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ABSTRACT 

This paper highlights an innovative initiative, focusing on 

Prognostics and Health Management (PHM) to enhance in-

flight Wi-Fi performance by proactively identifying aircraft 

component failures. We propose a novel metric, the 

Normalized Wi-Fi Health Score (NWiHS), alongside a 

corresponding alerting mechanism, which together represents 

a significant advancement in the evaluation and improvement 

of in-flight Wi-Fi connectivity. To achieve this goal, we 

utilized big data consisting of millions of historical Wi-Fi 

heartbeats (HBs) received from each aircraft over the past 

three years. These HBs refer to periodic data packet 

transmissions sent from United’s aircraft to ground stations, 

providing crucial real-time insights into the Wi-Fi system’s 

status.  Leveraging that data, we utilized advanced statistical 

methods to estimate a NWiHS - a robust indicator of aircraft-

level connectivity performance, which quantifies the percent 

of missing Wi-Fi HBs normalized to exclude the effect of Wi-

Fi provider performance and global coverage. 

1. INTRODUCTION 

Monitoring internet connectivity in ground-based systems, 

like home internet, is quite distinct from doing so in in-flight 

systems due to various environmental and technological 

factors. As highlighted by Rula et al. (2018), ground-based 

systems typically benefit from stable, wired, or wireless 

networks with limited mobility, leading to lower latency and 

greater reliability. On the other hand, in-flight connectivity 

must function at high altitudes and speeds, often relying on 

satellite connections or air-to-ground communication. These 

conditions cause increased latency and lower bandwidth 

compared to ground networks. 

In the rapidly evolving field of commercial aviation, 

maintaining reliable in-flight Wi-Fi connectivity poses 

unique challenges. These include the dynamic nature of 

aircraft environments, the complexity of onboard systems, 

and the need for uninterrupted service amidst variable 

coverage areas. Our research addresses these challenges by 

applying PHM strategies specifically to In-Flight 

Connectivity (IFC) systems, utilizing advanced analytics to 

predict and prevent Wi-Fi system failures. In modern 

aviation, the integration of onboard Wi-Fi in aircraft stands 

as a groundbreaking leap, transforming the inflight passenger 

experience while fostering seamless data communication. As 

it is defined by Zio (2022), PHM is a data-driven approach 

that integrates physical insights, information, and operational 

data of structures, systems, and components to facilitate the 

identification of abnormalities, diagnose faults, and assess 

the degradation of equipment and processes. A research study 

conducted by Kordestani et al. (2023) highlights the 

importance of PHM in managing the complexities and 

interconnected subsystems of aircraft. This study emphasizes 

the need for advanced prognostic strategies to maintain 

aircraft safety and reliability.  

In the context of IFC systems, the application of PHM 

strategies is pivotal. These systems are critical for enabling 

onboard internet access, real-time communication, and 

entertainment services. Therefore, it would be required to 

have robust monitoring and maintenance to ensure 

uninterrupted service. While specific research directly 

linking PHM and IFC systems in commercial aviation is 

scarce, the key principles of PHM applied in aviation can be 

extrapolated to manage the health and performance of IFC 
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systems. This includes leveraging data-driven prognostic 

techniques, and real-time analysis to expect and mitigate 

potential aircraft-level Wi-Fi system failures. It ensures 

optimal performance and minimizes disruptions to 

passengers’ connectivity. 

This study underscores the potential of integrating big data 

and advanced analytics to improve onboard Wi-Fi 

performance through rapid identification of aircraft-level IFC 

system failures. More specifically, it introduces the NWiHS 

as an innovative metric designed for Wi-Fi health 

management across United Airlines' fleet. Building on this 

metric, this study also unveils an algorithm—an alerting 

mechanism— aimed at early detection of IFC system failures, 

thus enabling technicians and engineers to proactively 

address those issues. Furthermore, the application and 

effectiveness of this alerting mechanism is proved through its 

deployment on the Airbus 320 fleet. 

