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ABSTRACT 

The primary objective of this study is to investigate the 

dynamic relationship between oil temperature and the 

Bearing Gearbox Condition Indicator (BGCI) values of the 

Bell 407 helicopter. To achieve this goal, we employ robust 

econometric tools, such as unit root tests, cointegration tests, 

and Autoregressive Distributed Lag (ARDL) models for 

both, long-run and short-run estimates. Our findings indicate 

that variable temperature tends to converge to its long-run 

equilibrium path in response to changes in other variables. 

The results of the ARDL analysis confirm that spectral 

kurtosis, inner race, cage, and ball energy significantly 

contribute to the increase in temperature. Furthermore, we 

use the impulse response function (IRF) to trace the dynamic 

response paths of shocks to the system. The identification of 

a cointegrating relationship between oil temperature and 

BGCI values suggests a practical and significant connection 

that can potentially be used to predict hazardous changes in 

oil temperature using BGCI values, which is an important 

implication for enhancing the safety and reliability of 

helicopter operations. 

This study presents a promising direction for condition 

monitoring (CM) in rotating aircraft machinery, emphasizing 

the potential of integrating temperature data to simplify the 

diagnostic process while still achieving reliable results. 

KEYWORDS:  Bearing gearbox; Cointegration; condition 

monitoring (CM), Condition indicator (CI); Oil temperature 

1. INTRODUCTION 

The relationship between oil temperature and BGCI values is 

crucial for assessing the health of helicopter main gearboxes. 

Monitoring systems like Health Usage Monitoring Systems 

(HUMS), utilize vibration signatures to detect faults (Tabrizi 

et al., 2017, Zhang et al., 2012). Oil temperature is a key 

parameter affecting gearbox health (Huang et al., 2020). Data 

analysis and artificial intelligence techniques are employed 

to monitor the lubrication and cooling systems of modern 

helicopters (Li et al., 2019). Additionally, the vibration 

signatures of damaged components, like bearings, are used as 

condition indicators, which can vary based on the system 

design and operating conditions (Wei et al., 2022) and oil 

temperature. The use of advanced signal processing tools can 

help extract bearing fault signatures from vibration signals, 

thereby enhancing the fault detection capability. Overall, 

integrating oil temperature monitoring and bearing condition 

indicators can provide a comprehensive approach for 

ensuring the safety and reliability of helicopter gearboxes. 

In Tabrizi et al. (2017), proposed a novel combined method 

for fault detection in rolling bearings based on cointegration 

for the development of fault features that are sensitive to the 

presence of defects but insensitive to changes in operational 

conditions. 

According to Zhang et al. (2012), the root cause of high oil 

temperatures is improper lubricating oil selection and serious 

solid particle pollution. Oil analysis techniques are also 

applied to monitor the working conditions of oil, to prevent 

mechanical failure, and to extend machine life. 
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In (Huang et al., 2020), a new diagnostic method based on 

modulation signal bispectrum (MSB) analysis is proposed, 

which shows that the amplitudes coupled between the fault 

frequency and epicycle carrier frequency can have more 

deterministic information regarding bearing vibrations. 

In (Li et al., 2019), the authors introduce a novel health 

indicator based on cointegration for rolling bearings’ run-to-

failure process, which can depict different run-to-failure data 

in a unified way. Through the cointegration test, the study 

found a certain degree of a cointegration relationship between 

energy and complexity features, leading to the development 

of a novel health indicator. The indicator exhibits "two-stage" 

characteristics, with a zero-line stage followed by a quickly 

raising stage resembling an exponential function, making it 

more suitable for an exponential degradation model 

compared to root mean square (RMS). 

In (Wei et al., 2022), an improved deep deterministic policy 

gradient algorithm with a Convolutional long-short time 

memory basic learner is proposed, which can excavate the 

complex relationship between oil temperature and working 

conditions and a multi-critics network structure is adopted to 

solve the problem of inaccurate Q-value estimation. 

In (Bayoumi et al., 2012), the effect of oil and grease on 

component performance and fault detection was examined in 

four different aircraft wetted-component case studies, which 

aimed to improve performance by examining the effect that 

oil and greases have on components. 

