Section 2
introduces the degradation model based on GP and FGN. Sec-
tion 3 details the degradation state estimation methods and the
parameter identification algorithm. Section 4 provides and
discusses the numerical simulation results to demonstrate the
effectiveness of the proposed methods. Conclusions and fu-
ture work are presented in section 5.

2. GP-BASED DEGRADATION MODEL

Suppose that the actual degradation of a system can be repre-
sented by the non-homogeneous gamma process {X(t), t≥0}
with a scale parameter ς and a shape parameter ν(t). Here,
ν(t) is a non-decreasing, right-continuous, real-valued func-
tion for t ≥ 0 with ν(0)≡ 0. Empirical studies provide evi-
dence that the shape parameter at a given time point, denoted
as t, frequently exhibits a proportional relationship with a

power law form, expressed as ν(t)= atb (Le Son et al., 2016).
Here, a > 0 represents a constant coefficient, while b denotes
a constant exponent that is obtained through data analysis.
According to the properties of the gamma process, the degra-
dation model exhibits two fundamental characteristics

1. For any time instants 0 < t1 < .. . < tn, the health state
increments, i.e., ∆x1,∆x2, . . . ,∆xn, are mutually indepen-
dent random variables, where ∆x j = x(t j)− x(t j−1), for
all t j > t j−1 ≥ 0.

2. Given any time intervals [t j−1, t j], the corresponding in-
crement ∆x j follows a gamma distribution with the mean
∆ν jς and the variance ∆ν jς

2, where ∆ν j = ν(t j) −
ν(t j−1).

The degradation state X(t)∼Ga(x;ν(t),ς) with probability
density function is given by

fX (x;ν ,ς)=
xν(t)−1

ςν(t)Γ(ν(t))
exp

(
− x

ς

)
I[0,+∞](x) (1)

where Γ(τ) =
∫

∞

0 zτ−1e−z dz is the Euler gamma function,
I[0,∞](x) = 1 for x∈ [0,∞], and I[0,∞](x) = 0 otherwise. It is as-
sumed that the degradation level is obscured within noisy ob-
servations, rendering it unobservable directly. Let Yj = Y (t j)
denote the observation at monitoring time t j, the measure-
ment model can be expressed as

Yj = X j +ω j (2)

where ω j represents the measurement error, independent of
X j. Assuming that ω j follows FGN(Coeurjolly, 2000), which
can be defined as

ω j = σH(BH(t j)−BH(t j−1)) (3)

where BH(·) represents standard fractional Brownian motion
(FBM), H is the Hurst exponent, with 0 < H < 1, and σH is
the diffusion coefficient. According to the past literature (Sot-
tinen, 2001), BH(t) can be expressed in the following kernel
integral form

BH(t) =
∫ t

0
ZH(t,s)dB(s) (4)

where B(·) represents standard Brownian motion (BM),
ZH(t,s) is an explicitly square-integrable kernel given by

ZH(t,s) = c(H −0.5)s(0.5−H)
∫ t

0
(u− s)(H−1.5)u(H−0.5) du

(5)
with a normalization coefficient c expressed as

c =

√
H(2H −1)∫ 1

0 (1− ε)(1−2H)ε(H−1.5) dε
(6)

According to the previous research (Zhang et al., 2017), as the
time interval τ → 0, and H > 0.5, FBM can weakly converge
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to the following form.

BH(t) = lim
τ→0

⌊ t
τ ⌋
∑
i=1

1√
τ

[∫ ⌊ t
τ ⌋τ

⌊ t
τ
−1⌋τ

ZH

(⌊ t
τ

⌋
τ,s

)
ds

]
ξi (7)

where
⌊ t

τ

⌋
denotes the greatest integer less than or equal to

t
τ

, ξi are independent identically distributed random variables
with E(ξi) = 0 and Var(ξi) = 1.

According to Eqs. (3) and (7), ω j can be reconstructed as
follows.

ω j =σH lim
τ→0

⌊ t j−t j−1
τ

⌋
∑
i=1

1√
τ

[∫ ⌊ t j−t j−1
τ

⌋
τ

(
⌊ t j−t j−1

τ

⌋
−1)τ

ZH

(⌊ t
τ

⌋
τ,s

)
ds

]
ξi

(8)

According to Eq. (8), the measurement noise ω j can be ap-
proximately represented by BM. The next section will intro-
duce the methods for parameter identification and degrada-
tion state estimation based on the SEM algorithm and the
Gibbs sampler.

3. DEGRADATION MODEL IDENTIFICATION

To effectively identify degradation model parameters, it is
necessary to estimate the latent degradation states. Let θθθ =
(a,b,ς ,H,σH), the conditional density function of the la-
tent states XXX = (X1,X2, . . . ,Xn) given the observations YYY =
(Y1,Y2, . . . ,Yn) and the parameters θθθ is defined as

P(x1, ...,xn|YYY ,θθθ) =
P(x1, ...,xn,y1, ...,yn)∫

...
∫

P(x1, ...,xn,y1, ...,yn)dx1...dxn
(9)

where (x1, ...,xn) and (y1, ...,yn) represent the realizations of
XXX and YYY . According to Eqs. (1), (2), and (8), the derivation
of the joint probability density P(x1, ...,xn,y1, ...,yn) is as fol-
lows.

