

A Gamma Process Based Degradation Model with Fractional Gaussian Noise

Xiangyu Wang¹ , Xiaopeng Xi² , and Marcos E. Orchard³

¹College of Electrical Engineering and Automation, Shandong University of Science and Technology ²Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María ³Department of Electrical Engineering, University of Chile

PHM Conference 11 Nov. 2024

Overview

1) Introduction

- **2) Motivation**
- **3) Methodology**
- **4) Case Study**
- **5) Results**
- **6) Conclusions**

Introduction

Introduction

Aerospace

Energy

The **safety** and **reliability requirements** of modern equipment are **rising**, and the **cost** of management and maintenance is **increasing**.

Transportation

Industry

Introduction

Introduction

High speed rail accident

Power outage

Drilling platform explosion

Operational safety is crucial, and remaining useful life prediction is its key technology

Wang et al., 2024 PHM Conference 11 Nov. 2024 4

Introduction

Introduction

Factors Affecting Equipment Remaining Life Prediction

Eliminating **noises** interference and extracting the potential state of equipment are key challenges in RUL prediction.

Wang et al., 2024 PHM Conference 11 Nov. 2024 5

Overview

1) Introduction

2) Motivation

- **3) Methodology**
- **4) Case Study**
- **5) Results**

6) Conclusions

Long-range dependence

- **Long-range dependence** refers to a statistical property of a time series or stochastic process where the correlations between observations decay more slowly than the exponential rate typical in short-range dependent processes.
- The **Hurst exponent (H)** is a statistical measure used to characterize the long-term memory or dependence of time series data.

Motivation

Fractional Gaussian Noise (FGN)

- **Gaussian Noise**: **H** is typically around 0.5, indicating a random walk (no memory).
- **Fractional Gaussian Noise (FGN)**: **H** can vary between 0 and 1. Values less than 0.5 indicate mean-reverting behavior, while values greater than 0.5 indicate persistent trends.
- FGN is more general than Gaussian noise.

Motivation

Purpose of the work

- ➢ By incorporating FGN into the Gamma process degradation model, we can better account for **persistent trends** and **self-similarity** in degradation processes.
- ➢ The use of FGN aims to improve the model's **predictive accuracy** and reliability, particularly in complex systems where Gaussian or white noise assumptions may lead to errors.
- ➢ This innovation provides a more **robust framework** for analyzing and forecasting degradation behavior, benefiting fields such as reliability engineering and maintenance management.
- ➢ The ultimate goal is to offer improved tools for understanding and managing system degradation in **various practical applications**.

- **1) Introduction**
- **2) Motivation**
- **3) Methodology**
- **4) Case Study**
- **5) Results**
- **6) Conclusions**

Proposed methodology

Proposed methods

Phase 1: Degradation modeling

The degradation state $X(t)$ -Ga(x; $v(t)$, ς) with probability density function is given by

$$
f_X(x; v, \zeta) = \frac{x^{\nu(t)-1}}{\zeta^{\nu(t)}\Gamma(\nu(t))} \exp\left(-\frac{x}{\zeta}\right) \mathbb{I}_{[0, +\infty]}(x)
$$

1 where $\Gamma(\tau) = \int_0^{\tau} z^{\tau-1} e^{-z} dz$ is the Euler gamma function, $\mathbb{I}_{[0,\infty]}(x) = 1$ for $x \in [0,\infty]$, and $_{[0,\infty]}$ (x) = 0 otherwise. ∞ $\tau-1$ – $\Gamma(\tau)=\int_0^\infty z^{\tau-1}e^{-z}\,dz$ is the Euler gamma function, $\mathbb{I}_{[\![0,\infty]\!]}(x)=1$ for $x\in [0,\infty]$

Here, $v(t)$ is a non – decreasing, right – continuous, real – valued function for t≥0, with v(0)=0. Empirical studies provide evidence that the shape parameter at a given time point, denoted as t, frequently exhibits a proportional relationship with a power $law form, expressed as $v(t) = at^b$.$