2. DATA 

This section presents the data forming the backbone of the 

analysis. As discussed earlier, the aim is to continuously 

monitor the IFC system and detect failures as they occur. To 

achieve this, we used big data consisting of historical Wi-Fi 

HBs collected from each aircraft over the past three years. 

These HBs are automatically generated every 5 minutes by 

the aircraft’s onboard broadband controller or file server, 

where the United portal is installed. Each HB is then 

transmitted in real-time to United's ground stations, 

conveying essential Wi-Fi connectivity status information. 

The transmitted data includes the HB timestamp, departure 

and arrival stations, aircraft details, the volume of data bytes 

transmitted and received, and the Wi-Fi service provider 

information. A flight is considered "healthy" if all expected 

HBs are received during its duration. Conversely, if HBs are 

missing at the expected intervals, this shows a potential 

connectivity issue or failure. Importantly, the structure of the 

HB data remains consistent across all IFC-equipped aircraft, 

ensuring uniformity in monitoring and analysis. 

For analytical precision and due to operational differences 

among Wi-Fi providers, our study focuses exclusively on 

airborne HBs, discounting any data transmitted while the 

aircraft is on the ground. This includes HBs from the moment 

of takeoff to landing, ensuring that data reflects the 

connectivity status under operational flight conditions. 

Figure 1 illustrates the selection process for HB data 

corresponding to a single flight, providing a visual 

representation of the data filtering method. To provide 

additional context on the data structure and as an example, an 

aircraft in a healthy state is expected to transmit 12 HBs to 

the ground station during a flight with a 60-minute airtime. A 

deviation from this expected HB transmission frequency may 

signal an unhealthy state linked to connectivity issue. In the 

next section, we discuss how these HBs are utilized as a base 

for monitoring Wi-Fi connectivity performance and to detect 

anomalies in the IFC system. 

 

 

Figure 1. Data filtering methodology for selecting airborne 

heartbeat data per flight. 

 

3. METHODOLOGY AND RESULTS 

This section aims to present core algorithms that transform 

raw HB data from an aircraft into a real-time NWiHS, a 

crucial metric for monitoring IFC health. Subsection 3.1 

delves into the NWiHS metric, elaborating on the estimation 

method employed. Subsequently, subsection 3.2 explores the 

alerting mechanism, showcasing its implementation within 

the Airbus 320 fleet. 

As outlined in Section 2, aircraft equipped with an IFC 

system are anticipated to send a HB to the ground station 

every five minutes of flight time, provided the connectivity is 

in a healthy state (i.e. aircraft maintains Wi-Fi connectivity 

while airborne). To quantify the disparity between the actual 

and expected number of HBs, the Missing Heartbeat 

Percentage (MHP) metric was introduced, as defined in 

Equation (1). MHP quantifies the percentage of a flight where 

no heartbeats are received, with 100% indicating no 

connectivity throughout the entire flight and 0% indicating 

complete connectivity. 

 

𝑀𝐻𝑃𝑓𝑙𝑖𝑔ℎ𝑡 = (1 −
𝐴𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝐵𝑠𝑓𝑙𝑖𝑔ℎ𝑡

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝐵𝑠𝑓𝑙𝑖𝑔ℎ𝑡

) × 100 (1) 

 

The primary objective here is to pinpoint failures within the 

aircraft's Wi-Fi system and its components, not other external 

factors. To this end and as explained by Rosenbaum, P. R. 

