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ABSTRACT

Industry 4.0 aims for a digital transformation of manufac-
turing and production systems, producing what is known
as smart factories, where information coming from Cyber-
Physical Systems (core elements in Industry 4.0) will be
used in all the manufacturing stages to improve productivity.
Cyber-physical systems through their control and sensor sys-
tems, provide a global view of the process, and generate large
amounts of data that can be used for instance to produce data-
driven models of the processes. However, having data is not
enough, we must be able to store, visualize and analyze them,
and to integrate induced knowledge in the whole production
process. In this work, we present a solution to automate the
quality control process of manufactured parts through image
analysis. In particular, we present a Deep Learning solution
to detect defects in manufactured parts from thermographic
images of a die casting machine at an aluminum foundry.

1. INTRODUCTION

In 2015, the foundational definition and main design princi-
ples of Industry 4.0 were presented by Hermann, Pentek, and
Otto (Hermann, Pentek, & Otto, 2016) as a guide for imple-
menting Industry 4.0. This definition encompasses the four
key components of Industry 4.0: Cyber-Physical Systems
(CPS), the Internet of Things (IoT), the Internet of Services
(IoS), and Smart Factories. The objective of Industry 4.0 is
the digital transformation of manufacturing and production
industries. Cyber-physical systems represent the foundation
of Industry 4.0, which frequently involve control systems,
embedded software, and a substantial array of data coming
from sensors and actuators. These systems generate a vast

Paula Mielgo et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

quantity of data, which must be integrated and analysed in
order to achieve the designation of “smart factories”.

The concept of Smart Manufacturing was introduced in the
United States to facilitate the deployment of emerging tech-
nologies in manufacturing, including the Industrial Internet
of Things (IIoT) and Artificial Intelligence (AI). Smart man-
ufacturing, also known as intelligent manufacturing, focus
on the adoption of these advanced information and manufac-
turing technologies to optimize the production (Zhong, Xu,
Klotz, & Newman, 2017). The main focus of this methodol-
ogy is to enhance the quality, traceability, and efficiency of
the production process. Each industrial revolution has been
accompanied by an increase in productivity, which has been
attributed to the introduction of new technologies, including
the steam engine, electricity, and digital technology. For the
fourth industrial revolution, the primary factor driving pro-
ductivity enhancement is the far-reaching impact of these vast
quantities of data, which influence not only production but
also other sectors, particularly engineering processes. This
allows for more effective decision-making processes. How-
ever, having data is not enough; it must be stored, visualised
and analysed, and the resulting knowledge must be integrated
into the entire production process. This can be achieved,
for instance, by producing data-driven models that can sub-
sequently be employed in a digital twin (which represents
another crucial component in the smart factory framework).
This is of particular importance in those smart factories where
there are few, if any, analytical models available, due to the
nature or complexity of the processes.

Artificial intelligence in general and Machine Learning (ML)
in particular play a pivotal role in this contemporary develop-
ment of smart manufacturing characterised by the production
of data-driven models. The integration of ML with the pro-
duction process facilitates the reduction of production time,
improvement of quality and the elimination of unnecessary
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waste. Some literature reviews demonstrate the use of ML
techniques in industrial environments to enhance planning
and control procedures (Usuga Cadavid, Lamouri, Grabot,
Pellerin, & Fortin, 2020), as well as specific applications in
quality control tasks (Peres, Barata, Leitao, & Garcia, 2019)
(Patel & Jokhakar, 2016). Moreover, Deep Learning (DL)
has contributed to a significant developement of computer vi-
sion. Architectures such as Convolutional Neural Networks
(CNNs) or Vision Transformers (ViTs) have made signifi-
cant contributions in many fields, including manufacturing.
These models are able to process images and videos to ensure
product quality (EL Ghadoui, Mouchtachi, & Majdoul, 2023)
(Villalba-Diez et al., 2019) (Cumbajin et al., 2023) and also
to monitor manufacturing processes (Alfaro-Viquez, Zamora-
Hernandez, Benavent-Lledo, Garcia-Rodriguez, & Azorı́n-
López, 2022).