Murrad et al. (2012) formed a study group and mandated it to 

improve the maintenance strategy of the S61-A4 helicopter 

fleet in the Malaysian Armed Forces (MAF). The strategy 

consisted of a structured approach to reassessment/ 

redefinition of suitable maintenance actions for the main 

rotor gearbox. 

In (Xu et al., 2021), the influence of the dynamic wear model 

considering the tooth contact flash temperature on the 

dynamic characteristics of a gear-bearing system is studied, 

and the effects of initial wear, friction factors, and damping 

ratio on the system response are studied. 

To overcome the high-temperature bearings problem, 

advanced materials, such as ceramic matrix composites, are 

being developed to withstand extreme temperatures without 

adverse effects, ensuring reliability in harsh conditions 

(Joseph & Loewe, 1990). While advancements in lubrication 

systems and materials are promising, the inherent risks of 

inadequate lubrication remain a critical concern for 

helicopter safety, necessitating ongoing research and 

development in this area. 

Traditional vibration-based CM for rotating machines, 

especially those with multiple bearings like turbo-generator 

sets, is complex and requires extensive data collection. This 

complexity arises from needing multiple sensors at each 

bearing location, making fault diagnosis challenging even for 

experienced analysts. The study aims to simplify the fault 

diagnosis process by proposing a method that utilizes only 

one vibration sensor and one temperature sensor per bearing. 

This approach is intended to reduce the data collection burden 

while maintaining effective monitoring capabilities. 

The present study investigates the dynamic relationship 

between oil temperature and BGCI in a Bell 407 helicopter. 

To achieve this goal, we employ robust econometric tools, 

such as unit root tests, cointegration tests, and ARDL models, 

for both long- and short-run estimates. We utilized the 

Dumitrescu Hurlin (2012) panel causality tests to confirm the 

causal relationships between the variables. In summary, the 

contributions of this paper lie in its innovative approach to 

simplifying fault diagnosis, integrating temperature data, 

applying cointegration tests, and ARDL models for enhanced 

analysis, providing experimental validation, and offering 

practical solutions for industrial applications. These 

contributions collectively advance the field of CM for 

rotating machinery. 

This paper’s remaining structure is outlined as follows: 

Section 2 describes the data collection. Section 3 presents the 

empirical model. Section 4 demonstrates the relationship 

results between oil temperature and BGCI Values. Last, 

Section 5 concludes this paper. 

2. HUMS DATA COLLECTION  

The HUMS was developed to provide a holistic measure of 

aircraft health by providing automated flight data monitoring, 

rotor track and balance, engine performance monitoring, and 

drivetrain diagnostics/prognostics. The system incorporates 

ten smart accelerometers to collect and process vibration data 

into condition indicators. The accessory drive sensor 

monitors this study’s duplex bearing. This bearing supports 

the accessory drive’s hydraulic pump, which operates at 4450 

RPM. The sensor’s sample rate was 46875 sps for 2 seconds. 

The sensor performed an envelope (Abboud et al., 2017) 

using a window from 9 to 13 kHz. The system was designed 

to acquire data about every four minutes, depending on the 

aircraft regime. That is, after four minutes, if the aircraft is 

relatively straight and level, the data is captured. If the 

aircraft is manoeuvring, the acquisition is delayed until the 

aircraft is again straight and level. 

Figures 1-2 show the oil temperature against BGCI of the 

Bell 407 helicopter (Fig. 1), and the regression of the CI data 

based on temperature against ball energy (Fig. 2). Here is 

important information. The gearbox oil was replaced in 2020, 

on December 22. It was hypothesized that the oil was 

contaminated with wear debris from the gearbox, which was 

causing the ball energy to increase (Fig.2). The CI energy 

then went down. However, we can see that from April 6, 

2021, the fault started to propagate. The bearing was replaced 

on June 11, 2021. 

The other way to look at this is the “peak” energy only seen 

at the start of a flight, so on the ground. That would be another 

avenue of research is to look at the regime in which the 

analysis was taken. 

 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

3 

 
Figure 1. Oil temperature and BGCI values of the Bell 407 

helicopter, from top to bottom: Cage Energy (CE), Ball 

Energy (BE), Inner Race Energy (IRE), Outer Race Energy 

(ORE), 1/Rev (R), Whip (W), Spectral Kurtosis (SK), and 

Temperature (T) 

 

Figure 2. Regression of the CI data based on temperature 

against ball energy. 