(2002), an initial step involves identifying and controlling for 

potential confounding variables that could affect the main 

variable of interest, the aircraft-level Wi-Fi system, as 

depicted in Figure 2. This identification process was 
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conducted using exploratory data analysis and correlation 

studies aimed at uncovering variables linked to the MHP and 

the likelihood of failures in the aircraft-level IFC system. The 

results of our correlation analysis indicated that over 70% of 

the system noise might be attributed to route-based 

connectivity coverage, which encompasses the connection 

availability provided along the flight route's geographical 

coordinates and the satellite's bandwidth. Figure 3.a depicts 

the MHP for an aircraft over the past three years, illustrating 

considerable noise in the metric and the challenge of 

discerning a clear pattern. As seen in the figure, there are 

several occurrences of high MHP values. The key question, 

however, is whether these high values are indicative of issues 

within the aircraft's system itself, or if they stem from factors 

such as provider performance and route coverage. To address 

this, we aim to decompose these contributing factors to better 

identify potential issues within the aircraft system. The next 

section is devoted to answering this question and discussing 

our goal of decoupling aircraft-related issues from other 

factors affecting connectivity performance. 

3.1. Normalized Wi-Fi Health Score (NWiHS) 

In the realm of big industry, selecting an optimal method for 

denoising time series data, as elucidated by Shumway et al. 

(2017) and Baumann et al. (2023), is a critical decision that 

significantly impacts operational outcomes. The chosen 

method must not only excel in accuracy, ensuring precise 

isolation and analysis of the factor of interest but also align 

with the industry's demand for simplicity and efficiency, 

particularly in environments handling real-time operational 

data (George et al., 2014).  

  

 

Figure 2. Factors influencing Wi-Fi performance. 

 

Our methodology transforms raw HB data into a real-time 

NWiHS, leveraging advanced statistical techniques to filter 

out noise and accurately assess Wi-Fi health. The noise in HB 

data is largely attributed to factors such as connectivity 

coverage, which varies depending on the route and the 

connectivity provider. NWiHS is designed to decompose 

these non-aircraft-related factors, including route and 

satellite bandwidth, so it can more accurately represent 

failures in the aircraft's IFC systems. Consequently, any 

anomalies detected within this refined metric may signal 

underlying issues with the aircraft's systems or components, 

necessitating maintenance intervention. Equation (2) 

explains the formulation of the proposed metric, illustrating 

its foundational structure in assessing aircraft IFC system 

health. 

 

𝑁𝑊𝑖𝐻𝑆𝑓𝑙𝑖𝑔ℎ𝑡 = (
𝑀𝐻𝑃𝑓𝑙𝑖𝑔ℎ𝑡

𝑅𝑜𝑢𝑡𝑒 − 𝑏𝑎𝑠𝑒𝑑 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑓𝑙𝑖𝑔ℎ𝑡−𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟

) + 𝜀 (2) 

Where, 𝑅𝑜𝑢𝑡𝑒 − 𝑏𝑎𝑠𝑒𝑑 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑓𝑙𝑖𝑔ℎ𝑡−𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟  is a 

calculated metric that represents the connectivity coverage, 

taking into account the specific route of the aircraft and the 

associated connectivity provider. 𝜀  denotes an error term, 

capturing the influence of other unobserved external factors. 

Subsequently, we will delve into the methodology employed 

to estimate the Route-based Coverage Adjuster, providing a 

comprehensive understanding of how this metric is derived 

and its relevance in assessing connectivity coverage. 

The NWiHS metric is notably sensitive to variations in route-

based coverage, underscoring the necessity for precise 

estimation of this coverage to ensure the metric's 

effectiveness. From another standpoint, data on coverage and 

provider performance is often elusive and proprietary, and 

such coverage is subject to fluctuations over time and with 

varying traffic volumes, influenced by constraints in satellite 

bandwidth. Considering these conditions and limitations, we 

have utilized HB data to construct a coverage map based on 

United Airlines’ operation network. Below is an iterative 

algorithm to estimate the Route-based Coverage Adjuster for 

each combination of Origin-Destination-Provider (O-D-P): 

1. Initialization: 

• Step 0: Initialize by setting 𝑖 = 0 and 𝐷𝑖 = 0. 