In this paper we present a proposal to address the automa-
tion of the quality control process through image analysis.
The reasons behind our proposal are twofold. On the one
hand, productivity will increase if we can predict, on the early
stages of the manufacturing process, a subset of manufactured
parts that will pass, with total safety, all the quality control
checks. This will enable the skipping of checks that increase
the costs of the manufacturing process and limit the capacity
of manufactured parts per shift. On the other hand we can
perform an early detection of defective manufactured parts,
that will allow their removal from the production chain. To
achieve this objective, we will use CNNs (LeCun, Bottou,
Bengio, & Haffner, 1998) and ViTs (Dosovitskiy et al., 2020)
to detect, from thermographic images, defects in manufac-
tured parts. In order to achieve this objective, a case study of
an aluminum die casting plant at a car engine manufacturing
plant will be employed.

The remaining of the paper is organized as follows. Section
2 presents the case study of the die casting plant. Section
3 briefly introduces the preprocessing/DL techniques used
in this work. Section 4 presents the proposed architecture
for quality control at the die casting plant by the analysis of
the thermographic images of the mold. Section 5 introduces
the experimental setup and the experiments we carried out,
and discusses the results obtained with the proposed solution
against a subset of state-of-the-art computer vision architec-
tures. Finally, Section 6 draws the main conclusions and fu-
ture directions of this work.

2. THE ALUMINUM DIE CASTING PLANT

In a casting plant, the first process is the aluminum melting.
The aluminum arrives at the facilities in the form of ingots
that are melted at a temperature of about 720 degrees Cel-
sius in the different melting towers. This molten aluminum is
transferred to holding furnaces that are located next to the die
casting machine. A small ladle takes the molten aluminum

and pours it into a shot chamber where it is ready to be in-
jected into a steel mold, known as die. The molten aluminum
is forced into the die with a clamping force of about 22kN.
Right after injection, the machine introduces water and air
into the different cooling circuits of the mold to reduce the
mold temperature and to solidify the part. The high pressure
holds the metal in the die until it solidifies. Afterwards, the
injector opens the die, and a robot extracts the part with a se-
ries of leftovers that are later removed. Right after the part
is removed, thermographic cameras check the mold for tem-
perature problems capturing two thermographic images, one
for each part of the mold (Figure 1 illustrates one of these im-
ages). The next step is to pour a release agent into the mold
to prevent the part from sticking to it, and right after that, two
additional thermographies are taken.

Figure 1. Thermographic image

The process continues with a first visual inspection of the
manufactured part and then a thermal treatment process is
carried out to release any stresses in the material. To com-
plete the manufacturing process in this plant, a series of ma-
chining operations are carried out on the parts. Next, in order
to test the quality of the injection process a leak test is per-
formed. Finally, all parts are inspected by an operator in a
second visual inspection, looking for parts that do not com-
ply with quality standards. Figure 2 schematically shows this
production process.

For each manufactured part, the thermographic cameras gen-
erate three files, a source file, where all the data is found, and
it is only exploitable with a specific proprietary software of
the supplier. A csv file, where the image search areas (ROI)
and the maximum temperature of that region are found. Fi-
nally, there are the four thermographic images of the mold.
These thermographic images are used to detect degradation
in the molds, but not to check the quality of the parts. As a
consequence, these images are randomly inspected by human
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Figure 2. Process diagram

experts, who do not have any automatic tool to support them
in this task.

2.1. Problem Formulation

As we just mentioned, with the current available tools it is not
possible to detect non-conforming parts as soon as they are
manufactured by means of these thermographic images. The
parts follow the manufacturing flow until they reach the leak-
ing inspection. Those parts with evident defects are rejected
either during the casting process or in the first visual inspec-
tion. However, a small percentage of the parts can exhibit
internal defects not evident to the human eye. Consequently,
to guarantee the good quality of all the manufactured parts,
all the pieces that fulfill the visual control requirements must
also pass through the leak test. Our aim in this work is to use
the thermographic images of the molds created by the cast-
ing machine to identify a subset of the parts that can skip this
inspection, thus improving the performance of the machinery
on the production lines.

This task can be done either by identifying a part as defective
(NK) and sending it for melting down, or, more importantly,
since most of the manufactured parts are non-defective (OK),
by determining, with absolute certainty, that a part is correct.
In both cases the result is the same, no additional quality con-
trols are required, and the bottleneck will be reduced. How-
ever, this is a difficult task since, on the one hand, defects that
reach the leak test are not evident to the human eye and we
only have thermographic images of the molds, not from the
manufactured parts; and on the other hand, because quality
requirements in the automotive industry are quite strict and
we must guarantee that defective parts are not considered as
non-defective.