P(x1, . . . ,xn,y1, . . . ,yn) = K exp(−xn

ς
)

×
n

∏
j=1

(x j − x j−1)
[a(tb

j −tb
j−1)−1] exp

[
−
(y j − x j)

2

2σ2
j

] (10)

where K is a normalization constant that enables
P(x1, . . . ,xn,y1, . . . ,yn) to be a density function, and σ j,
j = 1, . . . ,n is defined as follows

σ j = σH lim
τ→0

⌊ t j−t j−1
τ

⌋
∑
i=1

1√
τ

[∫ ⌊ t j−t j−1
τ

⌋
τ(⌊ t j−t j−1

τ

⌋
−1

)
τ

c(H −0.5)s(0.5−H)

×
∫ iτ

(i−1)τ
(u− s)(H−1.5)u(H−0.5) duds

]
(11)

However, due to the involvement of a large number of in-
tegrals, calculating Eq. (9) becomes quite challenging, and

even difficult to implement. To avoid computing complex
distributions in the high-dimensional space, the Gibbs sam-
pler algorithm is proposed to estimate P(x1, ...,xn|YYY ,θθθ).

Therefore, given the other x̄xx j of XXX , where x̄xx j =
(x1, . . . ,x j−1,x j+1, . . . ,xn), the marginal conditional den-
sity function for each x j can be obtained based on Eq. (10).
Specifically, for 1 ≤ j ≤ n−1, we have

P(x j|x1, ...,x j−1,x j+1, ...,xn,YYY ) = ϒ1, j

× (x j − x j−1)
[a(tb

j −tb
j−1)−1](x j+1 − x j)

[a(tb
j+1−tb

j )−1]

× exp

[
−
(y j − x j)

2

2σ2
j

] (12)

where ϒ1, j is a normalization constant, and x0 = 0.

for j = n,

P(xn|x1, ...,xn−1,YYY ) = ϒ1,n exp(−xn

ς
)

× (xn − xn−1)
[a(tb

n−tb
n−1)−1] exp

[
− (yn − xn)

2

2σ2
n

] (13)

Based on Eqs. (12) and (13), the degradation state estimation
can be performed by Gibbs sampler, which is implemented as
algorithm 1.

Algorithm 1 Gibbs sampler for the GP-based degradation
model

Initialization: Give the initial parameters θθθ 0 and the
degradation states XXX (0) = (xxx(0)1 , . . . ,xxx(0)n ).

1: for s ∈ 1, . . . ,S do
2: if j = 1 then
3: Generate the value x(s)1 of xxx(s)1 following the

marginal distribution of x1:

P(x1|x(s−1)
2 , ...,x(s−1)

n )

4: else if 2 ⩽ j ⩽ n−1 then
5: Generate the value x(s)j of xxx(s)j following the

marginal distribution of x j:

P(x j|x(s)1 , ...,x(s)j−1,x
(s−1)
j+1 , ...,x(s−1)

n )

6: else
7: Generate the value x(s)n of xxx(s)n following the

marginal distribution of xn:

P(xn|x(s)1 , ...,x(s)n−1)

8: end if
9: end for

The number of iterations S for the Gibbs sampler should be
sufficiently large to obtain the well-approximated value of
(x1, . . . ,xn).
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However, the marginal distribution Eqs. (12) and (13) are not
known distribution functions, and generating random vari-
ables based on these distribution functions is not a simple
task. In view of this, the MH algorithm is used to gener-
ate random variables (Pang et al., 2021). By combining the
MH algorithm, it is possible to enhance the robustness of the
sampling method through the design of appropriate proposal
distributions and acceptance criteria, making it adaptable to
different types of models and data distributions.

Due to the presence of latent variables and random effects
in the model, this study employs the SEM algorithm to ob-
tain the estimates of unknown model parameters. Assuming
there are I devices, given the latent degradation states XXX i,1:ni ,
and the observations YYY i,1:ni , i= 1, . . . , I. Since the degradation
process and the measurement noise are mutually independent,
the expectation of the log-likelihood function can be decom-
posed into two parts as

E[log(L(θθθ))]≃ E[log(
I

∏
i=1

{ f (YYY i,1:ni ,XXX i,1:ni |θθθ)})]

= E[log(
I

∏
i=1

{ f (YYY i,1:ni |XXX i,1:ni ,θθθ 222) · f (XXX i,1:ni |θθθ 111)})]

= E[log(
I

∏
i=1

{ f (YYY i,1:ni |YYY i,1:ni ,θθθ 222)})]

+E[log(
I

∏
i=1

{ f (XXX i,1:ni |θθθ 111)})]

(14)

where θθθ 1 = {a,b,ς}, and θθθ 2 = {σH ,H}.