2. Iteration and Analysis Window Setup: 

• Step 1: Increment the iteration: Set: 𝑖 = 𝑖 + 1 

• Step 2: Define the analysis window: Set 𝐷𝑖+1 =  𝐷𝑖 + 30 

3. Calculation and Condition Check:  

• Step 3: Calculate the median for the current window: 𝑀𝑖 =
 𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝐻𝑃)𝐷𝑖

 

• Step 4: Compute the number of unique aircraft flying in the 

current window: 𝐴𝐶𝑖 

• Step 5: Check if 𝐴𝐶𝑖 is sufficient (i.e., 𝐴𝐶𝑖 ≥ 10). If not, return 

to Step 1. If yes, proceed to Step 6. 

4. Final Adjustment: 

• Step 6: Set the Route-based Coverage Adjuster for the origin-

destination-provider based on the current median: 𝑅𝑜𝑢𝑡𝑒 −
𝑏𝑎𝑠𝑒𝑑 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑂−𝐷−𝑃 = 𝑀𝑖 

The algorithm ensures that the Route-based Coverage 

Adjuster is not only current and adaptable but also 

differentiates between the varying flight patterns of narrow-

body aircraft on frequent routes and wide-body aircraft on 

seasonal or less frequent routes by expanding the analysis 

window. This differentiation bolsters the algorithm's 

Factor of interest 
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robustness against anomalies, such as accounting for aircraft 

in suboptimal condition flying the same routes, enhancing the 

reliability of the NWiHS as an indicator of IFC system health. 

Figure 3.b illustrates that the effective implementation of 

NWiHS can substantially filter out system noise, thereby 

uncovering the actual failures within the aircraft’s IFC 

system.  

 

  

a) MPH time series b) NWiHS time series  

Figure 3. MPH vs. NWiHS timeseries plots for an aircraft 

 

3.2. NWiHS as a Tool for Real-Time Anomaly Detection: 

A Case Study with the Airbus A320 Fleet 

Anomaly detection in time series data is pivotal for 

identifying irregular patterns that may indicate critical events, 

remarkably in industrial settings. The threshold-based 

anomaly detection method, particularly the standard 

deviation approach, is highly valued in industry for its 

straightforwardness and efficiency in spotting system failures 

as highlighted by Clark et al. (2018). In our study, we 

leveraged historical NWiHS time series data alongside IFC 

component failure data to ascertain the most effective 

approach for an alerting mechanism. Initially, we applied an 

aircraft-specific standard deviation method, determining that 

𝜇𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡(𝑁𝑊𝑖𝐻𝑆) + 2 × 𝜎𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 , where µ represents the 

mean and σ denotes the standard deviation, offers highest 

performance based on recall and precision. Our analysis 

further indicated that over 90% of the aircraft exhibited a 

threshold limit below 4.7 across the A320 fleet, as shown in 

Figure 4. Additionally, we observed that the NWiHS time 

series data are predominantly stationary, with the normal 

state exhibiting minimal fluctuations over time. This stability 

is attributed to the Route-based Coverage Adjuster, which 

effectively normalizes the NWiHS against various time-

dependent factors, such as air-traffic volume (satellite’s 

bandwidth) and provider network enhancements. Given our 

findings, which prioritize high recall and precision while 

avoiding undue complexity, we recommended the 90th 

percentile as the optimal threshold’s base value. Based on 

historical data from 2021 to 2023, implementing this NWiHS 

time series threshold approach could achieve recall and 

precision rates of 88% and 78%, respectively, in detecting 

IFC system failures. 

 

 

Figure 4. Histogram for aircraft-specific thresholds (µ+2*σ) 

 

4. CONCLUSION 

This study represents a significant advancement in the 

management of in-flight Wi-Fi systems, demonstrating how 

big data and advanced analytics can be leveraged to enhance 

connectivity reliability. Despite the complexity of the task, 

our findings offer promising directions for future research, 

particularly in further refining the NWiHS metric and 

exploring its application across different aircraft types and 

operational contexts. As the aviation industry continues to 

evolve, the continuous improvement of PHM strategies will 

play a crucial role in meeting the increasing demands for 

reliable IFC systems. 
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