3. BACKGROUND

This section provides a brief overview of preprocessing tech-
niques, CNNs and ViTs, which are the main techniques used
in this paper.

3.1. Preprocessing techniques

Classical image transformations are frequently used as an ini-
tial step prior to training a model with the objective of enhanc-
ing the classification results.

RGB plane decomposition. An RGB image is composed of
three primary colour channels: red, green and blue. It may be
interesting to process either of these channels separately in
order to remove noise or to simplify the computation process.
This decomposition has already been done with other formats
such as HSV, CIEL*a*b* or YCbCr, improving the results
compared to the original format (Sachin, Sowmya, Govind,
& Soman, 2018). In an RGB image, a primary channel is
derived directly from the original image, whereas a comple-
mentary channel is computed by averaging two primary chan-
nels. Let x be a pixel, and let xi be its value in the channel i,
the complementary channels (cyan, magenta and yellow) are
computed as follows.

xcyan =
xgreen + xblue

2

xmagenta =
xblue + xred

2

xyellow =
xred + xgreen

2

Consequently, it is possible to decompose not only primary
channels but also complementary ones. Figure 3 illustrates an
example of the RGB plane decomposition technique applied
to an image of the dataset.

Grayscale transformation. Some papers in the literature
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(a) Red channel (b) Green channel (c) Blue channel

(d) Magenta channel (e) Yellow channel (f) Cyan channel

Figure 3. Plane decomposition applied to thermographic image

have employed grayscale transformation as a preprocessing
step prior to CNN classification (Y. Xie & Richmond, 2018)
(Hsu et al., 2021). This not only improves the results, but also
reduces the computation time. There are several methods for
transforming an RGB image to grayscale. The most popu-
lar is the National Television System Committee (NTSC) for-
mula (Jack, 2011). Let x be a pixel, and let xi its value in the
channel i. Then, the value of x in the grayscale will be:

xgray = 0.299 · xred + 0.587 · xgreen + 0.114 · xblue

Figure 4a illustrates the grayscale transformation applied to a
thermographic image.

Gamma correction. This technique was initially developed
to correct the power-low transformations applied by some im-
age capture, printing or display devices (Gonzalez & Woods,
2008). However, it can also be used to adjust the contrast of
the image, making it a preprocessing technique. For instance,
it has been used in the process of binarising thermographic
images (Wang, Zhang, Ni, & Ren, 2021). The gamma cor-
rection has the following equation for a pixel x:

g(x) =

(( x

255

)( 1
γ )
)
× 255

where γ is a parameter.

Figure 4b provides an example of gamma correction.

RGB-HOG. The Histogram of Oriented Gradients (HOG) is
a well-established technique used for image feature extrac-
tion. It was introduced in (Dalal & Triggs, 2005) for pedes-
trian detection but has subsequently been used for other ap-
plications such as face recognition (Déniz, Bueno, Salido, &
De la Torre, 2011). The fundamental concept is the repre-
sentation of small image cells by accumulating the 1-D his-
togram of gradient directions of their pixels, which allows for
the characterisation of local object appearance in the image.
The application of HOG descriptors has traditionally been
limited to grayscale images (with only one channel). How-
ever, it may be important to retain the color information when
dealing with three-channel images (Lahmyed, El Ansari, &
Ellahyani, 2019). One possible approach is the use of RGB-
HOG, which calculates the HOG characteristic on each RGB
channel and then stacks them to form the final descriptor. Fig-
ure 4c illustrates an example of the RGB-HOG technique.

3.2. Deep learning architectures

DL models are able to exploit the underlying information in
large volumes of data in an efficient way. Consequently, in
recent years there has been a significant impact of DL in
a range of technological fields, including Speech Recogni-
tion (Nassif, Shahin, Attili, Azzeh, & Shaalan, 2019), Nat-
ural Language Processing (NLP) (Deng & Liu, 2018) and
Computer Vision (Esteva et al., 2021). For image process-
ing, CNNs and ViTs are the most widely used architectures.