3. EMPIRICAL MODEL 

This study aims to analyze the dynamic effects of the cage, 

ball energy, inner race energy, outer race energy, 1/Rev, 

whip, and spectral kurtosis on temperature. 

The general form of the empirical equation is indicated 

below: 

(C ,B , IR ,OR ,R , W ,SK )t Et Et Et Et t t tT f=            (1) 

Where T is the temperature, CE represents cage, BE denotes 

ball energy, IRE represents inner race energy, ORE represents 

outer race energy, R represents 1/Rev, W represents whip, SK 

represents spectral kurtosis, and t denotes the acquisition 

time. 

(C ,B , IR ,OR , R , W ,SK )
t Et Et Et Et t t t

T f=

Empirical model generation

Stationary test

ADF

P-P

Cointegration regression
ARDL

Johansen

Long-term and short-term 
coefficients

Correlation and causality
Pairwise Granger 
causality analysis

Impulse response function 

Limitation and future research 
opportunities

Selection of variables

C , B , IR ,OR ,R , W ,SKEt Et Et Et t t t

 

Figure 3. Flowchart of analytical techniques used in the 

study 

To examine the long-run linkages between the variables, we 

employed the following equation derived from Eq. (1) : 

0 1 2 3 4

5 6 7

C B IR OR

R W SK

t Et Et Et Et

t t t t

T α α α α α

α α α ε

= + + + +

+ + + +
         (2) 

The estimated econometric model above is not in linear form, 

which does not seem to present consistent results and is not 

helpful in the decision-making process. To address this issue, 

we transform all variables into natural logarithms to analyze 

the relationships between the dependent and independent 

variables. Utilizing a log-linear specification model offers 

several advantages, aiming to achieve consistent and robust 

empirical findings (Shafique et al., 2021; Ouni & Ben 

Abdallah, 2024). Therefore, the log-linear form is given in 

Eq. (3): 

0 1 2 3

4 5 6

7

LnC LnB LnIR

LnOR LnR LnW

LnSK

t Et Et Et

Et t t

t t

LnT α α α α

α α α

α ε

= + + +

+ + +

+ +

        (3) 

Where LnT is the natural logarithm of temperature, LnCEt is 

the natural logarithm of the cage, LnBEt is the natural 

logarithm of ball energy, LnIREt is the natural logarithm of 

inner race energy, LnOREt is the natural logarithm of the outer 

race energy, LnRt is the natural logarithm of rev, LnWt is the 

natural logarithm of whip, and LnSKt is the natural logarithm 

of spectral kurtosis. α0 represents the fixed effect. α1, α2, α3, 

α4, α5, α6, and α7 are the slope coefficients. εt represents the 

white noise. 

A cointegration-based computation procedure, consisting of 

three stages, was developed for this purpose. The 
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methodology presented in the paper is described in a general 

manner in Figure 3, with specific steps outlined for the 

application of econometric tools such as ARDL models, 

cointegration tests, and IRF. Indeed, in the first stage, a 

cointegration model of the monitored bearing gearbox is 

established using a set of condition indicator values. This 

model has the role of a bearing oil temperature monitoring 

model. In the second stage, the stationarity test was carried 

out. In the third stage, the cointegration procedure is 

deployed. The next stage used the ARDL model to examine 

the long and short-term relationships between the 

explanatory variables and the temperature. The correlation 

and causality tests were carried out in the fourth stage. In the 

last stage, we employed the IRF to measure the effects of 

shocks from independent variables on the dependent variable. 

3.1. Estimation Procedures 

The first step in our analysis is to employ unit root tests to 

verify the stationarity of all variables. We utilize the standard 

unit root tests of the Augmented Dickey-Fuller (ADF) test 

(Dickey and Fuller, 1979) and the Phillips-Perron (PP) test 

(Phillips and Perron, 1988). These tests indicate the null 

hypothesis that a series possesses a unit root (indicating non-

stationarity), while the alternative hypothesis suggests 

stationarity. The ADF unit root test primarily assesses the 

presence of autocorrelation in the series, while the PP unit 

root test examines the presence of heteroskedasticity in the 

time series. A time series is considered non-stationary if one 

or more of its moments (mean, variance, or covariance) are 

not time-independent. A non-stationary series with a 

stochastic unit root needs to be differenced once to achieve 

stationarity. Before exploring cointegration analysis, it is 

imperative to establish empirically the integration process. 