Methodology

Proposed methods

d meth
 $Y_j = Y(t_j)$ can be expressed as **Sed methods**
Let $Y_j = Y(t_j)$ denote the observation at monitoring time t_j , the measurement model **sed methods**
Let $Y_j = Y(t_j)$ denote
can be expressed as =

 $Y_i = X_i + \omega_i$

e expressed as
 $Y_j = X_j + \omega_j$
 ω_j represents the measurement error, independent of X_j . ω_j repr
FGN, *x* $Y_j = X_j + \omega_j$
where ω_j represents the measurement error, independent of X_j . Assuming that ω_j *follows FGN, which can be defined as*
follows FGN, which can be defined as
 $\omega = \sigma (R(t))$ expressed as
 $Y_j = X_j + \omega_j$
 ω_j represents the measurement error, independent of X_j . Assuming that ω_j

 $\omega_j = \sigma_H(B_H(t_j) - B_H(t_{j-1}))$

where $B_{_H}(\cdot)$ represents standard fractional Brownian motion $\big(FBM \big),\, H$ is the Hurst exponent, with $0 < H < 1$, and σ_H is the diffusion coefficient. *According to weak convergence theory,* ω_j *can be reconstructed as*

$$
\omega_j = \sigma_H \lim_{\tau \to 0} \sum_{i=1}^{\left[\frac{t_j - t_{j-1}}{\tau}\right]} \frac{1}{\sqrt{\tau}} \left[\int_{\left[\frac{t_j - t_{j-1}}{\tau}\right] - 1 \right] \tau}^{\left[\frac{t_j - t_{j-1}}{\tau}\right]} Z_H \left(\left[\frac{t}{\tau}\right] \tau, s \right) ds \Bigg] \xi_i
$$
\nwhere $\left[\frac{t}{\tau}\right]$ denotes the greatest integer less than or equal to $\frac{t}{\tau}$, ξ_i are independent identically distributed random variables with $\mathbb{E}(\xi_i) = 0$ and $\text{Var}(\xi_i) = 1$, $\tau \to 0$.

Wang et al., 2024

Proposed methods

Phase 2 : DEGRADATION MODEL IDENTIFICATION

Gibbs sampling with the stochastic expectation-maximization (SEM) algorithm

Initialization:

Give the initial parameters θ_0 and the degradation states $\mathbf{X}^{(0)} = (\mathbf{x}_1^{(0)},...,\mathbf{x}_n^{(0)})$. for $s \in 1, ..., S$ do

if $j = 1$ then

 $\int_{1}^{(s)}$ of $\mathbf{x}_{1}^{(s)}$ en
the value $x_1^{(s)}$ of $\mathbf{x}_1^{(s)}$ following the marginal distribution of x_1 : **s for** $s \in 1,..., S$ **do**
 if $j = 1$ **then**
 Generate the value $x_1^{(s)}$ *of* $\mathbf{x}_1^{(s)}$ *following the marginal distribution of* x_1
 $P(x | x_1^{(s-1)} - x_2^{(s-1)})$ $P(x_1 | x_2^{(s-1)},...,x_n^{(s-1)})$ **s** $P(x_1 | x_2^{(s-1)}, ..., x_n^{(s-1)})$
Generate the value $x_j^{(s)}$ **of** $\mathbf{x}_j^{(s)}$ **following the marginal distribution of** x_j

else if $2≤j≤n-1$ **then**

 $\le j \le n-1$ then
the value $x_j^{(s)}$ of $\mathbf{x}_j^{(s)}$ following the marginal distribution of x_j :

$$
P(x_j | x_1^{(s)},..., x_{j-1}^{(s)}, x_{j+1}^{(s-1)},..., x_n^{(s-1)})
$$

Proposed methodology

else

Generate the value $x_n^{(s)}$ of $\mathbf{x}_n^{(s)}$ following the marginal distributionof x_n : $P(x_n | x_1^{(s)},...,x_{n-1}^{(s)})$

end if

end for

Assuming there are I devices, given the latent degradation states $\mathbf{X}_{i,1:n_i}$, and the observations $Y_{i,1:n_i}$, $i = 1,..., I$. *The number of iterations S for the Gibbs sampler should be sufficiently large.* **Methodology**