Convolutional Neural Networks. CNNs are a type of Deep
Neural Network that attempts to emulate the visual cortex. In
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(a) Grayscale (b) Gamma correction 0.2 (c) RGB-HOG

Figure 4. Preprocessing techniques applied to thermographic image

recent years, a number of proposed works have demonstrated
their ability to extract patterns in images and videos (Li et al.,
2014) (Dyrmann, Karstoft, & Midtiby, 2016). This is possi-
ble thanks to their hierarchical layer structure. In essence, the
initial layers identify fundamental elements such as curves or
lines, which are subsequently combined to form objects in
deeper layers, such as silhouettes or faces. The main compo-
nents of a CNN are (Figure 5): convolutional layers, pooling
layers and the fully connected layer.

Figure 5. CNN architecture. Extracted from (Albelwi &
Mahmood, 2017)

The purpose of the convolutional layer is to extract a feature
map from an input pixel matrix. This is achieved through
the use of kernels that weight the input values. Then, it is
necessary to apply an activation function, which introduces
the non-linearity property and restricts the values to be passed
to the next layer.

The pooling layer reduces the dimensionality of the feature
map obtained in the convolutional layer. This approach helps
to reduce the computational complexity of the training pro-
cess while maintaining the key information extracted by ker-
nels. For this purpose, a pooling kernel is used to perform
mathematical operations on sub-matrices of the feature maps.

Convolutional and pooling layers are employed iteratively to
generate multiple feature maps that accurately reflect the in-
formation contained in the image. Finally, the fully connected
layer is used to transform the three-dimensional feature ma-
trix into a one-dimensional array. In this process, all the fea-
tures extracted in the preceding layers are efficiently com-
bined.

In recent years, CNNs have been demonstrated to be an ef-
fective solution for anomaly detection in industrial environ-
ments. This is exemplified in (Weimer, Scholz-Reiter, &
Shpitalni, 2016), where a CNN was evaluated against other
manual feature extraction methods using a textured surface
dataset for defect detection.

Vision Transformers. Transformers (Vaswani et al., 2017)
are a type of DL architecture that was developed for use in
Natural Language Processing. Due to their success, some re-
searchers attempted to adapt them to the field of Computer
Vision. This resulted in the creation of ViTs (Dosovitskiy et
al., 2020).

The fundamental concept of transformers is the use of at-
tention mechanisms to determine and weight the relation-
ships between the input network elements (tokens). This is
achieved by constructing a matrix in which all the tokens are
related, assigning them a value between -1 and 1 according
to the importance of their relationship. To make this process
more efficient, transformers use Multihead Attention, which
divides the dimension of the token space to enable each of the
attention mechanisms (referred to as attention heads) to pro-
cess one of the subspaces. Although the objective of Trans-
formers is to identify relationships between all elements, this
is not feasible in ViTs due to the high dimensionality of the
images. To overcome this challenge, prior to entering the net-
work, a division into small cells, known as patches, is carried
out in order to study the relationships between them. In ad-
dition, a position embedding is added to patches in order to
preserve information of their position. Then, the network in-
corporates encoder blocks. Each block alternates Multi-Head
Attention blocks with Multi Layer Perceptron (MLP) blocks,
adding a Normalisation Layer before each one and a Residual
Connection behind. The final part of the network is a classi-
fication layer, formed by an MLP with a single linear layer.
Figure 6 provides an illustration of the complete structure.

ViT has also been employed in the detection of anomalies in
industrial environments. In (Smith, Du, & Kurien, 2023), a
conventional and a modified version of ViT were used on a
leather object detection dataset.
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Figure 6. ViT architecture. Extracted from (Dosovitskiy et
al., 2020)

4. ARCHITECTURE PROPOSAL

This section presents the proposed architecture. An overview
of such architecture can be found in Figure 7. As shown
in the figure, two distinct parts are distinguished. First, the
construction, which includes the fitting process and the selec-
tion of two models, the best for detecting non-defective parts
and the best for determining that a part is defective. Second,
the inference, which enables the classification of new thermo-
graphic images.

As previously stated in section 2, there are four thermo-
graphic images of the mold for each part, two of them taken
before the application of the release agent and two after its
application. It was determined that the images taken prior the
application of the release agent would be the ones to use. Fur-
thermore, due to the lack of individual labels for each of the
images of a part, the two images of the mold were combined
by placing one next to the other without the color scales (as
shown in Figures 3 and 4).