The empirical equation of the ADF unit root test can be 

represented as follows in Eq. (4): 

0 1

1

m

t t i t m t

i

Y Y d Yβ µ− −

=

∆ = + + ∆ +                      (4) 

Where ∆ represents the first difference operator, μt denotes 

the error term, β0 is the intercept term associated with the 

equations, m indicates the number of lags of the specific 

variable in the model, and t signifies the time measure. 

The empirical equation of the PP unit root test can be 

expressed in Eq. (5): 

1t t tY Yβ θ µ−∆ = + × +                                      (5) 

The long-term relationship between temperature, cage, bull 

energy, inner race energy, outer race energy, Rev, whip, and 

spectral kurtosis is investigated using the ARDL test and the 

Johansen and Juselius cointegration test. 

The Johansen and Juselius (1990) cointegration approach is 

employed to examine the long-run relationship among the 

variables. The Johansen and Juselius cointegration technique 

is constructed on λtrace and λmax statistics. Trace statistics 

investigates the null hypothesis of r cointegrating relations 

against the alternative of N cointegrating relations and is 

computed as: 

1

log(1 )
n

trace i

i r

Nλ λ
= +

= −                                        (6) 

Where N is the number of observations. 

The maximum Eigen-value statistics tests the null hypothesis 

of r cointegrating relations against the : 

max log(1 1)rNλ λ= − +                                        (7) 

The ARDL model introduced by Pesaran et al. (2001) 

examines the existence of long-run and short-run 

relationships between the variables under examination. This 

method offers several advantages over traditional 

cointegration tests. Firstly, it addresses endogeneity issues by 

accommodating appropriate variable lag lengths for both 

independent and dependent (Narayan, 2005). Secondly, it can 

handle a mixture of stationary variables such as I(0) and I(1), 

but not I(2) (Pesaran et al., 2001). Thirdly, the ARDL bounds 

testing approach demonstrates improved efficiency and 

robustness, effectively mitigating issues related to 

autocorrelation. Moreover, the ARDL model allows for 

varying lag lengths, enhancing its flexibility and enabling the 

estimation of both long-term and short-term dynamics 

through an error correction model (ECM). The ARDL model 

is specified as follows: 

0 1 2 3

1 1 1

4 5 6

1 1 1

7 8 1 1 2 1

1 1

3 1 4 1 5 1 6

C B

IR OR R

W SK C

B IR R R

n n n

t k t k k Et k k Et k

k k k

n n n

k Et k k Et k k t k

k k k

n n

k t k k t t Et

k k

Et Et Et t

LnT LnT Ln Ln

Ln Ln Ln

Ln Ln LnT Ln

Ln Ln LnO Ln

α α α α

α α α

α α δ δ

δ δ δ δ

− − −

= = =

− − −
= = =

− − −
= =

− − − −

∆ = + ∆ + ∆ + ∆

+ ∆ + ∆ + ∆

+ ∆ + ∆ + +

+ + + +

  

  

 

1

7 1 8 1t t tLnW LnSKδ δ ε− −+ + +
     

(6) 

After obtaining the long-run coefficients from Eq. (6), we use 

the ECM described in Eq. (7) to analyze the short-term 

relationships.  

0 1 2

1 1

3 4

1 1

5 6

1 1

7 8 1

1 1

C

B IR

OR R

W SK

n n

t k t k k Et k

k k

n n

k Et k k Et k

k k

n n

k Et k k t k

k k

n n

k t k k t t t

k k

LnT LnT Ln

Ln Ln

Ln Ln

Ln Ln ECM

α α α

α α

α α

α α γ ε

− −
= =

− −
= =

− −
= =

− −
= =

∆ = + ∆ + ∆

+ ∆ + ∆

+ ∆ + ∆

+ ∆ + ∆ + +

 

 

 

 

    (7) 