Proposed methods

The expectation of the log-likelihood function can be decomposed into two parts as

E-Step:
\nThe expectation of the log-likelihood function can be decomposed into
\ntwo parts as
\n
$$
\mathbb{E}[\log(L(\theta))] \approx \mathbb{E}[\log(\prod_{i=1}^{r} \{f(Y_{i,1:n_i}, \mathbf{X}_{i,1:n_i} | \theta)\})]
$$
\n
$$
= \mathbb{E}[\log(\prod_{i=1}^{r} \{f(Y_{i,1:n_i} | \mathbf{X}_{i,1:n_i}, \theta_2) \cdot f(\mathbf{X}_{i,1:n_i} | \theta_1)\})]
$$
\n
$$
= \mathbb{E}[\log(\prod_{i=1}^{r} \{f(Y_{i,1:n_i} | \mathbf{Y}_{i,1:n_i}, \theta_2)\})]
$$
\n
$$
+ \mathbb{E}[\log(\prod_{i=1}^{r} \{f(\mathbf{X}_{i,1:n_i} | \theta_1)\})] \quad where \theta_1 = \{a,b,c\}, and \theta_2 = \{\sigma_H, H\}.
$$
\nM-Step:
\nThe Nelder-Mead algorithm is then applied to maximize the log-likelihood
\nfunctions.
\nWang et al., 2024

M-Step:

The Nelder-Mead algorithm is then applied to maximize the log-likelihood functions.

Wang et al., 2024

PHM Conference 11 Nov. 2020 16

- **1) Introduction**
- **2) Motivation**
- **3) Methodology**
- **4) Case Study**
- **5) Results**

6) Conclusions

Case Study

In the simulation study, a **non-homogeneous GP model** is established to simulate the hidden degradation states. Measurement noise is modeled using FGN, and the parameter settings for the above model are shown in Table 1.

Figure 1 displays a set of simulated paths.

Table 1. Model parameters for the simulation study

sampling interval is set to 1, and the total time

Figure 1. The simulation data

phmsociety

- **1) Introduction**
- **2) Motivation**
- **3) Methodology**
- **4) Case Study**
- **5) Results**

6) Conclusions

Results

Experiments and results

The model proposed in this article (referred to as $M_{_1}$) and the GP model with Gaussian noise(referred to as M₂).

Figure 2. The estimation results of degradation states. (a) M_1 . (b) M_2 .

Experiments and results

In Figure 2(a), the estimated degradation state of M₁ aligns closely . *with the actual degradation trajectory*

Table 2 summarizes the average and root mean square error $\big(RMSE\big)$ of parameter estimation in the degradation model. From the table, $M_{1}^{}$. *demonstrates a certain advantage in parameter identification accur acy*

M_1						M ₂				
					a b ζ σ_H H AIC a b ζ σ AIC					
					Mean 0.4911 1.0909 0.9129 21.6436 0.7326 22.7986 0.6327 1.0544 0.9706 28.5285 61.5423					
					RMSE 0.0312 0.0232 0.1133 2.5437 0.4163 - 0.1161 0.0869 0.4664 4.3141 -					

Table 2. The estimation results of model parameters

- **1) Introduction**
- **2) Motivation**
- **3) Methodology**
- **4) Case Study**
- **5) Results**

6) Conclusions

- **Unlike existing Gaussian-noise-based models, the proposed model uses the Hurst exponent (H) to characterize non-Markovian forms of noise, which enhances the modeling flexibility.**
- **Numerical studies show a superior estimation accuracy of the parameters and the latent degradation states.**
- **In future research, it would be valuable to apply this model to specific real-world systems, such as blast furnaces, power grid, and highspeed trains, and carry out example validations.**

A Gamma Process Based Degradation Model with Fractional Gaussian Noise

Xiangyu Wang¹ , Xiaopeng Xi² , and Marcos E. Orchard³

¹College of Electrical Engineering and Automation, Shandong University of Science and Technology ²Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María ³Department of Electrical Engineering, University of Chile

PHM Conference 11 Nov. 2024