4.1. Model construction

The initial stage of the process involves the combination of
preprocessing techniques with pretrained models over the ex-
perimental set to obtain fitted models. After that, a search
is conducted in order to select the best model for identifying
non-defective parts and, on the other hand, the best for iden-
tifying the defective ones. In addition, for each of these mod-
els, a minimum confidence value, known as threshold, is set
to ensure the quality of predictions. The output of this stage
will be, on the one hand, the best model for classifying OK
images, together with its associated preprocessing technique
and the OK threshold; and on the other hand, the best model
for classifying NK, in conjunction with its associated prepro-
cessing technique and the NK threshold. All this process is
detailed next.

First, preprocessing techniques described in subsection 3.1
were applied to the experimental set (training and validation
subsets). In particular, for each image, the colour planes
(red, green, blue, cyan, magenta and yellow) are decom-

posed, a transformation to grayscale is performed, an RGB-
HOG is applied and a gamma correction is conducted with
γ ∈ {0.1, 0.2, 0.5, 1.5, 2.0, 3.0, 4.0, 5.0}. All techniques are
applied separately and we also consider the non-preprocessed
version.

Second, each of the image sets obtained from the previ-
ous phase, and also the original set, are employed to train
CNNs and ViTs. In order to facilitate the training process,
pretrained models are used for the experiments. The se-
lected CNNs are ResNet-50 (He, Zhang, Ren, & Sun, 2016),
SqueezeNet (Iandola et al., 2016), EfficientNet (Tan & Le,
2019), ResNeXt-50 (S. Xie, Girshick, Dollár, Tu, & He,
2017), ConvNeXt-S and ConvNeXt-L (Liu et al., 2022). The
selected ViTs are the original ViT, a hybrid ResNet - ViT
(Dosovitskiy et al., 2020), EVA-02 (Fang et al., 2023) and
EfficientViT (Cai, Li, Hu, Gan, & Han, 2022). In all cases,
an EarlyStopping regularization function is applied based on
the validation loss. Additionally, the best model is selected
based on its F1-score value in the validation set. The output
of this stage is a set of fitted models that combine the prepro-
cessing techniques and the original images with the selected
models.

Third, the fitted models can classify any image directly. How-
ever, it is important to considerate the confidence of the pre-
diction. To this end, models return a score value in the [0, 1]
interval, together with the predicted label, which represents
the likelihood that the image belongs to each class. Binary
classification usually provides a single score value that repre-
sents the likelihood for the positive class, which is the defec-
tive one in our case. Consequently, if the associated score for
the defective class is Sdefective, the non-defective score will
be Snon−defective = 1 − Sdefective. These values may be
used to make more accurate predictions by setting thresholds
that must be exceeded by the scores. In particular, two values
are selected. One to detect if a part is non-defective, the OK
threshold, which implies that the Snon−defective score must
be over that value to classify an image as OK, and another
to determine whether a part is defective, the NK threshold,
which must be exceeded by the Sdefective score to classify a
part as NK.

Finally, the best model for classifying OK images and the
best model for classifying NK images are selected based on
the concepts of scoring and threshold. The objective is to
identify the most effective model for detecting non-defective
parts, associated with the first threshold, and the most effec-
tive model for determining defective parts, related to the sec-
ond threshold. For that end, once the models have been fitted,
a search is conducted to identify both models. In the first
case, the objective is to identify the model that maximizes the
number of OK images classified correctly before classifying
an NK as non-defective. In the second one, the aim is the op-
posite. In both cases this is achieved by following the steps
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Figure 7. Proposed architecture

of the Algorithm 1. The input of the algorithm is composed
of five parameters, namely N , V I , scores, labels and label.
Let Mm×n be a matrix with m rows and n columns, these
five parameters are defined as follows:

• N is the number of fitted models.

• V I is the number of images on the validation set,

• scores ∈ MN×V I represents the Sdefective scores pro-
vided by fitted models for images on the validation set.

• labels ∈ MN×V I contains the labels predicted by fitted
models for images on the validation set.

• label ∈ {′OK ′,′ NK ′} includes the search objective.
′OK ′ indicates that the best model for classifying non-
defective parts must be selected and the associated OK
threshold must be defined. ′NK ′ means the opposite.

The output of the algorithm is the threshold value
(threshold) and the index of the selected model
(best model).