Where the difference operator is defined by ∆, the optimal lag 

length of variables is denoted by n, the error correction term 

ECMt-1 coefficient is indicated by γ, and the residual error 

term is presented by εt. Under the ARDL framework, the null 

hypothesis of no cointegration; H0= δ1= δ2= δ3= δ4= δ5= δ6= 

δ7= δ8= 0 against the alternative hypothesis of cointegration 

H1≠ δ1≠ δ2≠ δ3≠ δ4≠ δ5≠ δ6≠ δ7≠ δ8≠ 0  is tested by taking the 

F-statistics used by Narayan (2005).  
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When the computed F-value exceeds the upper bound, it 

indicates cointegration; conversely, when the computed F-

value is below the lower bound, it suggests no cointegration. 

However, if the F-value falls between the upper and lower 

critical values, the decision of cointegration is inconclusive. 

Additionally, a significant error correction term suggests a 

long-term relationship between the variables. 
Then, we examined the causal relationship between 

temperature and other variables using the Dumitrescu and 

Hurlin (2012) test, which is a simplified version of Granger’s 

(1969) non-causality test. We chose this test because it 

considers two different types of heterogeneity: one in the 

regression model used to evaluate Granger causality and 

another in the causality relationship itself. In our analysis, we 

employed the linear model shown in Eq. (8): 

( ) ( )

1 1

k k
k k

it i i it k i it k it

i i

Y a Y Xγ β ε− −

= =

= + + +                (8) 

Where represents the slope coefficients, ai represents the 

cross-sectional unit, and K shows the lag length. In this 

context, the null hypothesis suggests that there is no causal 

relationship in at least one cross-sectional unit. To test this 

null hypothesis, we used the Z-bar statistics ( Z ) and W-bar 

statistic (W ) tests, which can be computed as follows: 

1

1 N

i

i

W W
N =

=                                                        (9) 

( )
2

N
Z W K

K
= −                                             (10) 

The innovation accounting technique is employed to analyze 

the forecast relationship between selected variables in a given 

dataset. This method utilizes the IRF to visually demonstrate 

how shocks in one variable affect others, altering their 
magnitudes over time. The IRF highlights the impacts of 

these shocks on both current and future values of the 

variables involved. Specifically, a standard error shock in one 

variable at time period 't+s' may positively, negatively, or 

bidirectionally influence another variable 'j' at period 't'. This 

relationship can be expressed mathematically as given in Eq. 
(11) : 

,

,

i t s

s

j t

Yϕ
ψ

ϕµ

+
=                                   (11) 

Where Y represents dependent variables, and μ is the forecast 

error term. 

4. RESULTS 

4.1. Unit root analysis 

To study the relationship between temperature, cage, ball 

energy, inner race energy, outer race energy, Rev, whip, and 

spectral kurtosis, we verify the presence of unit roots in the 

variables using ADF and PP tests. Table 1 shows the 
outcomes of both the ADF and PP tests. It indicates that all 

variables (LnT, LnCE, LnBE, LnORE, LnR, LnW, LnSK) are 

stationary at the level, except the variable Ln��� , which is  

Table 1. Results of unit root tests 

Variables ADF  PP  

Level ∆ Level ∆ 

LnT -8.460*** -32.875*** -17.104*** -29.324*** 

LnCE -3.619*** -32.923*** -10.094*** -38.303*** 

LnBE -5.725*** -30.881*** -8.831*** -45.706*** 

LnIRE -0.703 -35.604*** -1.153 -37.367*** 

LnORE -4.548*** -30.650*** -19.252*** -43.162*** 

LnR -5.801*** -30.347*** -12.187*** -29.177*** 

LnW -5.146*** -25.347*** -17.309*** -36.076*** 

LnSK -3.817*** -34.203*** -12.572*** -31.278*** 
Note:  *** indicates a 1% level of significance, ∆ denotes the first difference 

stationary at the first difference. Therefore, some variables 

are I(0), while others are I(1). It is concluded that the 

variables used in this study have a mixed order of integration, 
as evidenced by both ADF and PP unit root tests. 