For {XXX} in Eq. (14), it can be obtained by using the Gibbs
sampler. In detail,

E[log(
I

∏
i=1

{ f (XXX i,1:ni |θθθ 111)})] =
I

∑
i=1

E[log({ f (XXX i,1:ni |θθθ 111)})]

=
I

∑
i=1

ni

∑
j=1

{(−a(tb
i, j − tb

i, j−1)lnς)− ln(Γ(a(tb
i, j − tb

i, j−1)))

−E(xi, j − xi, j−1)/ς +(a(tb
i, j − tb

i, j−1)−1)ln(E(xi, j − xi, j−1))}
(15)

According to Eqs. (2) and (8), the other part can be formu-
lated as follows

E[log(
I

∏
i=1

{ f (YYY i,1:ni |XXX i,1:ni ,θθθ 222)})]

=
I

∑
i=1

E[log({ f (YYY i,1:ni |XXX i,1:ni ,θθθ 222)})]

=
I

∑
i=1

ni

∑
j=1

{−1
2
(ln(2π)+2ln(σ j))−

[(yi, j −E(xi, j))]
2

2σ2
j

}

(16)
The Nelder-Mead algorithm is then applied to maximize the
log-likelihood functions. The model parameters are estimated

and updated with each iteration of the Gibbs sampler until
convergence is achieved.

4. SIMULATION

In the simulation study, a non-homogeneous GP model with a
shape parameter following a power-law is established to sim-
ulate the hidden degradation states. Measurement noise is
modeled using FGN, and Coeurjolly (Coeurjolly, 2000) in-
troduced methods for generating FGN random variables. The
parameter settings for the above model are shown in Table 1.
Figure 1 displays a set of simulated paths. In order to evalu-

Table 1. Model parameters for the simulation study

Parameter a b ς H σH

Value 0.5 1.1 1 0.7 20
The sampling interval is set to 1, and the total time is 100.

ate the model performance, one curve was randomly selected
as a test set and the remaining four curves were used as a
training set. For comparison purposes, this paper employs

Figure 1. The simulation data

two models for parameter estimation and degradation state
estimation: the model proposed in this article (referred to as
M1) and the GP model with Gaussian noise, as used in the
previous study (Le Son et al., 2016) (referred to as M2). In
all experiments, the first 200 iterations are considered as the
burn-in phase, and the samples from the subsequent 600 iter-
ations are retained for analysis. Note that the burn-in phase
allows the Markov chain to move from the initial state to the
high-probability regions of the target distribution, reducing
the influence of the initial state on the final samples. Ta-
ble 2 presents the parameter estimation results for M1 and M2.
Table 2 summarizes the average and root mean square error
(RMSE) of parameter estimation in the degradation model.
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Table 2. The estimation results of model parameters

M1 M2

a b ς σH H AIC a b ς σ AIC

Mean 0.4911 1.0909 0.9129 21.6436 0.7326 22.7986 0.6327 1.0544 0.9706 28.5285 61.5423
RMSE 0.0312 0.0232 0.1133 2.5437 0.4163 − 0.1161 0.0869 0.4664 4.3141 −

From the table, it is evident that although there are discrep-
ancies between the estimated values and the true values, M1
demonstrates a certain advantage in parameter identification
accuracy. Regarding RMSE, the FGN assumption notably
outperforms the Gaussian noise assumption. Therefore, M1
exhibits greater versatility in handling complex noise scenar-
ios.

Figure 2 illustrates the estimated degradation states of M1 and
M2. In Figure 2 (a), the estimated degradation state of M1
aligns closely with the actual degradation trajectory. In con-
trast, Figure 2 (b) shows a significant discrepancy between
the estimated degradation state of M2 and the actual degrada-
tion trajectory, despite the parameter estimation having con-
verged. Since Gaussian noise is a special case of FGN when
H = 0.5, FGN demonstrates greater robustness in constructing
state-space models.

To further illustrate the superiority of M1, this study compares
the mean squared error (MSE) of M1 and M2. The MSE for
M1 is 0.1206, whereas for M2 is 0.8152. This comparison of
MSE values further corroborates the conclusions drawn from
Figure 2.

5. CONCLUSION

This paper presents a novel degradation model based on GP
influenced by FGN. Unlike existing Gaussian noise based
models, the proposed model uses the Hurst exponent to char-
acterise non-Markovian forms of noise, which enhances the
modeling flexibility. For model identification, the proposed
method employs the Gibbs sampler in combination with the
SEM algorithm for parameter estimation and updating, and
the MH algorithm for degradation state estimation and up-
dating. Numerical studies show a superior estimation accu-
racy of the parameters and the latent degradation states. The
proposed degradation model is more robust in dealing with
non-Markovian measurement noises.

In future research, it would be valuable to apply this model
to specific real-world systems, such as blast furnaces, power
grid, and high-speed trains, and carry out example valida-
tions. Other degradation processes, such as the Wiener pro-
cess, can also be improved by integrating FGN. In addition,
the Gaussian noise environments can be effectively extended

to non-Gaussian noise scenarios for estimating the remaining
useful life of complex equipment.
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