4.2. Inference

Once again, as shown in Figure 7, the initial step is to prepro-
cess the data. This is achieved by applying the two transfor-
mations associated with the models selected during the archi-
tecture construction. This results in two images that will be
processed independently.

Algorithm 1 Search for the best model

1: function FIND BEST MODELS THRESHOLDS(N , V I ,
scores, labels, label)

2: best count← 0
3: threshold← 0
4: best model← 0
5: if label ==′ OK ′ then
6: scores← 1− scores
7: end if
8: for i← 1 to num models do
9: indices← sort indices descend(scores[i])

10: sorted scores← scores[i][indices]
11: sorted labels← labels[i][indices]
12: j ← 1
13: while (sorted labels[i][j] == label)&(j <=

V I) do
14: j ← j + 1
15: end while
16: if j > best count then
17: best count← j
18: threshold← sorted scores[j]
19: best model← i
20: end if
21: end for
22: return threshold, best model
23: end function
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The image obtained after applying the OK transformation is
processed with the Best OK Model. Then, the architecture
evaluates the score of the model indicating whether the im-
age is OK. If the value is greater than the OK threshold, it is
determined that the image is OK (non-defective). Otherwise,
it remains unlabeled.

The same process is conducted with the image obtained af-
ter applying the NK transformation. In this case, the score
that the image is NK is observed. If the NK threshold is ex-
ceeded, the image is classified as NK (defective). Otherwise,
it remains unlabeled.

Finally, the partial decisions are integrated to make a final
decision, as illustrated in Table 1.

Table 1. Final decision.

Partial decision OK Partial decision NK Final decision
OK Unlabeled OK
OK NK Unlabeled
Unlabeled NK NK
Unlabeled Unlabeled Unlabeled

5. RESULTS

This section begins with a brief overview of the experimental
setup. Then, the results obtained with CNNs and ViTs are
shown as a baseline. Finally, the results obtained with the
proposed architecture are presented.

5.1. Experimental setup

The experiments were conducted on an Intel Xeon Silver
4310 CPU at 2.10 GHz with 32 GB RAM. Additionally,
GPU acceleration was employed with a 48 GB NVIDIA A40.
Some of the selected libraries in the execution environment
were Python 3.9.12, Pytorch 1.13.1 and Fastai 2.7.13.

The dataset was balanced by randomly removing some non-
defective images until a ratio of 80% - 20% is achieved. After
that, this set was divided into three subsets: training, with
312 images (50%), validation, with 125 images (20%) and
test, with 188 images (30%). This partition was random and
stratified.

The models were evaluated using metrics derived from the
confusion matrix, which in the case of binary classification
includes:

• True positive (TP). The actual and predicted values are
both positive.

• False negatives (FN). The actual value is positive, while
the predicted is negative.

• True negative (TN). The actual and predicted values are
both negative.

• False positives (FP). The actual value is negative, while
the predicted is positive.

Given the significant imbalance between classes and the im-
portance of false positives and false negatives, the selected
metric for evaluating the models was the F1-score.

F1−score = 2· Precision ·Recall

Precision+Recall
=

TP

TP + 1
2 (FP + FN)

The minority class, which represents the defective set, was
selected as the positive class.

Moreover, additional metrics are employed to enhance the
comprehension of the results.

TruePositiveRate =
TP

TP + FN

FalsePositiveRate =
FP

FP + TN

TrueNegativeRate =
TN

TN + FP

FalseNegativeRate =
FN

FN + TP

5.2. Baseline

The results obtained after fitting the pretrained models with
the training data were used as a baseline. This can be con-
sulted in Table 2. In particular, the ten best models are enu-
merated, in conjunction with their preprocessing technique.
For a more comprehensive understanding, in addition to dis-
playing the F1-score results, the elements of the confusion
matrix are also included.