4.2. Cointegration tests 

After confirming the integration order of the variables, this 

study employs the ARDL bounds model and the Johansen 

and Juselius cointegration test to investigate the cointegration 

among the variables under examination. The results of the 
ARDL bounds testing are shown in Table 2. When we 

analyzed the ARDL model with LnT as the dependent 

variable, we found evidence of cointegration in the series 

under consideration. This conclusion is drawn from 

observing that both upper and lower-bound critical values are 
well below the estimated F-statistic (5.534). Thus, we reject 

the null hypothesis of no cointegration, suggesting the 

presence of a long-term relationship between the variables. 

The results of the Johansen cointegration test, as shown in  

Table 2: ARDL Bound tests for cointegration 

Estimated model F-statistics 

LnTt=f(LnCEt, LnBEt, LnIREt, 

LnOREt, LnRt, LnWt, 

LnSKt) 

5.534* 

 Lower bound Upper bound 

Significance level   

1% 3.09 3.86 

5% 2.93 3.83 

10% 2.101 3.869 
Note:  * indicates a 10% level of significance. 

Table 3. Johansen cointegration test. 

 Eigenvalue Trace 

Statistic 

Critical 

value 0.05 

Prob
** 

None * 0.149 3380.233 159.529 0.000 

At most 1 * 0.135 2507.699 125.615 0.000 

At most 2 * 0.110 1721.344 95.753 0.000 

At most 3 * 0.087 1090.921 69.818 0.000 

At most 4 * 0.056 596.760 47.856 0.000 

At most 5 * 0.025 286.123 29.797 0.000 

At most 6 * 0.022 147.548 15.494 0.000 

At most 7 * 0.004 23.174 3.841 0.000 
Note: Trace test indicates 8 cointegrating eqn(s) at the 0.05 level. Further, 

“*” denotes rejection of the hypothesis at the 0.05 level. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

6 

Table 3, indicates that both the maximum eigenvalue and 

trace tests reject the null hypothesis of no cointegration. 

Specifically, at a 5% significance level, the tests reveal the 
presence of eight cointegrating equations. 

4.3. Long-run nd short-run analysis 

Before applying the ARDL model, selecting the optimal lag 

length is crucial. Various criteria, such as the Akaike 

Information Criterion (AIC), Hannan-Quinn (HQ) 

Information Criterion, and Schwarz Bayesian Criterion 
(SBC), help determine the optimal lag length. In this study, 

the optimal lag length is based on the AIC criterion. Table 4 

presents the results of the long-run and short-run analysis 

using the ARDL model. 

The speed of ECMt-1 of the model satisfies the expected 

condition of negative and significant value that corrects the 
previous period’s disequilibrium in the coming period (-

0.811). 

The results show that the variable whip significantly 

decreases with temperature both in the long term and short 

run. This implies that in the long term (short run), a 1% 

increase in whip results in a significant decrease in 
temperature of 0.215% (0.811%).  

The variable Rev shows a negative and significant impact on 

temperature, both in the long term and short term. According 

to these results, a 1% increase in Rev leads to a decrease in 

temperature by 0.219% (0.277%) in the long run (short run). 
A positive and significant relationship has been established 

between ball energy and temperature. A 1% increase in ball 

energy results in a temperature increase of 0.112% and 

0.155% in the long run and short run, respectively. 

Table 4 presents the diagnostic test results for our model, 

Figure 4 gives the summary of empirical results. An R2 value 
of 0.85 indicates a strong fit of the estimated model. 

Additionally, tests for serial correlation, heteroscedasticity, 

Ramsey tests, and normality confirm that our model is 

correctly specified and follows normality. Furthermore, these 

tests validate the absence of serial correlation and 

heteroscedasticity issues. 

Table 4. Results of ARDL estimation (LnT is a dependent 

variable) 

Regressors Coefficient t-statistics Prob 

Long-run analysis 

LnW -0.215 -8.773 0.000*** 

LnR -0.219 -6.621 0.000*** 

Ln��� -0.178 -4.398 0.000*** 

LnSK 0.025 0.636 0.524 

Ln��� 0.193 4.197 0.000*** 

Ln�� 0.035 0.823 0.410 

Ln	� 0.112 3.557 0.000*** 

Short-run analysis 

��
�� -0.811 -1.470 0.000*** 

∆(LnW) -0.248 -7.787 0.000*** 

∆(LnR) -0.277 -5.673 0.000*** 

∆(Ln���) -0.233 -3.477 0.000*** 

∆(LnSK) 0.030 0.433 0.664 

∆(Ln���) 0.292 3.656 0.000*** 

∆(Ln��) -0.015 -0.202 0.839 

∆(Ln	�) 0.155 3.772 0.000*** 

Constant 4.281 0.069 0.000*** 

Diagnostic tests 

�� 0.85 

�� ARCH 0.388 (0.960) 