Table 2. Classification test results for the baseline models

Preprocessing Model F1 TP FN FP TN
Cyan ch. ResNet-ViT 0.457 24 9 48 107
Gamma 0.5 ConvNeXt-S 0.453 17 16 25 130
Red ch. ResNet-50 0.442 17 16 27 128
Original ConvNeXt-S 0.422 19 14 38 117
RGB-HOG ResNeXt-50 0.407 12 21 14 141
Original ViT 0.407 24 9 61 94
Blue ch. EfficientViT 0.400 11 22 11 144
Magenta ch. SqueezeNet 0.400 15 18 27 128
Green ch. SqueezeNet 0.395 17 16 36 119
Magenta ch. EfficientNet 0.395 16 17 32 123

The color plane decomposition appears to be an effective ap-
proach, as evidenced by the fact that more than half of the
models presented employ this technique. Although the ta-
ble includes more CNN models, the hybrid Resnet-ViT ar-
chitecture is the one with the best results. However, all the
results are quite poor. The considerable number of false neg-
atives is unacceptable in a real manufacturing environment,
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as they would result in defective parts that continue in the as-
sembly line. Furthermore, a third part of the non-defective
parts would be sent to melting down unnecessarily.

5.3. Architecture results

First, the models selected during the architecture construction
are presented.

• In the case of OK score, the selected model was EVA-
02 with the grayscale transformation, which was able to
correctly classify 23 OK instances before the appearance
of an NK, as can be observed in Figure 8. The threshold
was determined to be 0.898.

Figure 8. Best OK Model

• In the case of NK score, the best model was ConvNeXt-
L with original images. This model was able to classify
4 NK instances before the appearance of the first OK, as
illustrated in Figure 9. The threshold was determined to
be 0.794.

Figure 9. Best NK Model

The results obtained on the test set using the selected models
and thresholds can be found in Table 3.

Table 3. Proposed architecture test results

Predicted
Actual OK NK Unlabeled
OK 30 5 120
NK 1 5 27

This approach enhances the baseline results, not only in terms
of the F1 score, which has increased from 0.457 to 0.625, but
also in the confusion matrix values. Only one defective image
is classified as OK, and only five correct parts would be sent
to melting down. Furthermore, approximately 22% of the
parts would be exempt from the leak test.

The True Positive Rate and True Negative Rate are 0.833 and
0.857 respectively. In contrast, the False Negative Rate has a
value of 0.167 and the False Positive Rate is 0.143. Another
particularly significant value is the one that tells us what per-
centage of parts classified as OK are really OK, which would
be obtained by calculating TN

TN+FN = 0.968.

Moreover, although in this work the threshold has been set
according to the validation subset results, the proposal has
the sufficient flexibility to be adapted to more or less strict
requirements. Consequently, if the use case requires it, higher
thresholds could be employed to minimize the False Positive
and False Negative rates, or more relaxed thresholds can be
used to reduce the unlabeled percentage.

6. CONCLUSIONS AND FUTURE WORK

The application of classical preprocessing techniques in asso-
ciation with CNNs and ViTs (the baseline) has demonstrated
that this approach does not provide sufficient quality guaran-
tees. Production lines requires that all parts undergo rigorous
quality control checks. However, this can result in bottle-
necks and constraints on the production capacity of the line.

In this work we have proposed an architecture that combines
several DL techniques, which effectively prioritizes the num-
ber of parts which can avoid these tests while ensuring strict
quality requirements. The proposed architecture combines
the models that maximize the number of correctly classified
instances before the first classification error according to their
OK score (Best OK Model) and to their NK score (Best NK
Model).

The proposed architecture results in a 22% reduction in the
number of parts that would not require additional tests. Con-
sequently, it can be concluded that the proposed techniques
enhance the quality control tasks in a die-casting process, re-
sulting in an overall improvement of the productivity system.
Since these thermographic images are proprietary data, it is
not possible to compare the results with other publications
in the literature. However, experiments have been conducted
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with the main state-of-the-art techniques to demonstrate dif-
ferences in performance.

Considering these results, it may be advisable to use alterna-
tive image data for quality control purposes. Although ther-
mographic imaging of the manufactured parts is not a feasi-
ble option, tomography provides a potential solution for ob-
taining a more detailed representation of the parts. However,
the extended capture process would represent a bottleneck,
preventing the current production rate. Therefore, as the ob-
jective of the proposal is to enhance the production process
capacity, it is essential to preserve the use of thermographic
images of the molds.

In order to improve these results, future work will focus on
the use of more advanced DL techniques and architectures
such as ensemble methods. Furthermore, due to the consider-
able complexity of the image, along with the possibility that
thermographic images may be taken from different angles and
distances, it is planned to process it by regions of interest,
studying each of the portions individually. Additionally, it is
also intended to use thermographic images of different molds
and injectors.
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