�� Ramsey 2.839 (0.213) 

�� LM 0.352 (0.399) 

�� Normality 0.144 (0.930) 

Note:  *** indicates a 1% level of significance. 

LnCE

LnT

LnBE

LnW

LnR

LnORE

LnIRE

LnSK

(+) 

(+
) 

 

Figure 4. Summary of empirical results 

4.4. Pairwise Granger causality analysis 

The relationship between the variables suggests the presence 

of Granger causality, as determined by the F-statistic. The 

summary of pairwise Granger causality is provided in Table  

5 and Figure 5, which includes the direction of causality 
between the variables. The results of the pairwise Granger 

causality tests indicate a unidirectional causality relationship 

from temperature to outer race energy, spectral kurtosis, inner 

race energy, and cage. Our findings suggest a bidirectional 

causal relationship between whip and temperature, Rev and 

temperature, as well as temperature and ball energy. 
 

Table 5. Pairwise Granger causality analysis 

Null hypothesis  F-statistic Prob 

LnW does not Granger cause LnT 

LnT does not Granger cause LnW 

8.935 

9.945 

0.0000*** 

5.E-05*** 

LnR does not Granger cause LnT 

LnT does not Granger cause LnR 

3.223 

5.953 

0.039** 

0.002*** 

Ln��� does not Granger cause LnT 

LnT does not Granger cause Ln��� 

0.841 

5.985 

0.431 

0.002*** 

LnSK does not Granger cause LnT 

LnT does not Granger cause Ln�� 

0.317 

6.083 

0.727 

0.002*** 

Ln��� does not Granger cause LnT 

LnT does not Granger cause Ln��� 

1.154 

5.189 

0.315 

0.005*** 

Ln��does not Granger cause LnT 

LnT does not Granger cause Ln�� 

0.672 

3.791 

0.510 

0.022** 

Ln	� does not Granger cause LnT 

LnT does not Granger cause Ln	� 

4.412 

4.853 

0.012** 

0.007*** 

Note: *, **, and *** indicate 1%, 5%, and 10% levels of significance, 

respectively. 
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Figure 5. Granger causality results 

4.5. Impulse response function  

The IRF plays a crucial role in measuring the impacts of 

shocks from independent variables on the dependent variable. 

This method enables us to analyze the dynamic interactions 

among variables in our model, helping us to quantify the 

effects of these shocks. Figure 3 illustrates the impulse 
response functions of the temperature model. 

1. CONCLUSION 

The paper introduces a novel health indicator based on 

cointegration for BGCI. Through the cointegration test, the 

study found a certain degree of cointegration relationship 

between oil temperature and BGCI values for the Bell 407 
helicopter leading to the development of the novel health 

indicator. 

The paper stands out by applying econometric models, which 

are not commonly used in the CM community, to analyze 

rotating machinery data. This approach offers a fresh 
perspective and could inspire new avenues of research within 

the field. The findings have potential practical applications, 

particularly in improving predictive maintenance and 

monitoring of helicopter gearboxes. The identification of a 

cointegrated relationship between oil temperature and BGCI 

values could lead to more effective health monitoring 
systems. 

While the results are promising, one of the challenges noted 

in the study is the potential overlap between different fault 

conditions. The study focused on commonly encountered 

gearbox bearing faults, but it may not encompass all possible 

fault scenarios that could occur in rotating machinery in 
rotorcraft. This limitation could affect the robustness of the 

proposed diagnostic methods when applied to less common 

or more complex fault conditions. These factors highlight 

areas for future research and improvement in the proposed 

diagnostic methods. 

Moreover, the authors suggest that further experimentation 
on different rigs and with various fault types is necessary to 

fully validate the method’s effectiveness and explore its 

potential for broader industrial applications. 
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